Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and Application of Liquid-Phase Magnetic-Bottle Time Resolved Photoelectron Spectroscopy

REN Baihui YU Yao YAN Pengyu WANG Mengyang MENG Sheng ZHANG Pengju

Citation:

Design and Application of Liquid-Phase Magnetic-Bottle Time Resolved Photoelectron Spectroscopy

REN Baihui, YU Yao, YAN Pengyu, WANG Mengyang, MENG Sheng, ZHANG Pengju
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The liquid phase serves as a critical environment for chemical and biological reactions. The chemical and biological reaction dynamics of molecules in liquids performs evolution behaviors significantly distinct from those of isolated molecules in the gas phase. In-depth investigation of the ultrafast excited-state dynamics of liquid-phase molecules is of great importance for uncovering the microscopic mechanisms underlying complex chemical and biological processes. Photoelectron spectroscopy not only reveals the electronic structure of excited-state molecules but also exhibits highly sensitivity to structural changes, making it a powerful tool for studying the relaxation dynamics. Liquid-phase time-resolved photoelectron spectroscopy utilizes a liquid microjet within a high vacuum. In this pump-probe technique, an initial pump pulse excites the liquids to initiate dynamics, followed by a delayed probe pulse that ionizes the evolving system. The time-dependent energy distribution of the resulting photoelectrons, which encodes the ultrafast dynamics, is measured by a magnetic-bottle time-of-flight (TOF) analyzer. This review systematically summarizes recent advancements in the time-resolved liquid-phase photoelectron spectroscopy technology for studying ultrafast dynamics in liquids, detailing the fundamental working principles of magnetic-bottle spectrometers and the preparation techniques for liquid microjet targets. Furthermore, typical applications are discussed, concluding with an analysis of current technical challenges and future research directions.
  • [1]

    Heitele H 1993 Angew. Chem. Int. Ed. Engl. 32 359.

    [2]

    Muchová E, Gopakumar G, Unger I, Öhrwall G, Céolin D, Trinter F, Wilkinson I, Chatzigeorgiou E, Slavíček P, Hergenhahn U, Winter B, Caleman C, Björneholm O 2024 Nat. Commun. 15 8903.

    [3]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265.

    [4]

    Venkatraman R K, Orr-Ewing A J. 2021 Acc. Chem. Res. 54 4383.

    [5]

    Faubel M, Schlemmer S, Toennies J P 1988 Z. Phys. D:At., Mol. Clusters 10 269.

    [6]

    Winter B, Faubel M 2006 Chem. Rev. 106 1176.

    [7]

    Jordan I, Huppert M, Brown M A, van Bokhoven J A, Wörner H J 2015 Rev. Sci. Instrum. 86 123905.

    [8]

    Improta R, Santoro F, Blancafort L 2016 Chem. Rev. 116 3540.

    [9]

    Tusche C, Chen Y J, Schneider C M, Schneider C M, Kirschner J 2019 Ultramicroscopy 206 112815.

    [10]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477.

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463.

    [12]

    Tsuboi T, Xu E Y, Bae Y K,Gillen K T 1988 Rev. Sci. Instrum. 59 1357.

    [13]

    Eland J H D, Vieuxmaire O, Kinugawa T, Lablanquie P, Hall R I, Penent F 2003 Phys. Rev. Lett. 90 053003.

    [14]

    Stolow A, Bragg A E, Neumark D M 2004 Chem. Rev. 104 1719.

    [15]

    von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner H J 2018 Nat. Commun. 9 3162.

    [16]

    Zhang P, Hoang V H, Wang C, Luu T T, Svoboda V, Le A T, Wörner H J 2023 Phys. Rev. Lett. 130 153201.

    [17]

    Stolow A 2003 Annu. Rev. Phys. Chem. 54 89.

    [18]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163.

    [19]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760.

    [20]

    Worth G A, Cederbaum L S 2004 Annu. Rev. Phys. Chem. 55 127.

    [21]

    Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martín F, Nisoli M 2014 Science 346 336.

    [22]

    Riley J W, Wang B, Woodhouse J L, Assmann M, Worth G A, Fielding H H 2018 J. Phys. Chem. Lett. 9 678.

    [23]

    Rijs A M, Backus E H G, De Lange C A, Westwood N P C, Janssen M H M 2000 J. Electron. Spectrosc. Relat. Phenom. 112 151.

    [24]

    Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Wörner H J 2020 Science 369 974.

    [25]

    Seidel R, Thürmer S, Winter B 2011 J. Phys. Chem. Lett. 2 633.

    [26]

    Faubel M, Siefermann K R, Liu Y, Abel B 2012 Acc. Chem. Res. 45 120.

    [27]

    Erickson B A, Heim Z N, Pieri E, Liu E, Martinez T J, Neumark D M 2019 J. Phys. Chem. A 123 10676.

    [28]

    Nishitani J, Karashima S, West C W, Suzuki T 2020 J. Chem. Phys. 152 144503.

    [29]

    West C W, Nishitani J, Higashimura C, Suzuki T 2021 Mol. Phys. 119 1748240.

    [30]

    Perry C F, Jordan I, Zhang P, von Conta A, Nunes F B, Wörner H J 2021 J. Phys. Chem. Lett. 12 2990.

    [31]

    Stemer D, Buttersack T, Haak H, Malerz S, Schewe H C, Trinter F, Mudryk K, Pugini M, Credidio B, Seidel R, Hergenhahn U, Meijer G, Thürmer S, Winter B 2023 J. Chem. Phys. 158 234202.

    [32]

    Nishitani J, West C W, Suzuki T 2017 Struct. Dyn. 4 044014.

    [33]

    Kruit P, Read F H 1983 J. Phys. E:Sci. Instrum. 16 313.

    [34]

    Neumark D M 2001 Annu. Rev. Phys. Chem. 52 255.

    [35]

    Kurahashi N, Thürmer S, Liu S Y, Yamamoto Y, Karashima S, Bhattacharya A, Ogi Y, Horio T, Suzuki T 2021 Struct. Dyn. 8 034303.

    [36]

    Borne K, O'Neal J T, Wang J, Isele E, Obaid R, Berrah N, Cheng X, Bucksbaum P H, James J, Kamalov A, Larsen K A, Li X, Lin M F, Liu Y, Marinelli A, Summers A M, Thierstein E, Wolf T J A, Rolles D, Walter P, Cryan J P, Driver T 2024 Rev. Sci. Instrum. 95 125110.

    [37]

    Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J. 2018 Rev. Sci. Instrum. 89 053103.

    [38]

    Perry C F 2021 Time-resolved Photoelectron Spectroscopy of Liquids (PhD Thesis, ETH Zurich, Zurich).

    [39]

    Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822.

    [40]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117.

    [41]

    von Conta A, Huppert M, Wörner H J 2016 Rev. Sci. Instrum. 87 073102.

    [42]

    Wang H, Xu Y, Ulonska S, Robinson J S, Ranitovic P, Kaindl R A 2015 Nat. Commun. 6 7459.

    [43]

    Yang Y, Neumann T, Hengster J, Mainz R E, Elsner J, Mücke O D, Kärtner F X, Uphues T 2024 Photonics 11 525.

    [44]

    Poletto L, Frassetto F 2010 Appl. Opt. 49 5465.

    [45]

    Nelson T R, White A J, Bjorgaard J A, Sifain A E, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg A E, Tretiak S 2020 Chem. Rev. 120 2215.

    [46]

    Bircher M P, Liberatore E, Browning N J, Brickel S, Hofmann C, Patoz A, Unke O T, Zimmermann T, Chergui M, Hamm P, Keller U, Meuwly M, Woerner H J, Vaníček J, Rothlisberger U 2017 Struct. Dyn. 4 061510.

    [47]

    Harris S J, Murdock D, Zhang Y, Oliver T A A, Grubb M P, Orr-Ewing A J, Greetham G M, Clark I P, Towrie M, Bradforth S E, Ashfold M N R 2013 Phys. Chem. Chem. Phys. 15 6567.

    [48]

    Heim Z N, Neumark D M. 2022 Acc. Chem. Res. 55 3652.

    [49]

    Wang C, Waters M D J, Zhang P, Suchan J, Svoboda V, Luu T T, Perry C, Yin Z, Slavíček P, Wörner H J 2022 Nat. Chem. 14 1126.

    [50]

    Cederbaum L S, Zobeley J, Tarantelli F. 1997 Phys. Rev. Lett. 79 4778.

    [51]

    Jahnke T, Czasch A, Schöffler M S, Schössler S, Knapp A, Käsz M, Titze J, Wimmer C, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Hergenhahn U, Schmidt-Böcking H, Dörner R 2004 Phys. Rev. Lett. 93 163401.

    [52]

    Alizadeh E, Orlando T M, Sanche L. 2015 Annu. Rev. Phys. Chem. 66 379.

    [53]

    Marburger S, Kugeler O, Hergenhahn U, Möller T 2003 Phys. Rev. Lett. 90 203401.

    [54]

    Jahnke T, Czasch A, Schöffler M, Schössler S, Käsz M, Titze J, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Schmidt L Ph H, Weber T, Schmidt-Böcking H, Ueda K, Dörner R 2007 Phys. Rev. Lett. 99 153401.

    [55]

    Sakai K, Stoychev S, Ouchi T, Higuchi I, Schöffler M, Mazza T, Fukuzawa H, Nagaya K, Yao M, Tamenori Y, Kuleff A I, Saito N, Ueda K 2011 Phys. Rev. Lett. 106 033401.

    [56]

    Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402.

    [57]

    Iskandar W, Matsumoto J, Leredde A, Fléchard X, Gervais B, Guillous S, Hennecart D, Méry A, Rangama J, Zhou C L, Shiromaru H, Cassimi A 2015 Phys. Rev. Lett. 114 033201.

    [58]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701.

    [59]

    Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139.

    [60]

    Ren X, Wang E, Skitnevskaya A D,Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062.

    [61]

    Zhou J, Jia S, Skitnevskaya A D, Wang E, Hähnel T, Grigoricheva E K, Xue X, Li J X, Kuleff A I, Dorn A, Ren X 2022 J. Phys. Chem. Lett. 13 4272.

    [62]

    Shcherbinin M, LaForge A C, Sharma V, Devetta M, Richter R, Moshammer R, Pfeifer T, Mudrich M 2017 Phys. Rev. A 96 013407.

    [63]

    Kazandjian S, Rist J, Weller M, Wiegandt F, Aslitürk D, Grundmann S, Kircher M, Nalin G, Pitters D, Vela Pérez I, Waitz M, Schiwietz G, Griffin B, Williams J B, Dörner R, Schöffler M, Miteva T, Trinter F, Jahnke T, Sisourat N 2018 Phys. Rev. A 98 050701.

    [64]

    Zhang P, Perry C, Luu T T, Matselyukh D, Wörner H J 2022 Phys. Rev. Lett. 128 133001.

    [65]

    Zhang P, Trester J, Dubský J, Kolorenč P, Slavíček P, Wörner H J 2025 Nat. Commun. 16 6732.

    [66]

    Jungwirth P, Tobias D J. 2006 Chem. Rev. 106 1259.

    [67]

    Tobias D J, Stern A C, Baer M D, Levin Y, Mundy C J 2013 Annu. Rev. Phys. Chem. 64 339.

    [68]

    Knipping E M, Lakin M J, Foster K L, Jungwirth P, Tobias D J, Gerber R B, Dabdub D, Finlayson-Pitts B J 2000 Science 288 301.

    [69]

    Yamamoto Y-I, Hirano T, Ishiyama T, Morita A, Suzuki T 2025 J. Am. Chem. Soc. 147 4026.

    [70]

    Menzi S, Knopp G, Al Haddad A, Augustin S, Borca C, Gashi D, Huthwelker T, James D, Jin J, Pamfilidis G, Schnorr K, Sun Z, Wetter R, Zhang Q, Cirelli C 2020 Rev. Sci. Instrum. 91 105109.

    [71]

    Koga M, Kang D H, Heim Z N, Meyer P, Erickson B A, Haldar N, Baradaran N, Havenith M, Neumark D M 2024 Phys. Chem. Chem. Phys. 26 13106.

    [72]

    Koga M, Kang D H, Heim Z N, Haldar N, Neumark D M 2025 arXiv:2503.16840.

    [73]

    Ekimova M, Quevedo W, Faubel M, Wernet P, Nibbering E T J. 2015 Struct. Dyn. 2 054301.

    [74]

    Kumar G, Roy A, McMullen R S, Kutagulla S, Bradforth S E 2018 Faraday Discuss. 212 359.

    [75]

    Tzankov P, Zheng J, Mero M, Polli D, Manzoni C, Cerullo G 2006 Opt. Lett. 31 3629.

    [76]

    Liebel M, Schnedermann C, Kukura P. 2014 Opt. Lett. 39 4112.

  • [1] LI Yidian, YANG Lexian. Electronic structure and ultrafast dynamics of nickel-based high-temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.74.20250856
    [2] ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi. Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250546
    [3] WANG Huiyong, LI Mingxuan, LUO Sizuo, DING Dajun. Research progress of high-energy-resolution photoelectron interferometer. Acta Physica Sinica, doi: 10.7498/aps.74.20250534
    [4] ZHU Xiaoxian, GAO Yitan, WANG Yiming, ZHAO Kun. Applications of time-of-flight photoelectron spectrometers in ultrafast optical experiments. Acta Physica Sinica, doi: 10.7498/aps.74.20250698
    [5] Jia Yun-Zhe, Meng Sheng. Ultrafast dynamics of water system under photoexcitation. Acta Physica Sinica, doi: 10.7498/aps.73.20240047
    [6] Wei Zhi-Yuan, Hu Yong, Zeng Ling-Yong, Li Ze-Yu, Qiao Zhen-Hua, Luo Hui-Xia, He Jun-Feng. Angle-resolved photoemission spectroscopy of electronic structure of 1T-NbSeTe. Acta Physica Sinica, doi: 10.7498/aps.71.20220458
    [7] Zheng Zhen-Fa, Jiang Xiang, Chu Wei-Bin, Zhang Li-Li, Guo Hong-Li, Zhao Chuan-Yu, Wang Ya-Nan, Wang Ao-Lei, Zheng Qi-Jing, Zhao Jin. Investigation of ab initio nonadiabatic molecular dynamics of excited carriers in condensed matter systems. Acta Physica Sinica, doi: 10.7498/aps.70.20210626
    [8] Xiang Mei, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Bumaliya Abulimiti, Zhang Bing. Ultrafast dynamics of electron excited states of phenylacetylene. Acta Physica Sinica, doi: 10.7498/aps.70.20201473
    [9] Bumaliya Abulimiti, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Song Xin-Li, Xiang Mei, Zhang Bing. Intersystem crossing of 2-Methlypyrazine studied by femtosecond photoelectron imaging. Acta Physica Sinica, doi: 10.7498/aps.69.20200092
    [10] Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min. Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide. Acta Physica Sinica, doi: 10.7498/aps.69.20191816
    [11] Wang Yan-Mei, Tang Ying, Zhang Song, Long Jin-You, Zhang Bing. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging. Acta Physica Sinica, doi: 10.7498/aps.67.20181334
    [12] Fan Wei, Gu Yu-Qiu, Zhu Bin, Shui Min, Shan Lian-Qiang, Du Sai, Xin Jian-Ting, Zhao Zong-Qing, Zhou Wei-Min, Cao Lei-Feng, Zhang Xue-Ru, Wang Yu-Xiao. Design and theoretical research of an ultrafast time-resolved velocity interferometer. Acta Physica Sinica, doi: 10.7498/aps.63.060703
    [13] Guo Wen-Gang, Hu Hao-Feng, Wang Pan, Wang Xiao-Lei, Zhai Hong-Chen. Time-resolved optical diagnosis of intense femtosecond laser ablation of silica glass. Acta Physica Sinica, doi: 10.7498/aps.60.017901
    [14] Liang Wen-Xi, Zhu Peng-Fei, Wang Xuan, Nie Shou-Hua, Zhang Zhong-Chao, Cao Jian-Ming, Sheng Zheng-Ming, Zhang Jie. Ultrafast dynamics of thin-film aluminum observed by ultrafast electron diffraction. Acta Physica Sinica, doi: 10.7498/aps.58.5546
    [15] Liang Wen-Xi, Zhu Peng-Fei, Wang Xuan, Nie Shou-Hua, Zhang Zhong-Chao, Cao Jian-Ming, Sheng Zheng-Ming, Zhang Jie. Development and optimization on spatiotemporal resolution of ultrafast electron diffraction. Acta Physica Sinica, doi: 10.7498/aps.58.5539
    [16] Hu Hao-Feng, Wang Xiao-Lei, Li Zhi-Lei, Zhang Nan, Zhai Hong-Chen. Ultra-fast pulsed digital holographic diagnosis of ejected material in femtosecond laser ablation of aluminum. Acta Physica Sinica, doi: 10.7498/aps.58.7662
    [17] Li Yi, Yi Xin-jian, Cai Li-ping. Study on the Oxidative Characterization of Lpe HgCdTe Film Surface by XPS . Acta Physica Sinica, doi: 10.7498/aps.49.132
    [18] CHEN XIAN-HUI, QIAN YI-TAI, CHEN ZU-YAO, ZHO JUN-HUA, JI MING-RONG. XPS STUDIES OF Bi2Sr2CaCu2-xLixOy CERAMICS SERFACES. Acta Physica Sinica, doi: 10.7498/aps.41.1487
    [19] ZHANG HAN, HE ZHEN-HUI, ZHAO YONG, SUN SHI-FANG, QIAN YI-TAI, ZHANG QI-RUI. AN XPS STUDY ON Y-Ba-Cu-Al-O SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.38.689
    [20] XU ZHANG-LONG, LIU GU, JI ZHEN-GUO, ZHOU XIAO-XIA. A ARUPS INVESTIGATION OF TWO SURFACE SUPERSTRU-CTURES (4×1)-O AND (2×2)-S ON VANADIUM(001) SURFACES. Acta Physica Sinica, doi: 10.7498/aps.37.311
Metrics
  • Abstract views:  78
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  10 October 2025
  • /

    返回文章
    返回