-
Transition metal dichalcogenides (TMDs) have attracted a lot of interest in condensed matter physics research due to the existence of multiple novel physical phenomena, including superconductivity and charge density wave order, and also TMDs provide a unique window for studying the interactions between different ground states. In this work, the electronic structure of 1T-NbSeTe is systematically examined by angle-resolved photoemission spectroscopy (ARPES) for the first time. A van Hove singularity (VHS) is identified at the M point, with binding energy of 250 meV below the Fermi level. Careful analysis is carried out to examine the band dispersions along different high symmetry directions and the possible many-body effect. However, the dispersion kink—a characteristic feature of electron-boson coupling is not obvious in this system. In TMD materials, the van Hove singularity near the Fermi level and the electron-boson (phonon) coupling are suggested to play an important role in forming charge density wave (CDW) and superconductivity, respectively. In this sense, our experimental results may provide a direct explanation for the weakened CDW and relatively low superconducting transition temperature in 1T-NbSeTe. These results may also provide an insight into the charge-density-wave orders in the relevant material systems.
-
Keywords:
- transition metal dichalcogenides /
- angle-resolved photoemission spectroscopy /
- van Hove singularity /
- electron-boson coupling
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[3] Cattelan M, Fox N A 2018 Nanomaterials 8 284Google Scholar
[4] Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar
[5] Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar
[6] Wilson J A, Di Salvo F J, Mahajan S 1975 Adv. Phys. 24 117Google Scholar
[7] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar
[8] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V, Cava R J 2008 Phys. Rev. B 78 104520Google Scholar
[9] Navarro-Moratalla E, Island J O, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J A, Agrait N, Steele G A, Guinea F, van der Zant H S J, Coronado E 2016 Nat. Commun. 7 11043Google Scholar
[10] Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar
[11] Xi X, Berger H, Forro L, Shan J, Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar
[12] Wang H, Huang X W, Lin J H, Cui J, Chen Y, Zhu C, Liu F C, Zeng Q S, Zhou J D, Yu P, Wang X W, He H Y, Tsang S H, Gao W B, Suenaga K, Ma F C, Yang C L, Lu L, Yu T, Teo E H T, Liu G T, Liu Z 2017 Nat. Commun. 8 394Google Scholar
[13] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D H, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92Google Scholar
[14] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar
[15] Novello A M, Spera M, Scarfato A, Ubaldini A, Giannini E, Bowler D, Renner C 2017 Phys. Rev. Lett. 118 017002Google Scholar
[16] Fan X, Chen H X, Zhao L L, Jin S F, Wang G 2019 Solid State Commun. 297 6Google Scholar
[17] Wang H T, Li L J, Ye D S, Cheng X H, Xu Z A 2007 Chin. Phys. 16 2471Google Scholar
[18] Yan D, Lin Y S, Wang G H, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H, Luo H X 2019 Supercond. Sci. Technol. 32 085008Google Scholar
[19] Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 e321Google Scholar
[20] Kamil E, Berges J, Schönhoff G, Rösner M, Schüler M, Sangiovanni G, Wehling T O 2018 J. Phys. Condens. Mat. 30 325601Google Scholar
[21] Naik I, Rastogi A K 2011 Pramana 76 957Google Scholar
[22] Yan D, Wang S, Lin Y S, Wang G H, Zeng Y, Boubeche M, He Y, Ma J, Wang Y H, Yao D X, Luo H X 2019 J. Phys. Condens. Mat. 32 025702Google Scholar
[23] Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, Takagi H 2007 Nat. Phys. 3 720Google Scholar
[24] Tonjes W C, Greanya V A, Liu R, Olson C G, Molinie P 2001 Phys. Rev. B 63 235101Google Scholar
[25] Straub T, Finteis T, Claessen R, Steiner P, Hufner S, Blaha P, Oglesby C S, Bucher E 1999 Phys. Rev. Lett. 82 4504Google Scholar
[26] Neto A C 2001 Phys. Rev. Lett. 86 4382Google Scholar
[27] Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124Google Scholar
[28] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[29] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[30] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[31] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar
[32] Rahn D J, Hellmann S, Kallaene M, Sohrt C, Kim T K, Kipp L, Rossnagel K 2012 Phys. Rev. B 85 224532Google Scholar
[33] Rice T M, Scott G K 1975 Phys. Rev. Lett. 35 120Google Scholar
[34] Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y, Berger H 2004 Phys. Rev. Lett. 92 086401Google Scholar
[35] Kim J-J, Yamaguchi W, Hasegawa T, Kitazawa K 1994 Phys. Rev. Lett. 73 2103Google Scholar
[36] Law K, Lee P A 2017 Proc. Natl. Acad. Sci. 114 6996Google Scholar
[37] Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C 2020 Nat. Phys. 16 218Google Scholar
-
图 1 1T-NbSeTe的晶体结构表征 (a) 沿(001)方向的单晶X射线衍射结果; (b) 1T-NbSeTe晶体结构示意图; (c) SEM测试的形貌特征; (d) 1T-NbSeTe的能量色散X射线谱和元素原子比例
Figure 1. Characterization of the 1T-NbSeTe sample: (a) X-ray diffraction pattern along (001); (b) illustration of the 1T-NbSeTe crystal structure; (c) scanning electron microscopy image of the sample surface; (d) energy dispersive X-ray spectroscopy and the element ratio.
图 3 1T-NbSeTe能带结构中的范霍夫奇点 (a)沿M-Γ-M方向的能带结构; (b)沿K-M-K方向的能带结构; (c) 布里渊区和高对称方向; (d)沿K-M-Γ方向的能带结构
Figure 3. van Hove singularity in the band structure of 1T-NbSeTe: (a) Band structure along the M-Γ-M direction
; (b) band structure along the K-M-K direction; (c) Brillouin zone and the high symmetry directions; (d) band structure along the K-M-Γ direction. 图 4 不同高对称方向的能带色散 (a) K-Γ-K方向的能带结构; (b)在靠近费米能的低能区域((a)中蓝色虚线方框)通过MDC拟合提取的电子色散; (c), (d)与(a), (b)类似, 但沿着K-M-K方向; (e), (f)与(a), (b)类似, 但沿着M-Γ-M方向; (g)和(h)分别为高对称方向路径的实验结果与DFT计算结果
Figure 4. Band dispersion along different high symmetry directions: (a) Band structure along the K-Γ-K direction; (b) extracted band dispersion by fitting MDCs in the low energy region near the Fermi level ((marked by the blue dashed box in (a)); (c), (d), same as (a), (b), but along the K-M-K direction; (e), (f), same as (a), (b), but along the M-Γ-M direction; (g) and (h) are the experimental results and DFT calculation results along the high symmetry directions, respectively.
-
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar
[3] Cattelan M, Fox N A 2018 Nanomaterials 8 284Google Scholar
[4] Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar
[5] Moncton D E, Axe J D, DiSalvo F J 1975 Phys. Rev. Lett. 34 734Google Scholar
[6] Wilson J A, Di Salvo F J, Mahajan S 1975 Adv. Phys. 24 117Google Scholar
[7] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, Takagi H 2001 Science 294 2518Google Scholar
[8] Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V, Cava R J 2008 Phys. Rev. B 78 104520Google Scholar
[9] Navarro-Moratalla E, Island J O, Manas-Valero S, Pinilla-Cienfuegos E, Castellanos-Gomez A, Quereda J, Rubio-Bollinger G, Chirolli L, Silva-Guillen J A, Agrait N, Steele G A, Guinea F, van der Zant H S J, Coronado E 2016 Nat. Commun. 7 11043Google Scholar
[10] Xi X X, Wang Z F, Zhao W W, Park J H, Law K T, Berger H, Forro L, Shan J, Mak K F 2016 Nat. Phys. 12 139Google Scholar
[11] Xi X, Berger H, Forro L, Shan J, Mak K F 2016 Phys. Rev. Lett. 117 106801Google Scholar
[12] Wang H, Huang X W, Lin J H, Cui J, Chen Y, Zhu C, Liu F C, Zeng Q S, Zhou J D, Yu P, Wang X W, He H Y, Tsang S H, Gao W B, Suenaga K, Ma F C, Yang C L, Lu L, Yu T, Teo E H T, Liu G T, Liu Z 2017 Nat. Commun. 8 394Google Scholar
[13] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D H, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 12 92Google Scholar
[14] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar
[15] Novello A M, Spera M, Scarfato A, Ubaldini A, Giannini E, Bowler D, Renner C 2017 Phys. Rev. Lett. 118 017002Google Scholar
[16] Fan X, Chen H X, Zhao L L, Jin S F, Wang G 2019 Solid State Commun. 297 6Google Scholar
[17] Wang H T, Li L J, Ye D S, Cheng X H, Xu Z A 2007 Chin. Phys. 16 2471Google Scholar
[18] Yan D, Lin Y S, Wang G H, Zhu Z, Wang S, Shi L, He Y, Li M R, Zheng H, Ma J, Jia J F, Wang Y H, Luo H X 2019 Supercond. Sci. Technol. 32 085008Google Scholar
[19] Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8 e321Google Scholar
[20] Kamil E, Berges J, Schönhoff G, Rösner M, Schüler M, Sangiovanni G, Wehling T O 2018 J. Phys. Condens. Mat. 30 325601Google Scholar
[21] Naik I, Rastogi A K 2011 Pramana 76 957Google Scholar
[22] Yan D, Wang S, Lin Y S, Wang G H, Zeng Y, Boubeche M, He Y, Ma J, Wang Y H, Yao D X, Luo H X 2019 J. Phys. Condens. Mat. 32 025702Google Scholar
[23] Kiss T, Yokoya T, Chainani A, Shin S, Hanaguri T, Nohara M, Takagi H 2007 Nat. Phys. 3 720Google Scholar
[24] Tonjes W C, Greanya V A, Liu R, Olson C G, Molinie P 2001 Phys. Rev. B 63 235101Google Scholar
[25] Straub T, Finteis T, Claessen R, Steiner P, Hufner S, Blaha P, Oglesby C S, Bucher E 1999 Phys. Rev. Lett. 82 4504Google Scholar
[26] Neto A C 2001 Phys. Rev. Lett. 86 4382Google Scholar
[27] Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124Google Scholar
[28] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar
[29] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar
[30] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar
[31] Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar
[32] Rahn D J, Hellmann S, Kallaene M, Sohrt C, Kim T K, Kipp L, Rossnagel K 2012 Phys. Rev. B 85 224532Google Scholar
[33] Rice T M, Scott G K 1975 Phys. Rev. Lett. 35 120Google Scholar
[34] Valla T, Fedorov A V, Johnson P D, Glans P A, McGuinness C, Smith K E, Andrei E Y, Berger H 2004 Phys. Rev. Lett. 92 086401Google Scholar
[35] Kim J-J, Yamaguchi W, Hasegawa T, Kitazawa K 1994 Phys. Rev. Lett. 73 2103Google Scholar
[36] Law K, Lee P A 2017 Proc. Natl. Acad. Sci. 114 6996Google Scholar
[37] Chen Y, Ruan W, Wu M, Tang S, Ryu H, Tsai H Z, Lee R L, Kahn S, Liou F, Jia C 2020 Nat. Phys. 16 218Google Scholar
Catalog
Metrics
- Abstract views: 5213
- PDF Downloads: 210
- Cited By: 0