Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical model and correction method of range walk error for single-photon laser ranging

Huang Ke Li Song Ma Yue Tian Xin Zhou Hui Zhang Zhi-Yu

Citation:

Theoretical model and correction method of range walk error for single-photon laser ranging

Huang Ke, Li Song, Ma Yue, Tian Xin, Zhou Hui, Zhang Zhi-Yu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Single-photon laser ranging is a new generation of lidar which represents the future lidar development trend.It uses the single photon detector as the receiving device.Due to the fact that single-photon detector possesses the ultra-high sensitivity,the single-photon laser ranging is much easier to achieve the high density as well as the high coverage target sampling.However,the existence of the range work error in single-photon laser ranging,resulting from the fluctuation in the number of signal photoelectrons restricts the improvement of the ranging accuracy.In this paper,the range walk error model based on the lidar equation and the statistical property of single-photon detector is established.Then the relation between the range walk error and the number of signal photoelectrons is also derived.The range walk error of single-photon laser ranging is predicted and the corresponding compensation for the original result is obtained,with the derived function and the detection probability model of single-photon laser ranging.The experiment for its proof is also carried out.In the experiment,the number of signal photoelectrons is changed by the different attenuators for the same target and at the same distance.When the attenuator is changed,the pulse width of echo signal changes very little (about 3.2 ns).However,the average number of signal photoelectrons varies between 0.03 counts and 4.3 counts.So the range walk error,resulting from the fluctuation in the number of signal photoelectrons cannot be ignored.For example, when using an attenuation of 1/10 pass rate,the average number of signal photoelectrons is about 4.3 counts and the range walk error is almost 46 cm,which is the main factor of the range error.The reduction of the range walk error is achieved by applying the correction of the range walk error in this paper.After correction,the standard deviation of the range walk error decreases significantly from 15.17 cm to 1.16 cm.The mean absolute error is also reduced from 11.56 cm to 0.99 cm.Generally,the range walk error has an unnegligible influence on the ranging accuracy.The experimental result confirms that the theoretical model is accurate.It also shows that the bigger the number of the received signal photoelectrons,the greater the range walk error is,and the accuracy of single-photon laser ranging is improved by applying the technique proposed in this paper.Briefly,this paper presents the technical method of optimizing the design and evaluating the performance of single-photon laser ranging.
      Corresponding author: Li Song, ls@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 41506210), the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 42-Y20A11-9001-17/18), the China Postdoctoral Science Foundation (Grant No. 2016M600612), and the Key Laboratory of Satellite Mapping Technology and Application, National Administrator of Surveying, Mapping and Geoinformation, China (Grant No. KLSMTA-201701).
    [1]

    Iqbal I A, Dash J, Ullah S, Ahmad G 2013 Int. J. Appl. Earth Obs. 23 109

    [2]

    Abdullah Q A 2016 Photogramm. Eng. Rem. S. 82 307

    [3]

    Brown M E, Arias S D, Neumann T, Jasinski M F, Posey P, Babonis G 2016 IEEE Geosci. Remote S. 4 24

    [4]

    Yu A W, Krainak M A, Harding D J, et al. 2013 Proc. SPIE 8599 85990P

    [5]

    Gatt P, Johnson S, Nichols T L 2007 Proc. SPIE 6550 65500I

    [6]

    Apakwok R, Markus T, Morison J, Palm S P, Neumann T A, Brunt K M 2014 J. Atmos. Ocean. Technol. 31 1151

    [7]

    Zhang S, Tao X, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L, Wu P H 2016 Acta Phys. Sin. 65 188501 (in Chinese) [张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨 2016 物理学报 65 188501]

    [8]

    Lai J, Jiang H, We Y, Wang C, Li Z 2013 Optik 124 5202

    [9]

    Luo H, Yuan X, Zeng Y 2013 Opt. Express 21 18983

    [10]

    Xu L, Zhang Y, Zhang Y, Yang C, Yang X, Zhao Y 2016 Appl. Opt. 55 1683

    [11]

    Oh M S, Kong H J, Kim T H, Hong K H, Kim B W 2010 Opt. Commun. 283 304

    [12]

    He W, Sima B, Chen Y, Dai H, Chen Q, Gu G 2013 Opt. Commun. 308 211

    [13]

    Gardner C S 1992 IEEE Trans. Geosci. Remote Sens. 30 1061

    [14]

    Kim S, Lee I, Kwon Y J 2013 Sensors 13 8461

    [15]

    Johnson S, Gatt P, Nichols T L 2003 Proc. SPIE 2003 5086

    [16]

    Williams G M, Huntington A S 2006 Proc. SPIE 6220 622008

    [17]

    Degnan J J 2002 J. Geodyn. 34 503

    [18]

    Fouche D G 2003 Appl. Opt. 42 5388

    [19]

    Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C, Schutz B E, Smith B, Yang Y, Zwally J 2017 Remote Sens. Environ. 190 260

    [20]

    Johnson S E, Nichols T L, Gat P, Klausutis T J 2004 Sensors 5412 72

    [21]

    Huang K, Li S, Ma Y, Zhou H, Yi H, Si G Y 2016 Chin. J. Lasers 11 1110001 (in Chinese) [黄科, 李松, 马跃, 周辉, 易洪, 史光远 2016 中国激光 11 1110001]

    [22]

    Sithole G 2001 Int. Arch. Photogramm. Remote Sens. 34 203

    [23]

    Zhang J S 2014 Ph. D. Dissertation (Rochester:Rochester Institute of Technology)

  • [1]

    Iqbal I A, Dash J, Ullah S, Ahmad G 2013 Int. J. Appl. Earth Obs. 23 109

    [2]

    Abdullah Q A 2016 Photogramm. Eng. Rem. S. 82 307

    [3]

    Brown M E, Arias S D, Neumann T, Jasinski M F, Posey P, Babonis G 2016 IEEE Geosci. Remote S. 4 24

    [4]

    Yu A W, Krainak M A, Harding D J, et al. 2013 Proc. SPIE 8599 85990P

    [5]

    Gatt P, Johnson S, Nichols T L 2007 Proc. SPIE 6550 65500I

    [6]

    Apakwok R, Markus T, Morison J, Palm S P, Neumann T A, Brunt K M 2014 J. Atmos. Ocean. Technol. 31 1151

    [7]

    Zhang S, Tao X, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L, Wu P H 2016 Acta Phys. Sin. 65 188501 (in Chinese) [张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨 2016 物理学报 65 188501]

    [8]

    Lai J, Jiang H, We Y, Wang C, Li Z 2013 Optik 124 5202

    [9]

    Luo H, Yuan X, Zeng Y 2013 Opt. Express 21 18983

    [10]

    Xu L, Zhang Y, Zhang Y, Yang C, Yang X, Zhao Y 2016 Appl. Opt. 55 1683

    [11]

    Oh M S, Kong H J, Kim T H, Hong K H, Kim B W 2010 Opt. Commun. 283 304

    [12]

    He W, Sima B, Chen Y, Dai H, Chen Q, Gu G 2013 Opt. Commun. 308 211

    [13]

    Gardner C S 1992 IEEE Trans. Geosci. Remote Sens. 30 1061

    [14]

    Kim S, Lee I, Kwon Y J 2013 Sensors 13 8461

    [15]

    Johnson S, Gatt P, Nichols T L 2003 Proc. SPIE 2003 5086

    [16]

    Williams G M, Huntington A S 2006 Proc. SPIE 6220 622008

    [17]

    Degnan J J 2002 J. Geodyn. 34 503

    [18]

    Fouche D G 2003 Appl. Opt. 42 5388

    [19]

    Markus T, Neumann T, Martino A, Abdalati W, Brunt K, Csatho B, Farrell S, Fricker H, Gardner A, Harding D, Jasinski M, Kwok R, Magruder L, Lubin D, Luthcke S, Morison J, Nelson R, Neuenschwander A, Palm S, Popescu S, Shum C, Schutz B E, Smith B, Yang Y, Zwally J 2017 Remote Sens. Environ. 190 260

    [20]

    Johnson S E, Nichols T L, Gat P, Klausutis T J 2004 Sensors 5412 72

    [21]

    Huang K, Li S, Ma Y, Zhou H, Yi H, Si G Y 2016 Chin. J. Lasers 11 1110001 (in Chinese) [黄科, 李松, 马跃, 周辉, 易洪, 史光远 2016 中国激光 11 1110001]

    [22]

    Sithole G 2001 Int. Arch. Photogramm. Remote Sens. 34 203

    [23]

    Zhang J S 2014 Ph. D. Dissertation (Rochester:Rochester Institute of Technology)

  • [1] Zhang Xu, Ding Jin-Min, Hou Chen-Yang, Zhao Yi-Ming, Liu Hong-Wei, Liang Sheng. Machine learning based laser homogenization method. Acta Physica Sinica, 2024, 73(16): 164205. doi: 10.7498/aps.73.20240747
    [2] Wang Ju, Shao Qi, Yu Jin-Long, He Ke-Rui, Luo Hao, Ma Chuang, Cai Zi-Heng, Zheng Zi-Yue, Cai Ben. Laser ranging system based on double intensity modulation. Acta Physica Sinica, 2023, 72(22): 220601. doi: 10.7498/aps.72.20230997
    [3] Wei Yu-Yan, Gao Zi-Kai, Wang Si-Ying, Zhu Ya-Jing, Li Tao. Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2022, 71(5): 050302. doi: 10.7498/aps.71.20210907
    [4] Zhao Ning, Jiang Ying-Hua, Zhou Xian-Tao. Efficient quantum secure direct communication scheme based on single photons. Acta Physica Sinica, 2022, 71(15): 150304. doi: 10.7498/aps.71.20220202
    [5] Deterministic secure quantum communication with double-encoded single photons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210907
    [6] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [7] Wei Lian-Suo, Li Hua, Wu Di, Guo Yuan. Clock synchronization error compensation algorithm based on BP neural network model. Acta Physica Sinica, 2021, 70(11): 114203. doi: 10.7498/aps.70.20201641
    [8] Liu Zhi-Hao, Chen Han-Wu. Information leakage problem in quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2017, 66(13): 130304. doi: 10.7498/aps.66.130304
    [9] Cao Zheng-Wen, Zhao Guang, Zhang Shuang-Hao, Feng Xiao-Yi, Peng Jin-Ye. Quantum secure direct communication protocol based on the mixture of Bell state particles and single photons. Acta Physica Sinica, 2016, 65(23): 230301. doi: 10.7498/aps.65.230301
    [10] Liu Guo-Dong, Xu Xin-Ke, Liu Bing-Guo, Chen Feng-Dong, Hu Tao, Lu Cheng, Gan Yu. A method of suppressing vibration for high precision broadband laser frequency scanning interferometry. Acta Physica Sinica, 2016, 65(20): 209501. doi: 10.7498/aps.65.209501
    [11] Xiao Yang, Yu Jin-Long, Wang Ju, Wang Wen-Rui, Wang Zi-Xiong, Xie Tian-Yuan, Yu Yang, Xue Ji-Qiang. Relationship between modulation frequency and range accuracy in the double polarization modulation range finding system. Acta Physica Sinica, 2016, 65(10): 100601. doi: 10.7498/aps.65.100601
    [12] Zhang Sen, Tao Xu, Feng Zhi-Jun, Wu Gan-Hua, Xue Li, Yan Xia-Chao, Zhang La-Bao, Jia Xiao-Qing, Wang Zhi-Zhong, Sun Jun, Dong Guang-Yan, Kang Lin, Wu Pei-Heng. Enhanced laser ranging with superconducting nanowire single photon detector for low dark count rate. Acta Physica Sinica, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [13] Xu Xin-Ke, Liu Guo-Dong, Liu Bing-Guo, Chen Feng-Dong, Zhuang Zhi-Tao, Gan Yu. High-resolution laser frequency scanning interferometer based on fiber dispersion phase compensation. Acta Physica Sinica, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [14] Yu Zhen-Tao, Lü Jun-Wei, Bi Bo, Zhou Jing. A vehicle magnetic noise compensation method for the tetrahedron magnetic gradiometer. Acta Physica Sinica, 2014, 63(11): 110702. doi: 10.7498/aps.63.110702
    [15] Wang Guo-Chao, Yan Shu-Hua, Yang Jun, Lin Cun-Bao, Yang Dong-Xing, Zou Peng-Fei. Analysis of an innovative method for large-scale high-precision absolute distance measurement based on multi-heterodyne interference of dual optical frequency combs. Acta Physica Sinica, 2013, 62(7): 070601. doi: 10.7498/aps.62.070601
    [16] Zeng Zhe-Zhao. Feedback compensation control on chaotic system with uncertainty based on radial basis function neural network. Acta Physica Sinica, 2013, 62(3): 030504. doi: 10.7498/aps.62.030504
    [17] Han Min, Xu Mei-Ling. A hybrid prediction model of multivariate chaotic time series based on error correction. Acta Physica Sinica, 2013, 62(12): 120510. doi: 10.7498/aps.62.120510
    [18] Zhang La-Bao, Kang Lin, Chen Jian, Zhao Qing-Yuan, Jia Tao, Xu Wei-Wei, Cao Chun-Hai, Jin Biao-Bing, Wu Pei-Heng. Fabrication of superconducting nanowiresingle-photon detector. Acta Physica Sinica, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [19] Ke Xi-Zheng, Nu Ning, Yang Qin-Ling. Research of transmission characteristics of single-photon orbital angular momentum. Acta Physica Sinica, 2010, 59(9): 6159-6163. doi: 10.7498/aps.59.6159
    [20] Quan Dong-Xiao, Pei Chang-Xing, Liu Dan, Zhao Nan. One-way deterministic secure quantum communication protocol based on single photons. Acta Physica Sinica, 2010, 59(4): 2493-2497. doi: 10.7498/aps.59.2493
Metrics
  • Abstract views:  8682
  • PDF Downloads:  374
  • Cited By: 0
Publishing process
  • Received Date:  13 October 2017
  • Accepted Date:  06 December 2017
  • Published Online:  20 March 2019

/

返回文章
返回