Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and application of liquid-phase magnetic-bottle time resolved photoelectron spectroscopy

REN Baihui YU Yao YAN Pengyu WANG Mengyang MENG Sheng ZHANG Pengju

Citation:

Design and application of liquid-phase magnetic-bottle time resolved photoelectron spectroscopy

REN Baihui, YU Yao, YAN Pengyu, WANG Mengyang, MENG Sheng, ZHANG Pengju
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • The liquid phase serves as a critical environment for chemical and biological reactions. The chemical and biological reaction dynamics of molecules in liquids exhibit evolution behaviors that are significantly different from those of isolated molecules in the gas phase. The in-depth investigation of the ultrafast excited-state dynamics of liquid-phase molecules is of great importance for uncovering the microscopic mechanisms underlying complex chemical and biological processes. Photoelectron spectroscopy not only reveals the electronic structure of excited-state molecules but also exhibits high sensitivity to structural changes, making it a powerful tool for studying the relaxation dynamics. Liquid-phase time-resolved photoelectron spectroscopy utilizes a liquid microjet within a high vacuum. In this pump-probe technique, an initial pump pulse excites the liquids to initiate dynamics, followed by a delayed probe pulse that ionizes the evolving system. The time-dependent energy distribution of the resulting photoelectrons, which encodes the ultrafast dynamics, is measured by a magnetic-bottle time-of-flight (TOF) analyzer. This review systematically summarizes recent advancements in the time-resolved liquid-phase photoelectron spectroscopy technology for studying ultrafast dynamics in liquids, detailing the fundamental working principles of magnetic-bottle spectrometers and the preparation techniques for liquid microjet targets. Furthermore, typical applications are discussed, concluding with an analysis of current technical challenges and future research directions.
  • 图 1  TRPES测量原理和光电子动能分布示意图

    Figure 1.  Schematic illustration of TRPES and photoelectron kinetic energy distribution.

    图 2  磁瓶谱仪的磁感线分布示意图

    Figure 2.  Magnetic field line distribution in a magnetic bottle spectrometer.

    图 3  磁瓶式光电子谱仪示意图, 其中液体靶及相关部分以蓝色显示

    Figure 3.  Schematic overview of the time-of-flight spectrometer with magnetic-bottle operation. The liquid target and related components are highlighted in blue.

    图 4  Nozzle喷嘴的实物图和示意图(出自文献[38], 已获得授权)

    Figure 4.  Physical diagram and schematic diagram of nozzle, reproduced with permission from Ref. [38].

    图 5  气体高次谐波产生的三步模型原理示意图

    Figure 5.  Schematic diagram of the principle of gas high-harmonic generation.

    图 6  高次谐波产生气室示意图. EW为激光入射窗, 聚集到接近小孔P1处. 在高压区HP注入气体, 通过两个小孔P2和P3及DP1和DP2差分泵保持低真空

    Figure 6.  Schematic diagram of the high-harmonic generation gas cell. The fundamental beam is focused through the entrance window EW such that the focus is located close to pinhole P1. The high-pressure region HP is separated from the experiment by two differential pumping stages DP1 and DP2. The corresponding pinholes are P2 and P3.

    图 7  单色仪的光学布局示意图

    Figure 7.  Optical layout of the monochromator.

    图 8  锥形衍射光栅原理示意图

    Figure 8.  Conical diffraction scheme.

    图 9  LJ-TRPES泵浦-探测实验示意图(出自文献[38], 已获得授权)

    Figure 9.  Schematic diagram of the LJ-TRPES pump-probe experiment, reproduced with permission from Ref.[38].

    图 10  顺式二苯乙烯非绝热弛豫示意图(出自文献[49], 已获得授权)

    Figure 10.  Schematic for non-adiabatic relaxation in cis-stilbene, reproduced with permission from Ref.[49].

    图 11  (a) 由水二聚体中2a1轨道电离引发的ICD过程的示意图. 内价层空位是由XUV光子的吸收产生的; 外价电子通过向相邻的水分子释放额外的能量来填充内价空位, 导致其外价轨道进一步电离; (b) 光电子测量实验装置示意图; (c) 数据采集和分析示意图. 出自文献[64], 已获得授权

    Figure 11.  (a) Schematic representation of the ICD process initiated by inner-valence ionization of 2a1 orbital in water dimer. The inner-valence vacancy is created by the absorption of an XUV photon; an outer-valence electron fills up the inner-valence vacancy via releasing the extra energy to the neighboring water molecule causing a further ionization in its outer-valence orbital; (b) the experimental setup for the photoelectron measurement; (c) schematic diagram of data acquisition and analysis, reproduced with permission from Ref. [64].

    图 12  液态水中ICD和质子转移的简化示意图(出自文献[65], 已获得授权)

    Figure 12.  A simplified schematic diagram of ICD and proton transfer in liquid water, reproduced with permission from Ref. [65].

    表 1  不同初始动能电子的能量分辨模拟结果

    Table 1.  Simulated energy resolution at different initial electron kinetic energies.

    E/eVT0/ns$ \Delta t $/ns$ \Delta E/E $
    10821.015.60.038
    30493.08.80.036
    50382.57.30.038
    100275.07.70.056
    DownLoad: CSV
  • [1]

    Heitele H 1993 Angew. Chem. Int. Ed. Engl. 32 359Google Scholar

    [2]

    Muchová E, Gopakumar G, Unger I, Öhrwall G, Céolin D, Trinter F, Wilkinson I, Chatzigeorgiou E, Slavíček P, Hergenhahn U, Winter B, Caleman C, Björneholm O 2024 Nat. Commun. 15 8903Google Scholar

    [3]

    Suzuki T 2012 Int. Rev. Phys. Chem. 31 265Google Scholar

    [4]

    Venkatraman R K, Orr-Ewing A J. 2021 Acc. Chem. Res. 54 4383Google Scholar

    [5]

    Faubel M, Schlemmer S, Toennies J P 1988 Z. Phys. D: At. Mol. Clusters 10 269Google Scholar

    [6]

    Winter B, Faubel M 2006 Chem. Rev. 106 1176Google Scholar

    [7]

    Jordan I, Huppert M, Brown M A, van Bokhoven J A, Wörner H J 2015 Rev. Sci. Instrum. 86 123905Google Scholar

    [8]

    Improta R, Santoro F, Blancafort L 2016 Chem. Rev. 116 3540Google Scholar

    [9]

    Tusche C, Chen Y J, Schneider C M, Schneider C M, Kirschner J 2019 Ultramicroscopy 206 112815Google Scholar

    [10]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L Ph H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463.Google Scholar

    [12]

    Tsuboi T, Xu E Y, Bae Y K, Gillen K T 1988 Rev. Sci. Instrum. 59 1357Google Scholar

    [13]

    Eland J H D, Vieuxmaire O, Kinugawa T, Lablanquie P, Hall R I, Penent F 2003 Phys. Rev. Lett. 90 053003Google Scholar

    [14]

    Stolow A, Bragg A E, Neumark D M 2004 Chem. Rev. 104 1719Google Scholar

    [15]

    von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner H J 2018 Nat. Commun. 9 3162Google Scholar

    [16]

    Zhang P, Hoang V H, Wang C, Luu T T, Svoboda V, Le A T, Wörner H J 2023 Phys. Rev. Lett. 130 153201Google Scholar

    [17]

    Stolow A 2003 Annu. Rev. Phys. Chem. 54 89Google Scholar

    [18]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [19]

    Nisoli M, Decleva P, Calegari F, Palacios A, Martín F 2017 Chem. Rev. 117 10760Google Scholar

    [20]

    Worth G A, Cederbaum L S 2004 Annu. Rev. Phys. Chem. 55 127Google Scholar

    [21]

    Calegari F, Ayuso D, Trabattoni A, Belshaw L, De Camillis S, Anumula S, Frassetto F, Poletto L, Palacios A, Decleva P, Greenwood J B, Martín F, Nisoli M 2014 Science 346 336Google Scholar

    [22]

    Riley J W, Wang B, Woodhouse J L, Assmann M, Worth G A, Fielding H H 2018 J. Phys. Chem. Lett. 9 678Google Scholar

    [23]

    Rijs A M, Backus E H G, De Lange C A, Westwood N P C, Janssen M H M 2000 J. Electron. Spectrosc. Relat. Phenom. 112 151Google Scholar

    [24]

    Jordan I, Huppert M, Rattenbacher D, Peper M, Jelovina D, Perry C, von Conta A, Schild A, Wörner H J 2020 Science 369 974Google Scholar

    [25]

    Seidel R, Thürmer S, Winter B 2011 J. Phys. Chem. Lett. 2 633Google Scholar

    [26]

    Faubel M, Siefermann K R, Liu Y, Abel B 2012 Acc. Chem. Res. 45 120Google Scholar

    [27]

    Erickson B A, Heim Z N, Pieri E, Liu E, Martinez T J, Neumark D M 2019 J. Phys. Chem. A 123 10676Google Scholar

    [28]

    Nishitani J, Karashima S, West C W, Suzuki T 2020 J. Chem. Phys. 152 144503Google Scholar

    [29]

    West C W, Nishitani J, Higashimura C, Suzuki T 2021 Mol. Phys. 119 1748240Google Scholar

    [30]

    Perry C F, Jordan I, Zhang P, von Conta A, Nunes F B, Wörner H J 2021 J. Phys. Chem. Lett. 12 2990Google Scholar

    [31]

    Stemer D, Buttersack T, Haak H, Malerz S, Schewe H C, Trinter F, Mudryk K, Pugini M, Credidio B, Seidel R, Hergenhahn U, Meijer G, Thürmer S, Winter B 2023 J. Chem. Phys. 158 234202Google Scholar

    [32]

    Nishitani J, West C W, Suzuki T 2017 Struct. Dyn. 4 044014Google Scholar

    [33]

    Kruit P, Read F H 1983 J. Phys. E: Sci. Instrum. 16 313Google Scholar

    [34]

    Neumark D M 2001 Annu. Rev. Phys. Chem. 52 255Google Scholar

    [35]

    Kurahashi N, Thürmer S, Liu S Y, Yamamoto Y, Karashima S, Bhattacharya A, Ogi Y, Horio T, Suzuki T 2021 Struct. Dyn. 8 034303Google Scholar

    [36]

    Borne K, O’Neal J T, Wang J, Isele E, Obaid R, Berrah N, Cheng X, Bucksbaum P H, James J, Kamalov A, Larsen K A, Li X, Lin M F, Liu Y, Marinelli A, Summers A M, Thierstein E, Wolf T J A, Rolles D, Walter P, Cryan J P, Driver T 2024 Rev. Sci. Instrum. 95 125110Google Scholar

    [37]

    Jordan I, Jain A, Gaumnitz T, Ma J, Wörner H J. 2018 Rev. Sci. Instrum. 89 053103Google Scholar

    [38]

    Perry C F 2021 Ph. D. Dissertation ( Zurich: ETH Zurich

    [39]

    Popmintchev T, Chen M C, Arpin P, Murnane M M, Kapteyn H C 2010 Nat. Photonics 4 822Google Scholar

    [40]

    Winterfeldt C, Spielmann C, Gerber G 2008 Rev. Mod. Phys. 80 117Google Scholar

    [41]

    von Conta A, Huppert M, Wörner H J 2016 Rev. Sci. Instrum. 87 073102Google Scholar

    [42]

    Wang H, Xu Y, Ulonska S, Robinson J S, Ranitovic P, Kaindl R A 2015 Nat. Commun. 6 7459Google Scholar

    [43]

    Yang Y, Neumann T, Hengster J, Mainz R E, Elsner J, Mücke O D, Kärtner F X, Uphues T 2024 Photonics 11 525Google Scholar

    [44]

    Poletto L, Frassetto F 2010 Appl. Opt. 49 5465Google Scholar

    [45]

    Nelson T R, White A J, Bjorgaard J A, Sifain A E, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg A E, Tretiak S 2020 Chem. Rev. 120 2215Google Scholar

    [46]

    Bircher M P, Liberatore E, Browning N J, Brickel S, Hofmann C, Patoz A, Unke O T, Zimmermann T, Chergui M, Hamm P, Keller U, Meuwly M, Woerner H J, Vaníček J, Rothlisberger U 2017 Struct. Dyn. 4 061510Google Scholar

    [47]

    Harris S J, Murdock D, Zhang Y, Oliver T A A, Grubb M P, Orr-Ewing A J, Greetham G M, Clark I P, Towrie M, Bradforth S E, Ashfold M N R 2013 Phys. Chem. Chem. Phys. 15 6567Google Scholar

    [48]

    Heim Z N, Neumark D M. 2022 Acc. Chem. Res. 55 3652Google Scholar

    [49]

    Wang C, Waters M D J, Zhang P, Suchan J, Svoboda V, Luu T T, Perry C, Yin Z, Slavíček P, Wörner H J 2022 Nat. Chem. 14 1126Google Scholar

    [50]

    Cederbaum L S, Zobeley J, Tarantelli F 1997 Phys. Rev. Lett. 79 4778Google Scholar

    [51]

    Jahnke T, Czasch A, Schöffler M S, Schössler S, Knapp A, Käsz M, Titze J, Wimmer C, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Hergenhahn U, Schmidt-Böcking H, Dörner R 2004 Phys. Rev. Lett. 93 163401Google Scholar

    [52]

    Alizadeh E, Orlando T M, Sanche L. 2015 Annu. Rev. Phys. Chem. 66 379Google Scholar

    [53]

    Marburger S, Kugeler O, Hergenhahn U, Möller T 2003 Phys. Rev. Lett. 90 203401Google Scholar

    [54]

    Jahnke T, Czasch A, Schöffler M, Schössler S, Käsz M, Titze J, Kreidi K, Grisenti R E, Staudte A, Jagutzki O, Schmidt L Ph H, Weber T, Schmidt-Böcking H, Ueda K, Dörner R 2007 Phys. Rev. Lett. 99 153401Google Scholar

    [55]

    Sakai K, Stoychev S, Ouchi T, Higuchi I, Schöffler M, Mazza T, Fukuzawa H, Nagaya K, Yao M, Tamenori Y, Kuleff A I, Saito N, Ueda K 2011 Phys. Rev. Lett. 106 033401Google Scholar

    [56]

    Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402Google Scholar

    [57]

    Iskandar W, Matsumoto J, Leredde A, Fléchard X, Gervais B, Guillous S, Hennecart D, Méry A, Rangama J, Zhou C L, Shiromaru H, Cassimi A 2015 Phys. Rev. Lett. 114 033201Google Scholar

    [58]

    Yan S, Zhang P, Stumpf V, Gokhberg K, Zhang X C, Xu S, Li B, Shen L L, Zhu X L, Feng W T, Zhang S F, Zhao D M, Ma X 2018 Phys. Rev. A 97 010701Google Scholar

    [59]

    Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139Google Scholar

    [60]

    Ren X, Wang E, Skitnevskaya A D, Trofimov A B, Gokhberg K, Dorn A 2018 Nat. Phys. 14 1062Google Scholar

    [61]

    Zhou J, Jia S, Skitnevskaya A D, Wang E, Hähnel T, Grigoricheva E K, Xue X, Li J X, Kuleff A I, Dorn A, Ren X 2022 J. Phys. Chem. Lett. 13 4272Google Scholar

    [62]

    Shcherbinin M, LaForge A C, Sharma V, Devetta M, Richter R, Moshammer R, Pfeifer T, Mudrich M 2017 Phys. Rev. A 96 013407Google Scholar

    [63]

    Kazandjian S, Rist J, Weller M, Wiegandt F, Aslitürk D, Grundmann S, Kircher M, Nalin G, Pitters D, Vela Pérez I, Waitz M, Schiwietz G, Griffin B, Williams J B, Dörner R, Schöffler M, Miteva T, Trinter F, Jahnke T, Sisourat N 2018 Phys. Rev. A 98 050701Google Scholar

    [64]

    Zhang P, Perry C, Luu T T, Matselyukh D, Wörner H J 2022 Phys. Rev. Lett. 128 133001Google Scholar

    [65]

    Zhang P, Trester J, Dubský J, Kolorenč P, Slavíček P, Wörner H J 2025 Nat. Commun. 16 6732Google Scholar

    [66]

    Jungwirth P, Tobias D J. 2006 Chem. Rev. 106 1259Google Scholar

    [67]

    Tobias D J, Stern A C, Baer M D, Levin Y, Mundy C J 2013 Annu. Rev. Phys. Chem. 64 339Google Scholar

    [68]

    Knipping E M, Lakin M J, Foster K L, Jungwirth P, Tobias D J, Gerber R B, Dabdub D, Finlayson-Pitts B J 2000 Science 288 301Google Scholar

    [69]

    Yamamoto Y I, Hirano T, Ishiyama T, Morita A, Suzuki T 2025 J. Am. Chem. Soc. 147 4026Google Scholar

    [70]

    Menzi S, Knopp G, Al Haddad A, Augustin S, Borca C, Gashi D, Huthwelker T, James D, Jin J, Pamfilidis G, Schnorr K, Sun Z, Wetter R, Zhang Q, Cirelli C 2020 Rev. Sci. Instrum. 91 105109Google Scholar

    [71]

    Koga M, Kang D H, Heim Z N, Meyer P, Erickson B A, Haldar N, Baradaran N, Havenith M, Neumark D M 2024 Phys. Chem. Chem. Phys. 26 13106Google Scholar

    [72]

    Koga M, Kang D H, Heim Z N, Haldar N, Neumark D M 2025 arXiv: 2503. 16840.

    [73]

    Ekimova M, Quevedo W, Faubel M, Wernet P, Nibbering E T J. 2015 Struct. Dyn. 2 054301Google Scholar

    [74]

    Kumar G, Roy A, McMullen R S, Kutagulla S, Bradforth S E 2018 Faraday Discuss. 212 359Google Scholar

    [75]

    Tzankov P, Zheng J, Mero M, Polli D, Manzoni C, Cerullo G 2006 Opt. Lett. 31 3629Google Scholar

    [76]

    Liebel M, Schnedermann C, Kukura P. 2014 Opt. Lett. 39 4112Google Scholar

  • [1] LI Yidian, YANG Lexian. Electronic structure and ultrafast dynamics of nickel-based high-temperature superconductors. Acta Physica Sinica, doi: 10.7498/aps.74.20250856
    [2] ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi. Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics. Acta Physica Sinica, doi: 10.7498/aps.74.20250546
    [3] WANG Huiyong, LI Mingxuan, LUO Sizuo, DING Dajun. Research progress of high-energy-resolution photoelectron interferometer. Acta Physica Sinica, doi: 10.7498/aps.74.20250534
    [4] ZHU Xiaoxian, GAO Yitan, WANG Yiming, ZHAO Kun. Applications of time-of-flight photoelectron spectrometers in ultrafast optical experiments. Acta Physica Sinica, doi: 10.7498/aps.74.20250698
    [5] Jia Yun-Zhe, Meng Sheng. Ultrafast dynamics of water system under photoexcitation. Acta Physica Sinica, doi: 10.7498/aps.73.20240047
    [6] Wei Zhi-Yuan, Hu Yong, Zeng Ling-Yong, Li Ze-Yu, Qiao Zhen-Hua, Luo Hui-Xia, He Jun-Feng. Angle-resolved photoemission spectroscopy of electronic structure of 1T-NbSeTe. Acta Physica Sinica, doi: 10.7498/aps.71.20220458
    [7] Zheng Zhen-Fa, Jiang Xiang, Chu Wei-Bin, Zhang Li-Li, Guo Hong-Li, Zhao Chuan-Yu, Wang Ya-Nan, Wang Ao-Lei, Zheng Qi-Jing, Zhao Jin. Investigation of ab initio nonadiabatic molecular dynamics of excited carriers in condensed matter systems. Acta Physica Sinica, doi: 10.7498/aps.70.20210626
    [8] Xiang Mei, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Bumaliya Abulimiti, Zhang Bing. Ultrafast dynamics of electron excited states of phenylacetylene. Acta Physica Sinica, doi: 10.7498/aps.70.20201473
    [9] Bumaliya Abulimiti, Ling Feng-Zi, Deng Xu-Lan, Wei Jie, Song Xin-Li, Xiang Mei, Zhang Bing. Intersystem crossing of 2-Methlypyrazine studied by femtosecond photoelectron imaging. Acta Physica Sinica, doi: 10.7498/aps.69.20200092
    [10] Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min. Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide. Acta Physica Sinica, doi: 10.7498/aps.69.20191816
    [11] Wang Yan-Mei, Tang Ying, Zhang Song, Long Jin-You, Zhang Bing. Excited state dynamics of molecules studied with femtosecond time-resolved mass spectrometry and photoelectron imaging. Acta Physica Sinica, doi: 10.7498/aps.67.20181334
    [12] Fan Wei, Gu Yu-Qiu, Zhu Bin, Shui Min, Shan Lian-Qiang, Du Sai, Xin Jian-Ting, Zhao Zong-Qing, Zhou Wei-Min, Cao Lei-Feng, Zhang Xue-Ru, Wang Yu-Xiao. Design and theoretical research of an ultrafast time-resolved velocity interferometer. Acta Physica Sinica, doi: 10.7498/aps.63.060703
    [13] Guo Wen-Gang, Hu Hao-Feng, Wang Pan, Wang Xiao-Lei, Zhai Hong-Chen. Time-resolved optical diagnosis of intense femtosecond laser ablation of silica glass. Acta Physica Sinica, doi: 10.7498/aps.60.017901
    [14] Liang Wen-Xi, Zhu Peng-Fei, Wang Xuan, Nie Shou-Hua, Zhang Zhong-Chao, Cao Jian-Ming, Sheng Zheng-Ming, Zhang Jie. Ultrafast dynamics of thin-film aluminum observed by ultrafast electron diffraction. Acta Physica Sinica, doi: 10.7498/aps.58.5546
    [15] Liang Wen-Xi, Zhu Peng-Fei, Wang Xuan, Nie Shou-Hua, Zhang Zhong-Chao, Cao Jian-Ming, Sheng Zheng-Ming, Zhang Jie. Development and optimization on spatiotemporal resolution of ultrafast electron diffraction. Acta Physica Sinica, doi: 10.7498/aps.58.5539
    [16] Hu Hao-Feng, Wang Xiao-Lei, Li Zhi-Lei, Zhang Nan, Zhai Hong-Chen. Ultra-fast pulsed digital holographic diagnosis of ejected material in femtosecond laser ablation of aluminum. Acta Physica Sinica, doi: 10.7498/aps.58.7662
    [17] Li Yi, Yi Xin-jian, Cai Li-ping. Study on the Oxidative Characterization of Lpe HgCdTe Film Surface by XPS . Acta Physica Sinica, doi: 10.7498/aps.49.132
    [18] CHEN XIAN-HUI, QIAN YI-TAI, CHEN ZU-YAO, ZHO JUN-HUA, JI MING-RONG. XPS STUDIES OF Bi2Sr2CaCu2-xLixOy CERAMICS SERFACES. Acta Physica Sinica, doi: 10.7498/aps.41.1487
    [19] ZHANG HAN, HE ZHEN-HUI, ZHAO YONG, SUN SHI-FANG, QIAN YI-TAI, ZHANG QI-RUI. AN XPS STUDY ON Y-Ba-Cu-Al-O SYSTEM. Acta Physica Sinica, doi: 10.7498/aps.38.689
    [20] XU ZHANG-LONG, LIU GU, JI ZHEN-GUO, ZHOU XIAO-XIA. A ARUPS INVESTIGATION OF TWO SURFACE SUPERSTRU-CTURES (4×1)-O AND (2×2)-S ON VANADIUM(001) SURFACES. Acta Physica Sinica, doi: 10.7498/aps.37.311
Metrics
  • Abstract views:  480
  • PDF Downloads:  17
  • Cited By: 0
Publishing process
  • Received Date:  22 August 2025
  • Accepted Date:  25 September 2025
  • Available Online:  10 October 2025
  • /

    返回文章
    返回