Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electronic structure and ultrafast dynamics of nickel-based high-temperature superconductors

LI Yidian YANG Lexian

Citation:

Electronic structure and ultrafast dynamics of nickel-based high-temperature superconductors

LI Yidian, YANG Lexian
cstr: 32037.14.aps.74.20250856
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nickel-based superconductors have attracted widespread attention due to their electronic configuration similar to that of copper-based high-temperature superconductors. Recently, the discovery of superconductivity with a transition temperature as high as 80 K in the bilayer nickelate La3Ni2O7 under pressure has not only reignited research interest in nickel-based superconductors but also opened new avenues for the study of unconventional superconductivity. Layered nickel-based superconductors are similar to copper- and iron-based superconductors in crystal structure, superconducting properties, and electronic structure, but they also show significant differences. A deeper investigation into the electronic structure of nickel-based superconductors is expected to reveal the mechanisms behind these similarities and differences, which will further offer critical insights into developing a unified theoretical model and deepen the understanding of unconventional superconductivity. Moreover, the study of nonequilibrium ultrafast dynamics offers new perspectives and regulations for unconventional superconductivity, which has become a vital tool. This paper focuses on the electronic structure and ultrafast dynamics of Ruddlesden-Popper phase layered nickel-based superconductors, systematically reviewing the successful applications of angle-resolved photoemission spectroscopy (ARPES) and ultrafast optical spectroscopy in nickel-based superconductivity research. Specifically, the new properties of different nickelates are compared, including strong electron correlation, Hund coupling, non-Fermi liquid behavior, energy gap formation, and ultrafast electron dynamics. These advances offer important experimental insights into elucidating the mechanisms of unconventional superconductivity and characterizing the properties of their normal states in these materials.
      Corresponding author: YANG Lexian, lxyang@tsinghua.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2022YFA1403100, 2022YFA1403200) and the National Natural Science Foundation of China (Grant No. 12274251).
    [1]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Xu M Y, Jose G C, Rutherford A, Wang H Z, Zhang S, Cava R J, Zhou H D, Bi W L, Xie W W 2024 arXiv: 2410.18840 [cond-mat.mtrl-sci]

    [4]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [5]

    Chen B W, Zhang H Y, Li J Y, Hu D Y, Huo M W, Wang S Y, Xi C Y, Wang Z S, Sun H L, Wang M, Shen B 2024 Phys. Rev. B 111 054519Google Scholar

    [6]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [7]

    Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, Qi Y P 2024 J. Mater. Sci. Technol. 185 147Google Scholar

    [8]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [9]

    Li F Y, Peng D, Dou J, Guo N, Ma L, Liu C, Wang L Z, Zhang Y L, Luo J, Yang J, Zhang J, Cai W Z, Cheng J G, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 arXiv: 2501.14584 [cond-mat.supr-con]

    [10]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [11]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaski S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [12]

    Liu Y D, Ko E K, Tarn Y J, Bhatt L, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 arXiv: 2501.08022 [cond-mat.supr-con]

    [13]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [14]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Jin C Q, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005Google Scholar

    [15]

    Li J Y, Chen C Q, Huang C X, Han Y F, Huo M W, Huang X, Ma P Y, Qiu Z Y, Chen J F, Hu X W, Chen L, Xie T, Shen B, Sun H L, Yao D X, Wang M 2024 Sci. China Phys. Mech. 67 117403Google Scholar

    [16]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [17]

    Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y 2024 J. Phys. Soc. Jpn. 93 095003Google Scholar

    [18]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J Y, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [19]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y H, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2024 Nature 638 935Google Scholar

    [20]

    Shen J C, Miao Y, Ou Z P, Zhou G D, Chen Y Q, Luan R Q, Sun H X, Feng Z K, Yong X R, Li P, Li Y Y, Xu L Z, Lv W, Nie Z H, Wang H, Huang H L, Sun Y J, Xue Q K, Chen Z Y, He J F 2025 arXiv: 2502.17831 [cond-mat.supr-con]

    [21]

    Jung M C, Kapeghian J, Hanson C, Pamuk B, Botana A S 2022 Phys. Rev. B 105 085150Google Scholar

    [22]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [23]

    Huang J K, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [24]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [25]

    Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, Si Q M 2023 Phys. Rev. B 108 214522Google Scholar

    [26]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [27]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [28]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [29]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [30]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [31]

    Shilenko D A, Leonov I V 2023 Phys. Rev. B 108 125105Google Scholar

    [32]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 140505Google Scholar

    [33]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [34]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510Google Scholar

    [35]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141Google Scholar

    [36]

    Cao Y Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [37]

    Chen J L, Yang F, Li W 2024 Phys. Rev. B 110 L041111Google Scholar

    [38]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 38Google Scholar

    [39]

    Heier G, Park K, Savrasov S Y 2024 Phys. Rev. B 109 104508Google Scholar

    [40]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [41]

    Kakoi M, Kaneko T, Sakakibara H, Ochi M, Kuroki K 2024 Phys. Rev. B 109 L201124Google Scholar

    [42]

    Kaneko T, Sakakibara H, Ochi M, Kuroki K 2024 Phys. Rev. B 109 045154Google Scholar

    [43]

    Lange H, Homeier L, Demler E, Schollwöck U, Bohrdt A, Grusdt F 2024 Phys. Rev. B 110 L081113Google Scholar

    [44]

    Lange H, Homeier L, Demler E, Schollwöck U, Grusdt F, Bohrdt A 2024 Phys. Rev. B 109 045127Google Scholar

    [45]

    Lechermann F, Bötzel S, Eremin I M 2024 Phys. Rev. Mater. 8 074802Google Scholar

    [46]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. B 110 094509Google Scholar

    [47]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [48]

    Luo Z H, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [49]

    Meier Q N, de Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V, Cano A 2024 Phys. Rev. B 109 184505Google Scholar

    [50]

    Ouyang Z F, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [51]

    Ouyang Z F, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [52]

    Pan Z M, Lu C, Yang F, Wu C J 2024 Chin. Phys. Lett. 41 087401Google Scholar

    [53]

    Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [54]

    Rhodes L C, Wahl P 2024 Phys. Rev. Mater. 8 044801Google Scholar

    [55]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [56]

    Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, Kuroki K 2024 Phys. Rev. B 109 144511Google Scholar

    [57]

    Schlömer H, Schollwöck U, Grusdt F, Bohrdt A 2024 Commun. Phys. 7 366Google Scholar

    [58]

    Talantsev E F, Chistyakov V V 2024 Lett. Mater. 14 262Google Scholar

    [59]

    Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154Google Scholar

    [60]

    Worm P, Wang Q S, Kitatani M, Biało I, Gao Q, Ren X L, Choi J, Csontosová D, Zhou K J, Zhou X J, Zhu Z H, Si L, Chang J, Tomczak J M, Held K 2024 Phys. Rev. B 109 235126Google Scholar

    [61]

    Wu X F, Yang H, Zhang Y H 2024 Phys. Rev. B 110 125122Google Scholar

    [62]

    Yang H, Oh H, Zhang Y H 2024 Phys. Rev. B 110 104517Google Scholar

    [63]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301Google Scholar

    [64]

    Zhang H Y, Bai Y J, Kong F J, Wu X Q, Xing Y H, Xu N 2024 New J. Phys. 26 123027Google Scholar

    [65]

    Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501Google Scholar

    [66]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 109 045151Google Scholar

    [67]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [68]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 110 L060510Google Scholar

    [69]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China. Phys. Mech. 68 237411Google Scholar

    [70]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001Google Scholar

    [71]

    Ni X S, Ji Y Y, He L X, Xie T, Yao D X, Wang M, Cao K 2025 npj Quantum Mater. 10 17Google Scholar

    [72]

    Wang Y L 2025 Phys. Rev. B 111 085117Google Scholar

    [73]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [74]

    Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154Google Scholar

    [75]

    Zhu C, Li B, Fan Y X, Yin C H, Zhai J J, Cheng J, Liu S L, Shi Z X 2025 Comp. Mater. Sci. 250 113676Google Scholar

    [76]

    Puggioni D, Rondinelli J M 2018 Phys. Rev. B 97 115116Google Scholar

    [77]

    Chen C Q, Luo Z H, Wang M, W. W, Yao D X 2024 Phys. Rev. B 110 014503Google Scholar

    [78]

    Huo Z H, Zhang P, Zhang Z H, Duan D F, Cui T 2024 arXiv: 2407.00327 [cond-mat.str-el]

    [79]

    LaBollita H, Kapeghian J, Norman M R, Botana A S 2024 Phys. Rev. B 109 195151Google Scholar

    [80]

    Leonov I V 2024 Phys. Rev. B 109 235123Google Scholar

    [81]

    Tian P F, Ma H T, Ming X, Zheng X J, Li H 2024 J. Phys. : Condens. Matter 36 355602Google Scholar

    [82]

    Wang J X, Ouyang Z F, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165140Google Scholar

    [83]

    Bernardini F, Fiebig M, Cano A 2024 arXiv: 2401.12910 [cond-mat.mtrl-sci]

    [84]

    Gu Y, Le C, Yang Z, Wu X, Hu J 2023 arXiv: 2306.07275 [cond-mat.supr-con]

    [85]

    Zhang R Q, Huang C Y, Kargarian M, Verma R, Markiewicz R S, Bansil A, Sun J W, Singh B 2023 arXiv: 2311.03302 [cond-mat.supr-con]

    [86]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2023 arXiv: 2307.07154 [cond-mat.supr-con]

    [87]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2023 arXiv: 2308.11614 [cond-mat.supr-con]

    [88]

    Kitamine N, Ochi M, Kuroki K 2023 arXiv: 2308.12750 [cond-mat.supr-con]

    [89]

    LaBollita H, Pardo V, Norman M R, Botana A S 2023 arXiv: 2309.17279 [cond-mat.str-el]

    [90]

    Ryee S, Witt N, Wehling T O 2023 arXiv: 2310.17465 [cond-mat.supr-con]

    [91]

    Liu H Q, Xia C L, Zhou S J, Chen H H 2023 arXiv: 2311.07316 [cond-mat.supr-con]

    [92]

    Chang W X, Guo S B, You Y Z, Li Z X 2023 arXiv: 2311.09970 [cond-mat.str-el]

    [93]

    Sui X L, Han X R, Chen X J, Qiao L, Shao X H, Huang B 2023 arXiv: 2312.01271 [cond-mat.mtrl-sci]

    [94]

    Lu D C, Li M, Zeng Z Y, Hou W D, Wang J V, Yang F, You Y Z 2023 arXiv: 2308.11195 [cond-mat.str-el]

    [95]

    Wu W, Luo Z H, Yao D X, Wang M 2023 arXiv: 2307.05662 [cond-mat.str-el]

    [96]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 arXiv: 2401.15097 [cond-mat.supr-con]

    [97]

    LaBollita H, Pardo V, Norman M R, Botana A S 2024 arXiv: 2407.14409 [cond-mat.str-el]

    [98]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 arXiv: 2411.14600 [cond-mat.supr-con]

    [99]

    Wang Z, Jiang K, Zhang F C 2024 arXiv: 2412.18469 [cond-mat.str-el]

    [100]

    Lechermann F, Bötzel S, Eremin I M 2024 arXiv: 2412.19617 [cond-mat.str-el]

    [101]

    Le C C, Zhan J, X. W X, P. H J 2025 arXiv: 2501.14665 [cond-mat.supr-con]

    [102]

    Xu H X, Xie Y, Guterding D, Wang Z J 2025 arXiv: 2501.05254 [cond-mat.supr-con]

    [103]

    Liu X, Jiang M 2025 arXiv: 2501.11907 [cond-mat.str-el]

    [104]

    Lu C, Zhang M, Pan Z M, Wu C J, Yang F 2025 arXiv: 2502.14324 [cond-mat.supr-con]

    [105]

    Huo Z H, Zhang P, Shi H L, Yan X C, Duan D F, Cu T 2025 arXiv: 2502.19664 [cond-mat.supr-con]

    [106]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2025 arXiv: 2503.10902 [cond-mat.supr-con]

    [107]

    Inoue D, Yamakawa Y, Onari S, Kontani H 2025 arXiv: 2503.12925 [cond-mat.supr-con]

    [108]

    Shi L, Luo Y, Wu W, Zhang Y W 2025 arXiv: 2503.13197 [cond-mat.supr-con]

    [109]

    Xi W H, Yu S L, Li J X 2025 arXiv: 2503.15038 [cond-mat.supr-con]

    [110]

    Kaneko T, Kakoi M, Kuroki K 2025 arXiv: 2504.10114 [cond-mat.str-el]

    [111]

    Ji J H, Lu C, Shao Z Y, Pan Z M, Yang F, Wu C J 2025 arXiv: 2504.12127 [cond-mat.supr-con]

    [112]

    Zhang R Q, Wang Y Y, Engel M, Lane C, Miranda H, Hou L, Chowdhury S, Singh B, Barbiellini B, Zhu J X, Markiewicz R S, Gross E K U, Kresse G, Bansil A, Sun J W 2025 arXiv: 2504.13025 [cond-mat.str-el]

    [113]

    Haque M E, Ali R, Masum M A, Hassan J, Naqib S H 2025 arXiv: 2504.15853 [cond-mat.supr-con]

    [114]

    Zhang Y, Lin L F, Moreo A, Okamoto S, Maier T A, Dagotto E 2025 arXiv: 2503.05075 [cond-mat.supr-con]

    [115]

    Zhao Y F, Botana A S 2024 arXiv: 2412.04391 [cond-mat.supr-con]

    [116]

    Bhatta H C R B, Zhang X L, Zhong Y, Jia C J 2025 arXiv: 2502.01624 [cond-mat.supr-con]

    [117]

    LaBollita H, Pardo V, Norman M R, Botana A S 2024 Phys. Rev. Mater. 8 L111801Google Scholar

    [118]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [119]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [120]

    Chen X L, Zhang J J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F, Mitchell J F 2024 J. Am. Chem. Soc. 146 3640Google Scholar

    [121]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [122]

    Geisler B, Fanfarillo L, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 89Google Scholar

    [123]

    Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702Google Scholar

    [124]

    Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhang X F, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L, Yang L X 2024 Sci. Bull. 70 180Google Scholar

    [125]

    Li Y D, Du X, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Qi Y P, Guo H J, Chen Y L, Yang L X 2024 Chin. Phys. Lett. 41 087402Google Scholar

    [126]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [127]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408Google Scholar

    [128]

    Puphal P, Reiss P, Enderlein N, Wu Y M, Khaliullin G, Sundaramurthy V, Priessnitz T, Knauft M, Suthar A, Richter L, Isobe M, van Aken P A, Takagi H, Keimer B, Suyolcu Y E, Wehinger B, Hansmann P, Hepting M 2024 Phys. Rev. Lett. 133 146002Google Scholar

    [129]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 lnorg. Chem. 63 5020Google Scholar

    [130]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [131]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221Google Scholar

    [132]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [133]

    Yilmaz H, Küster K, Starke U, Clemens O, Isobe M, Puphal P 2024 npj Quantum Mater. 9 92Google Scholar

    [134]

    Shi M Z, Peng D, Li Y K, Xing Z F, Wang Y Z, Fan K B, Li H P, Wu R Q, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2501.14202 [cond-mat.supr-con]

    [135]

    Chen Y, Zhang K, Xu M H, Zhao Y, Xiao H Y, Qiao L 2025 Sci. China. Phys. Mech. 68 247411Google Scholar

    [136]

    Liu C, Huo M W, Yang H, Li Q, Zhang Y J, Xiang Z N, Wang M, Wen H H 2025 Sci. China. Phys. Mech. 68 247412Google Scholar

    [137]

    Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52Google Scholar

    [138]

    Wang G, Wang N N, Lu T L, Calder S, Yan J Q, Shi L F, Hou J, Ma L, Zhang L L, Sun J P, Wang B S, Meng S, Liu M, Cheng J G 2025 npj Quantum Mater. 10 1Google Scholar

    [139]

    Yuan N, Elghandour A, Arneth J, Dey K, Klingeler R 2024 J. Cryst. Growth 627 127511Google Scholar

    [140]

    Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 Nat. Commun. 16 2887Google Scholar

    [141]

    Xu S X, Chen C Q, Huo M W, Hu D Y, Wang H, Wu Q, Li R S, Wu D, Wang M, Yao D X, Dong T, Wang N L 2025 Phys. Rev. B 111 075140Google Scholar

    [142]

    Liu Z, Li J, Huo M W, Ji B K, Hao J H, Dai Y M, Ou M J, Li Q, Sun H L, Xu B, Lu Y, Wang M, Wen H H 2024 arXiv: 2411.08539 [cond-mat.supr-con]

    [143]

    Deswal S, Kumar D, Rout D, Singh S, Kumar P 2024 arXiv: 2411.13933 [cond-mat.str-el]

    [144]

    Du X, Li Y D, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Chen Y L, Qi Y P, Guo H J, Yang L X 2024 arXiv: 2405.19853 [cond-mat.supr-con]

    [145]

    Xu S X, Wang H, Huo M W, Hu D Y, Wu Q, Yue L, Wu D, Wang M, Dong T, Wang N L 2025 arXiv: 2503.05176 [cond-mat.supr-con]

    [146]

    Cao Y T, Liu A D, Wang B, Zhang M X, Qi Y P, Hicken T J, Luetkens H, Fu Z D, Gardner J S, Zhao J K, Guo A J 2025 arXiv: 2503.14128 [cond-mat.supr-con]

    [147]

    Khasanov R, Hicken T J, Plokhikh I, Sazgari V, Keller L, Pomjakushin V, Bartkowiak M, Królak S, Winiarski M I J, Krieger J A, Luetkens H, Klimczuk T, Gawryluk D J, Guguchia Z 2025 arXiv: 2503.04400 [cond-mat.supr-con]

    [148]

    Li M Z, Gong J S, Zhu Y H, Chen Z Y, Zhang J K, Zhang E K, Li Y J, Yin R T, Wang S Y, Zhao J, Feng D L, Du Z Y, Yan Y J 2025 arXiv: 2501.18885 [cond-mat.supr-con]

    [149]

    Li Z, Guo W, Zhang T T, Song J H, Gao T Y, Gu Z B, Nie Y F 2025 arXiv: 2305.10271 [cond-mat.supr-con]

    [150]

    Li M T, Wang Y M, Pei C Y, Zhang M X, Li N N, Guan J Y, Amboage M, Adama N, Kong Q Y, Qi Y P, Yang W G 2024 arXiv: 2410.04230 [cond-mat.supr-con]

    [151]

    Zhou X X, He W H, Zhou Z J, Ni K P, Huo M W, Hu D Y, Zhu Y H, Zhang E K, Jiang Z C, Zhang S K, Su S W, Jiang J, Yan Y J, Wang Y L, Shen D W, Liu X, Zhao J, Wang M, Liu M K, Du Z Y, Feng D L 2024 arXiv: 2410.06602 [cond-mat.supr-con]

    [152]

    Su B, Huang C X, Zhao J Z, Huo M W, Luo J L, Wang M, Chen Z G 2024 arXiv: 2411.10786 [cond-mat.supr-con]

    [153]

    Mijit E, Ma P Y, Sahle C J, Rosa A D, Hu Z W, Angelis F D, Lopez A, Amatori S, Tchoudinov G, Joly Y, Irifune T, Rodrigues J E F S, Garbarino G, Parra S G, Wang M, Yu R Z, Mathon O 2024 arXiv: 2412.08269 [cond-mat.supr-con]

    [154]

    Chen K W, Liu X Q, Wang Y, Zhu Z Y, Jiao J C, Jiang C Y, Guo Y F, Shu L 2024 arXiv: 2412.09003 [cond-mat.str-el]

    [155]

    Zhang Y L, Pei C Y, Guo N, Fan L L, Zhang M X, Wang L Z, Zhang G T, Li F Y, Wang Y N, Ma C, Cheng W Y, Wang S P, Zheng Q, Qi Y P, Zhang J J 2025 arXiv: 2502.01501 [cond-mat.supr-con]

    [156]

    Plokhikh I, Hicken T J, Keller L, Pomjakushin V, Moody S H, Foury-Leylekian P F, Krieger J J, Luetkens H, Guguchia Z, Khasanov R, Gawryluk D J 2025 arXiv: 2503.05287 [cond-mat.supr-con]

    [157]

    Khasanov R, Plokhikh I, Hicken T J, Luetkens H, Gawryluk D J, Guguchia Z 2025 arXiv: 2503.06560 [cond-mat.supr-con]

    [158]

    Yashima M, Seto N, Oshita Y, Kakoi M, Sakurai H, Takano Y, Mukuda H 2025 arXiv: 2503.09288 [cond-mat.str-el]

    [159]

    Au-Yeung C C, Chen X, Smit S, Bluschke M, Zimmermann V, Michiardi M, Moen P, Kraan J, Pang C S B, Suen C T, Zhdanovich S, Zonno M, Gorovikov S, Liu Y, Levy G, Elfimov I S, Berciu M, Sawatzky G A, Mitchell J F, Damascelli A 2025 arXiv: 2502.20450 [cond-mat.supr-con]

    [160]

    Puphal P, Sundaramurthy V, Zimmermann V, Küster K, Starke U, Isobe M, Keimer B, Hepting M 2023 APL Mater. 11 081107Google Scholar

    [161]

    Puphal P, Wehinger B, Nuss J, Küster K, Starke U, Garbarino G, Keimer B, Isobe M, Hepting M 2023 Phys. Rev. Mater. 7 014804Google Scholar

    [162]

    Rathnayaka S, Yano S, K. K, J. A, M. B C, J. N, D. L 2024 arXiv: 2403.09826 [cond-mat.supr-con]

    [163]

    Kim C H, Jung M Y, Khim Y G, Lee K J, Chang Y J, Chang S H 2024 arXiv: 2412.21110 [cond-mat.mtrl-sci]

    [164]

    Cheng B, Cheng D, Lee K, Luo L, Chen Z Y, Lee Y H, Wang B Y, Mootz M, Perakis I E, Shen Z X, Hwang H Y, Wang J G 2024 Nat. Mater. 23 775Google Scholar

    [165]

    Rout D, Mudi S R, Karmakar S, Rawat R, Singh S 2024 Phys. Rev. B 110 094412Google Scholar

    [166]

    Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2502.01018 [cond-mat.supr-con]

    [167]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature 642 58Google Scholar

    [168]

    Lee Y H, Wei X, Yu Y J, Bhatt L, Lee K, Goodge B H, Harvey S P, Wang B Y, Muller D A, Kourkoutis L F, Lee W S, Raghu S, Hwang H Y 2025 Nat. Synth. 4 573Google Scholar

    [169]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [170]

    Gupta N K, Gong R, Wu Y, Kang M, Parzyck C T, Gregory B Z, Costa N, Sutarto R, Sarker S, Singer A, Schlom D G, Shen K M, Hawthorn D G 2024 arXiv: 2409.03210 [cond-mat.supr-con]

    [171]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [172]

    Zhou X J, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, Eremets M 2021 Nat. Rev. Phys. 3 462Google Scholar

    [173]

    Si Q M, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 16017Google Scholar

    [174]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969Google Scholar

    [175]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645Google Scholar

    [176]

    Hashimoto M, Vishik I M, He R H, Devereaux T P, Shen Z X 2014 Nat. Phys. 10 483Google Scholar

    [177]

    Dagotto E 1994 Rev. Mod. Phys. 66 763Google Scholar

    [178]

    Damascelli A, Hussain, Z., Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [179]

    Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J, Kotliar G 2022 Nature 601 35Google Scholar

    [180]

    Pan G A, Ferenc Segedin D, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Cordova Carrizales D, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, Mundy J A 2022 Nat. Mater. 21 160Google Scholar

    [181]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [182]

    Lv B, Qian T, Ding H 2019 Nat. Rev. Phys. 1 609Google Scholar

    [183]

    Boschini F, Zonno M, Damascelli A 2024 Rev. Mod. Phys. 96 015003Google Scholar

    [184]

    Yang H F, Liang A J, Chen C, Zhang C F, Schroeter N B M, Chen Y L 2018 Nat. Rev. Mater. 3 341Google Scholar

    [185]

    Lu D H, Vishik I M, Yi M, Chen Y L, Moore R G, Shen Z X 2012 Annu. Rev. Condens. Matter Phys. 3 129Google Scholar

    [186]

    Zhang C F, Li Y W, Pei D, Liu Z K, Chen Y L 2020 Annu. Rev. Mater. Res. 50 131Google Scholar

    [187]

    Chen Y J, Gu X, Li Y W, Du X, Yang L X, Chen Y L 2020 Matter 3 1114Google Scholar

    [188]

    Xu R Z, Gu X, Zhao W X, Zhou J S, Zhang Q Q, Du X, Li Y D, Mao Y H, Huang K, Zhang C F, Liu Z K, Chen Y L, X. Y L 2023 Rev. Sci. Instrum. 94 023903Google Scholar

    [189]

    Bao C H, Tang P Z, Sun D, Zhou S Y 2021 Nat. Rev. Phys. 4 33Google Scholar

    [190]

    Zhang H Y, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T, Zhou S Y 2022 Nat. Rev. Method Primer 2 54Google Scholar

    [191]

    Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L, Wang N L 2008 Europhys. Lett. 83 47001Google Scholar

    [192]

    Li H X, Zhou X Q, Nummy T, Zhang J J, Pardo V, Pickett W E, Mitchell J F, Dessau D S 2017 Nat. Commun. 8 704Google Scholar

    [193]

    Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D H, Moritz B, Keimer B, Devereaux T P, Hepting M, Shen Z X 2025 Phys. Rev. Lett. 134 126001Google Scholar

    [194]

    Uchida M, Ishizaka K, Hansmann P, Kaneko Y, Ishida Y, Yang X, Kumai R, Toschi A, Onose Y, Arita R, Held K, Andersen O K, Shin S, Tokura Y 2011 Phys. Rev. Lett. 106 027001Google Scholar

    [195]

    Taylor N K, D. F S, Turkiewicz A B, Zhang Y, Doyle S T, Pan G A, Jiang H Y, Bostwick A, Jozwiak C, Rotenberg E, Lanzara A, El Baggari I, Brooks C M, N'Diaye A T, Moreschini L, Mundy J A 2025 Phys. Rev. Mater. 9 L032001Google Scholar

    [196]

    Yang L X, Rohde G, Rohwer T, Stange A, Hanff K, Sohrt C, Rettig L, Cortés R, Chen F, Feng D L, Wolf T, Kamble B, Eremin I, Popmintchev T, Murnane M M, Kapteyn H C, Kipp L, Fink J, Bauer M, Bovensiepen U, Rossnagel K 2014 Phys. Rev. Lett. 112 207001Google Scholar

    [197]

    Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y, Avila L M, Kallane M, Mathias S, Kipp L, Rossnagel K, Bauer M 2011 Nature 471 490Google Scholar

    [198]

    Schmitt F, Kirchmann P S, Bovensiepen U, Moore R G, Rettig L, Krenz M, Chu J H, Ru N, Perfetti L, Lu D H, Wolf M, Fisher I R, Shen Z X 2008 Science 321 1649Google Scholar

    [199]

    Lee W S, Chuang Y D, Moore R G, Zhu Y, Patthey L, Trigo M, Lu D H, Kirchmann P S, Krupin O, Yi M, Langner M, Huse N, Robinson J S, Chen Y, Zhou S Y, Coslovich G, Huber B, Reis D A, Kaindl R A, Schoenlein R W, Doering D, Denes P, Schlotter W F, Turner J J, Johnson S L, Först M, Sasagawa T, Kung Y F, Sorini A P, Kemper A F, Moritz B, Devereaux T P, Lee D H, Shen Z X, Hussain Z 2012 Nat. Commun. 3 838Google Scholar

    [200]

    Coslovich G, Huber B, Lee W S, Chuang Y D, Zhu Y, Sasagawa T, Hussain Z, Bechtel H A, Martin M C, Shen Z X, Schoenlein R W, Kaindl R A 2013 Nat. Commun. 4 2643Google Scholar

    [201]

    Coslovich G, Kemper A F, Behl S, Huber B, Bechtel H A, Sasagawa T, Martin M C, Lanzara A, Kaindl R A 2017 Sci. Adv. 3 e1600735Google Scholar

    [202]

    Zhang J J, Botana A S, Freeland J W, Phelan D, Zheng H, Pardo V, Norman M R, Mitchell J F 2017 Nat. Phys. 13 864Google Scholar

    [203]

    Poltavets V V, Lokshin K A, Nevidomskyy A H, Croft M, Tyson T A, Hadermann J, Van Tendeloo G, Egami T, Kotliar G, ApRoberts-Warren N, Dioguardi A P, Curro N J, Greenblatt M 2010 Phys. Rev. Lett. 104 206403Google Scholar

    [204]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [205]

    Sakakibara H, Usui H, Suzuki K, Kotani T, Aoki H, Kuroki K 2020 Phys. Rev. Lett. 125 077003Google Scholar

    [206]

    Lau B, Berciu M, Sawatzky G A 2011 Phys. Rev. Lett. 106 036401Google Scholar

    [207]

    Li F Y, Guo N, Zheng Q, Shen Y, Wang S L, Cui Q H, Liu C, Wang S P, Tao X T, Zhang G M, Zhang J J 2024 Phys. Rev. Mater. 8 053401Google Scholar

    [208]

    Zhang J J, Zheng H, Chen Y S, Ren Y, Yonemura M, Huq A, Mitchell J F 2020 Phys. Rev. Mater. 4 083402Google Scholar

    [209]

    Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M, Wang R H, Li J R, Tarn Y J, Ko E K, Thampy V, Hashimoto M, Lu D H, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat.supr-con]

    [210]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev nwaf205Google Scholar

    [211]

    Shen J, Zhou G, Miao Y, Li P, Ou Z, Chen Y, Wang Z, Luan R, Sun H, Feng Z, Yong X, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, He J, Chen Z 2025 arXiv: 2502.17831 [cond-mat.supr-con]

    [212]

    Sun W, Jiang Z, Hao B, Yan S, Zhang H, Wang M, Yang Y, Sun H, Liu Z, Ji D, Gu Z, Zhou J, Shen D, Feng D, Nie Y 2025 arXiv: 2507.07409 [cond-mat.supr-con]

    [213]

    Liu Y D, Ko E K, Tarn Y J, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 24 1221Google Scholar

    [214]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Natl. Sci. Rev. 11 nwae194Google Scholar

    [215]

    Sun W, Jiang Z, Xia C, Hao B, Yan S, Wang M, Li Y, Liu H, Ding J, Liu J, Liu Z, Liu J, Chen H, Shen D, Nie Y 2025 Sci. Adv. 11 eadr5116Google Scholar

    [216]

    Li H X, Hao P P, Zhang J J e, Gordon K, Linn A G, Chen X L, Zheng H, Zhou X Q, Mitchell J F, Dessau D S 2023 Sci. Adv. 9 eade4418Google Scholar

    [217]

    Du X, Kang L, Lv Y Y, Zhou J S, Gu X, Xu R Z, Zhang Q Q, Yin Z X, Zhao W X, Li Y D, He S M, Pei D, Chen Y B, Wang M X, Liu Z K, Chen Y L, Yang L X 2022 Nat. Phys. 19 40Google Scholar

    [218]

    Kang L, Du X, Zhou J S, Gu X, Chen Y J, Xu R Z, Zhang Q Q, Sun S C, Yin Z X, Li Y W, Pei D, Zhang J, Gu R K, Wang Z G, Liu Z K, Xiong R, Shi J, Zhang Y, Chen Y L, Yang L X 2021 Nat Commun 12 6183Google Scholar

    [219]

    Yashima M, Seto N, Oshita Y, Kakoi M, Sakurai H, Takano Y, Mukuda H 2025 J. Phys. Soc. Jpn. 94 054704Google Scholar

    [220]

    Zhang J J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S Y G, Qiu Y M, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, Mitchell J F 2020 Nat. Commun. 11 6003Google Scholar

    [221]

    Zong A, Zhang Q, Zhou F, Su Y, Hwangbo K, Shen X, Jiang Q, Liu H, Gage T E, Walko D A, Kozina M E, Luo D, Reid A H, Yang J, Park S, Lapidus S H, Chu J H, Arslan I, Wang X, Xiao D, Xu X, Gedik N, Wen H 2023 Nature 620 988Google Scholar

    [222]

    Yang L, Sinitsyn N A, Chen W B, Yuan J G, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830Google Scholar

    [223]

    Lin Z B, Zhigilei L V, Celli V 2008 Phys. Rev. B 77 075133Google Scholar

    [224]

    Rothwarf A, Taylor B N 1967 Phys. Rev. Lett. 19 27Google Scholar

    [225]

    Mohr-Vorobeva E, Johnson S L, Beaud P, Staub U, De Souza R, Milne C, Ingold G, Demsar J, Schaefer H, Titov A 2011 Phys. Rev. Lett. 107 036403Google Scholar

    [226]

    Tomeljak A, Schäfer H, Städter D, Beyer M, Biljakovic K, Demsar J 2009 Phys. Rev. Lett. 102 066404Google Scholar

    [227]

    Yang L X, Rohde G, Hanff K, Stange A, Xiong R, Shi J, Bauer M, Rossnagel K 2020 Phys. Rev. Lett. 125 266402Google Scholar

    [228]

    Lobad A I, Taylor A J 2001 Phys. Rev. B 64 180301Google Scholar

    [229]

    Ruello P, Gusev V E 2015 Ultrasonics 56 21Google Scholar

    [230]

    Luo C W, Wu I H, Cheng P C, Lin J Y, Wu K H, Uen T M, Juang J Y, Kobayashi T, Chareev D A, Volkova O S, Vasiliev A N 2012 Phys. Rev. Lett. 108 257006Google Scholar

    [231]

    Avigo I, Cortés R, Rettig L, Thirupathaiah S, Jeevan H S, Gegenwart P, Wolf T, Ligges M, Wolf M, Fink J, Bovensiepen U 2013 J. Phys. : Condens. Matter 25 094003Google Scholar

    [232]

    Kabanov V V, Alexandrov A S 2008 Phys. Rev. B 78 174514Google Scholar

    [233]

    Lai Y P, Chen H J, Wu K H, Liu J M 2014 Appl. Phys. Lett. 105 232110Google Scholar

    [234]

    Wu G Q, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120Google Scholar

    [235]

    Taneda T, Pepe G P, Parlato L, Golubov A A, Sobolewski R 2007 Phys. Rev. B 75 174507Google Scholar

    [236]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [237]

    Kumar S, Fjellvåg Ø, Sjåstad A O, Fjellvåg H 2020 J. Magn. Magn. Mater. 496 165915Google Scholar

  • 图 1  常压和高压下R-P相层状镍基氧化物 (a) 单层La2NiO4; (b) 双层La3Ni2O7; (c) 3层La4Ni3O10的晶格结构; 绿色、灰色和红色小球分别代表La, Ni和O原子, 黑色虚线显示了2层和3层体系中Ni—O八面体沿c方向的取向

    Figure 1.  Crystal structures of R-P phase layered nickelate oxides at the ambient and high pressure: (a) Monolayer La2NiO4; (b) bilayer La3Ni2O7; (c) trilayer La4Ni3O10; the green, gray and red spheres represent La, Ni, and O atoms, respectively, the black dashed lines indicate the distortion of the Ni—O octahedra along the c direction in the bilayer and trilayer systems.

    图 2  第一性原理计算的 (a) 常压(AP)和 (b) 高压(HP)下La3Ni2O7的轨道投影的能带结构[125]; (c) 不同轨道上的电子排布构型示意图[2]; AB (antibonding band)为反键带, BB (bonding band)为成键带

    Figure 2.  Orbital-projected band structures of La3Ni2O7 under (a) ambient pressure and (b) high pressure, calculated by density-functional theory (DFT)[125]; (c) schematic illustration of the electron configurations in different orbitals[2]; AB represents antibonding band, BB represents bonding band.

    图 3  ARPES测量的常压下La3Ni2O7的能带结构 (a) La3Ni2O7能带结构的三维图示; 沿(b) $ {\bar \varGamma '}\bar{S} $, (c) $ \bar {\varGamma}\bar{X} $和 (d) $ \bar{X}\bar{S} $方向的能带色散; 黄色曲线为经过5倍重整化处理后的密度泛函理论计算的能带结构, 白色虚线为实验中能带色散的视觉引导线, 用于指示轨道选择性的能带重整化[125], 实验测量温度为18 K

    Figure 3.  Band dispersions of La3Ni2O7 measured by ARPES at ambient pressure: (a) 3D plot of the electronic structure of La3Ni2O7; band dispersions along the (b) $ {{\bar \varGamma}'}\bar{S} $, (c) $ \bar \varGamma\bar{X} $, and (d) $ \bar{X}\bar{S} $ directions. The yellow curves are the DFT calculated band structure after renormalized by a factor of 5. The white dashed lines are guides to eyes for the experimental band dispersions, indicating the orbital-selective band renormalization[125]. The experimental temperature is 18 K.

    图 4  (a) DFT计算的La3Ni2O7的三维费米面; (b) 三维费米面的二维投影; (c) 通过ARPES测量的费米面结构, 橙色线条表示常压下单胞的布里渊区, 实验温度为18 K; (d) 使用7 eV激光测量的费米面, 图中叠加了计算的费米面结果作为比较, 实验温度为40 K[125]

    Figure 4.  (a) DFT calculated three-dimensional Fermi surface (FS) of La3Ni2O7; (b) two-dimensional projected calculation of three-dimensional FS; (c) FS map measured by ARPES at 18 K, the orange lines are the BZ of the conventional unit cell at the ambient pressure; (d) FS measured using a 7 eV laser at 40 K, the calculated FS is overlaid for comparison[125].

    图 5  (a)—(c) 理论模拟的La3Ni2O7的光电子谱的对称性, 距原点的距离表示沿费米面特定角度方向的信号强度, LH和LV分别表示水平和竖直偏振, (a) 仅含Ni的eg轨道的有效紧束缚模型的模拟结果; (b) 实验测得的光电子能谱沿不同方向的强度; (c) 同时包含Ni的eg轨道和O的p轨道的有效紧束缚模型的模拟结果; (d), (f) (上图)费米面特定动量处的波函数示意图(红色与蓝色表示相对相位, 红/银色球体分别代表O/Ni原子); (下图)利用(a), (c)中对应的模型模拟的ARPES二向色性信号(LV-LH); (e) (上图)实验中光偏振矢量与面内轨道的相对取向; (下图)实测的ARPES二向色性信号[159]

    Figure 5.  (a)–(c) Simulated symmetry of photoemission spectra of La3Ni2O7 using linearly vertical (LV) and linearly horizontal (LH) polarization, the distance from the center defines the magnitude of the signal at a given angle along the FS, (a) an effective tight-binding model with only Ni eg orbitals, (b) experiments, and (c) an effective tight-binding model with both Ni eg and O p orbitals; (d), (f) (top) schematic illustration of wavefunctions at the indicated momenta along the FS with relative phases in red and blue (O and Ni sites in red and silver, respectively), along with (bottom) the simulated ARPES dichroism (LV-LH) from the same model as in (a), (c). (e) (top) Experimental geometry, showing the polarization vector of the light with respect to the in-plane orbitals, along with (bottom) the experimental dichroism measured by ARPES[159].

    图 6  (a)—(e) ARPES测量的1313结构的La3Ni2O7高对称方向的能带结构, ARPES谱上方展示了EF附近的动量分布曲线(MDC), 并标注了对应能带穿越EF的峰位; (f) 计算的费米面结构, 带撇符号表示重构出的能带[193]

    Figure 6.  (a)–(e) ARPES measured band structures of 1313-structured La3Ni2O7 along high-symmetry directions, momentum-distribution curves (MDC) near EF are shown on top with Fermi crossings marked; (f) calculated Fermi surface structure, the primed symbols corresponds to the reconstructed bands[193].

    图 7  (a) ARPES测量的La4Ni3O10的费米面结构, 布里渊区以绿色实线标出; (b) 使用7 eV激光测量的费米面, 对应(a)图中蓝色虚线区域; (c), (d) 沿$ \bar \varGamma\bar{X} $(c) 和$ \bar \varGamma\bar{S} $方向(d)的能带色散测量结果, (d)中数据沿(a)图中红色虚线标示的方向采集[144]

    Figure 7.  (a) Experimental FS of La4Ni3O10 measured by ARPES. The BZ is overlaid as indicated by green lines; (b) FS measured with a 7 eV laser corresponding to the blue dashed area in (a); (c), (d) band dispersions along the high-symmetry directions of (c) $ \bar \varGamma\bar{X} $ and (d) $ \bar \varGamma\bar{S} $, data in (d) were collected along the red dashed line in (a)[144].

    图 8  (a) ARPES测得La3Ni2O7薄膜(左)和块体(右)的能带结构对比[209]; (b) ARPES测量的La3Ni2O7薄膜不同轨道的能带色散示意图[210]; (c) ARPES测得的沿布里渊区对角线方向的超导能隙[211]; (d) ARPES测得的α带对应的能量分布曲线(EDC)的前沿随温度的移动, 表明有超导能隙打开[212]

    Figure 8.  (a) Comparison between ARPES measured band structure of La3Ni2O7 thin film (left) and bulk crystal (right)[209]; (b) ARPES measured band dispersions of La3Ni2O7 thin film with different orbitals characterized[210]; (c) the superconducting gap along the diagonal of the BZ[211]; (d) the leading edge shift of energy-distribution curves (EDCs) of the α band at selected temperatures indicating the formation of the superconducting gap[212].

    图 9  (a) 在Γ-M-X平面(kz = 0)和 (b) Z-A-R平面(kz = π)测量的无限层镍氧化物超导体La0.8Ca0.2NiO2薄膜的费米面; (c), (d) 利用107 eV的光子测量的沿M-Γ-M方向(c)和M-X-M方向(d)的能带色散, EF处的MDC表明了费米穿越的动量位置[214]

    Figure 9.  (a) Photoemission intensity map of the infinite-layer nickelate superconductor La0.8Ca0.2NiO2 film at EF measured at the (a) Γ-M-X plane (kz = 0) and (b) Z-A-R plane (kz = π); (c), (d) photoemission spectra along the (c) M-Γ-M direction and (d) M-X-M direction measured using 107 eV photons (kz = 0), the MDCs at EF were overlaid to show the Fermi crossings[214].

    图 10  (a) Pr4Ni3O8的费米面, 图中强调了以布里渊区角落为中心的空穴口袋; (b)—(d) 在温度T = 22 K测量的高对称方向的色散, 紫色线条代表费米能位置处的MDCs, 从MDCs的峰值位置(红点)提取的能带色散重叠在图中[216]

    Figure 10.  (a) Fermi surface map of Pr4Ni3O8 which emphasizes the hole pocket centered around the zone corners; (b)–(d) high-symmetry cuts taken at temperature T = 22 K, the purple lines are the MDCs at the Fermi energy, band dispersions extracted from the peak positions of MDCs (red dots) are plotted in the spectra[216].

    图 11  (a) La3Ni2O7费米面示意图; (b) 沿(a)中Cut1方向测量的能带结构; (c) 来自(b)图的平带γ的EDC堆叠图, 动量范围由(b)图顶部箭头线段标出[132]

    Figure 11.  (a) Schematic FS of La3Ni2O7; (b) band structures measured along momentum cuts Cut1 marked in (a); (c) EDC stack of the flat band γ from (b); the momentum region is marked by the arrowed line on top of (b)[132].

    图 12  由DFT+DMFT方法计算出的(a) La3Ni2O7[51]和(b) La4Ni3O10[80]常压相动量依赖的谱函数

    Figure 12.  k-dependent spectral features of (a) La3Ni2O7[51] and (b) La4Ni3O10[80] in the ambient pressure phase from DFT+DMFT calculations.

    图 13  La3Ni2O7沿$ \bar \varGamma\bar{S} $方向在不同温度下测量的能带色散, 数据采用7 eV激光采集[125]

    Figure 13.  Band dispersions of La3Ni2O7 along the $ \bar \varGamma\bar{S} $ direction measured at selected temperatures, data were collected using laser at 7 eV[125].

    图 14  La3Ni2O7(蓝色曲线)和La4Ni3O10(绿色曲线)在常压下随温度依赖的电阻率[124]

    Figure 14.  Temperature-dependent resistivity of La3Ni2O7 (blue curve) and La4Ni3O10 (green curve) at ambient pressure[124].

    图 15  (a) La3Ni2O7不同温度下kF处的EDCs和 (b) EDCs前沿位置的温度演化[125]; (c) La4Ni3O10不同温度下$ \bar \varGamma\bar{X} $方向kF处的EDCs和(d) EDCs前沿位置的温度演化; (e), (f) La4Ni3O10不同温度下$ \bar \varGamma\bar{S} $方向$ {k}_{\mathrm{F}}^{\text{α}} $和$ {k}_{\mathrm{F}}^{\text{β}} $处的EDC曲线[144]

    Figure 15.  (a) EDCs of La3Ni2O7 at kF at different temperatures and (b) corresponding leading-edge position of the EDCs as a function of temperature[125]; (c) the EDCs of La4Ni3O10 at kF along $ \bar \varGamma\bar{X} $ at different temperatures and (d) corresponding leading-edge position of the EDCs as a function of temperature; (e), (f) temperature-dependent ARPES spectra of La4Ni3O10 at $ {k}_{\mathrm{F}}^{\text{α}} $ and $ {k}_{\mathrm{F}}^{\text{β}} $ along $ \bar \varGamma\bar{S} $ at different temperatures, respectively[144].

    图 16  La4Ni3O10温度依赖的瞬态反射率变化ΔR/R (a) La4Ni3O10瞬态反射率数据随温度变化的伪色图; (b) 在选定温度下ΔR/R的典型时间演化曲线, 黑色曲线为对实验数据的唯象拟合结果; 从(b)中提取的反射率变化振幅(c)与弛豫时间尺度(d)的温度依赖关系图, 红线为Rothwarf-Taylor模型的拟合[124]

    Figure 16.  Temperature-dependent transient reflectivity changes ΔR/R of La4Ni3O10: (a) The false-color plot of temperature-dependent transient reflectivity data of La4Ni3O10; (b) typical temporal evolution of ΔR/R at selected temperatures. The black curves are the phenomenological fit to the data; temperature dependence of the (c) amplitude and (d) relaxation time of the transient reflectivity change in La3Ni2O7, red lines represent the fitting to the Rothwarf-Taylor model[124].

    图 17  (a) 不同温度下La3Ni2O7的瞬态反射率变化; (b) 在选定温度下ΔR/R的典型时间演化曲线, 黑色曲线为对实验数据的唯象拟合结果; (c), (d) 从(b)中提取的反射率变化振幅(c)与弛豫时间尺度(d)的温度依赖性关系图, (d)图中插图为弛豫时间的倒数随温度的演化[124]

    Figure 17.  (a) Temperature-dependent transient reflectivity data of La3Ni2O7; (b) typical temporal evolution of ΔR/R at selected temperatures, the black curves are the phenomenological fit to the data; (c), (d) temperature dependence of the (c) amplitude and (d) relaxation time (τ) of the transient reflectivity change in La3Ni2O7, the inset of panel (d) shows the temperature dependence of 1/τ[124].

    图 18  (a), (b) La3Ni2O7中提取的反射率变化的振幅(a)和弛豫时间(b)随光通量的变化趋势; (c), (d) La4Ni3O10中提取的反射率变化的振幅(c)和弛豫时间(d)随光通量的变化趋势, 其中(d)图中的红色曲线为实验数据拟合结果; (a)—(d)中所有数据均在80 K温度下测量获得[124]

    Figure 18.  (a), (b) Fluence dependence of the (a) amplitude and (b) relaxation time of the transient reflectivity change in La3Ni2O7; (c), (d) the same as (a) and (b) but for La4Ni3O10; the red curve in (d) is the fit to the data; data in (a)–(d) were measured at 80 K[124]

    图 19  (a) La3Ni2O7和La4Ni3O10在室温下测量的532 nm拉曼光谱; (b) 80 K下La4Ni3O10的ΔR/R变化, 其中可观察到相干声子振荡. 插图显示扣除单指数背景后的信号振荡部分; (c) 信号振荡部分的傅里叶变换谱, 最主要的声子模频率位于3.87 THz处. 插图为对应的原子振动示意图, 红色箭头表示振动方向(为简化图示, 主要在平面内振动的La原子未予显示); (d) 通过超快反射率和拉曼实验测得的La4Ni3O10相干声子频率随温度的变化关系[124]

    Figure 19.  (a) 532 nm Raman spectra of La3Ni2O7 and La4Ni3O10, measured at room temperature; (b) ΔR/R of La4Ni3O10 at 80 K showing the observation of coherent phonon vibrations, the inset shows the oscillatory part of the signal after subtracting the single-exponential background; (c) Fourier transform of the oscillating part of the signal, the most prominent phonon mode locates at 3.87 THz, the inset shows the corresponding vibration of the atoms with the red arrows indicating the vibration directions. For simplicity, La atoms vibrating mainly in the ab plane are not shown; (d) temperature-dependence of the coherent phonon frequency of La4Ni3O10 measured using ultrafast reflectivity and Raman experiments[124].

    图 20  不同压力下测量的温度依赖的泵浦-探测光谱 (a)—(h)分别对应0, 4.2, 8.2, 13.3, 16.7, 19.7, 26和34.2 GPa的压力条件, 各子图中的散点表示提取的弛豫时间常数[127]

    Figure 20.  Temperature dependent pump-probe spectra measured at different pressures: (a)–(h) Corresponds to 0, 4.2, 8.2, 13.3, 16.7, 19.7, 26, and 34.2 GPa, respectively. The scatters in each panel are the extracted relaxation timescales[127].

  • [1]

    Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, Hwang H Y 2019 Nature 572 624Google Scholar

    [2]

    Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, Wang M 2023 Nature 621 493Google Scholar

    [3]

    Xu M Y, Jose G C, Rutherford A, Wang H Z, Zhang S, Cava R J, Zhou H D, Bi W L, Xie W W 2024 arXiv: 2410.18840 [cond-mat.mtrl-sci]

    [4]

    Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, Cheng J G 2023 Chin. Phys. Lett. 40 117302Google Scholar

    [5]

    Chen B W, Zhang H Y, Li J Y, Hu D Y, Huo M W, Wang S Y, Xi C Y, Wang Z S, Sun H L, Wang M, Shen B 2024 Phys. Rev. B 111 054519Google Scholar

    [6]

    Wang M, Wen H H, Wu T, Yao D X, Xiang T 2024 Chin. Phys. Lett. 41 077402Google Scholar

    [7]

    Zhang M X, Pei C Y, Wang Q, Zhao Y, Li C H, Cao W Z, Zhu S H, Wu J F, Qi Y P 2024 J. Mater. Sci. Technol. 185 147Google Scholar

    [8]

    Zhang Y N, Su D J, Huang Y N, Shan Z Y, Sun H L, Huo M W, Ye K X, Zhang J W, Yang Z H, Xu Y K, Su Y, Li R, Smidman M, Wang M, Jiao L, Yuan H Q 2024 Nat. Phys. 20 1269Google Scholar

    [9]

    Li F Y, Peng D, Dou J, Guo N, Ma L, Liu C, Wang L Z, Zhang Y L, Luo J, Yang J, Zhang J, Cai W Z, Cheng J G, Zheng Q, Zhou R, Zeng Q S, Tao X T, Zhang J J 2025 arXiv: 2501.14584 [cond-mat.supr-con]

    [10]

    Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, Cheng J G 2024 Phys. Rev. X 14 011040Google Scholar

    [11]

    Wang N N, Wang G, Shen X L, Hou J, Luo J, Ma X P, Yang H X, Shi L F, Dou J, Feng J, Yang J, Shi Y Q, Ren Z A, Ma H M, Yang P T, Liu Z Y, Liu Y, Zhang H, Dong X L, Wang Y X, Jiang K, Hu J P, Nagasaski S, Kitagawa K, Calder S, Yan J Q, Sun J P, Wang B S, Zhou R, Uwatoko Y, Cheng J G 2024 Nature 634 579Google Scholar

    [12]

    Liu Y D, Ko E K, Tarn Y J, Bhatt L, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 arXiv: 2501.08022 [cond-mat.supr-con]

    [13]

    Zhang E K, Peng D, Zhu Y H, Chen L X, Cui B K, Wang X Y, Wang W B, Zeng Q S, Zhao J 2025 Phys. Rev. X 15 021008Google Scholar

    [14]

    Zhang M X, Pei C Y, Peng D, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C H P, Song J, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Jin C Q, Guo H J, Wu C J, Yang F, Zeng Q S, Yan S C, Yang L X, Qi Y P 2025 Phys. Rev. X 15 021005Google Scholar

    [15]

    Li J Y, Chen C Q, Huang C X, Han Y F, Huo M W, Huang X, Ma P Y, Qiu Z Y, Chen J F, Hu X W, Chen L, Xie T, Shen B, Sun H L, Yao D X, Wang M 2024 Sci. China Phys. Mech. 67 117403Google Scholar

    [16]

    Li Q, Zhang Y J, Xiang Z N, Zhang Y H, Zhu X Y, Wen H H 2024 Chin. Phys. Lett. 41 017401Google Scholar

    [17]

    Nagata H, Sakurai H, Ueki Y, Yamane K, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y 2024 J. Phys. Soc. Jpn. 93 095003Google Scholar

    [18]

    Zhu Y H, Peng D, Zhang E K, Pan B Y, Chen X, Chen L X, Ren H F, Liu F Y, Hao Y Q, Li N N, Xing Z F, Lan F J, Han J Y, Wang J Y, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Cao H B, Zheng C L, Zeng Q S, Guo J G, Zhao J 2024 Nature 631 531Google Scholar

    [19]

    Ko E K, Yu Y J, Liu Y D, Bhatt L, Li J R, Thampy V, Kuo C T, Wang B Y, Lee Y H, Lee K, Lee J S, Goodge B H, Muller D A, Hwang H Y 2024 Nature 638 935Google Scholar

    [20]

    Shen J C, Miao Y, Ou Z P, Zhou G D, Chen Y Q, Luan R Q, Sun H X, Feng Z K, Yong X R, Li P, Li Y Y, Xu L Z, Lv W, Nie Z H, Wang H, Huang H L, Sun Y J, Xue Q K, Chen Z Y, He J F 2025 arXiv: 2502.17831 [cond-mat.supr-con]

    [21]

    Jung M C, Kapeghian J, Hanson C, Pamuk B, Botana A S 2022 Phys. Rev. B 105 085150Google Scholar

    [22]

    Christiansson V, Petocchi F, Werner P 2023 Phys. Rev. Lett. 131 206501Google Scholar

    [23]

    Huang J K, Wang Z D, Zhou T 2023 Phys. Rev. B 108 174501Google Scholar

    [24]

    Lechermann F, Gondolf J, Bötzel S, Eremin I M 2023 Phys. Rev. B 108 L201121Google Scholar

    [25]

    Liao Z G, Chen L, Duan G J, Wang Y M, Liu C L, Yu R, Si Q M 2023 Phys. Rev. B 108 214522Google Scholar

    [26]

    Liu Y B, Mei J W, Ye F, Chen W Q, Yang F 2023 Phys. Rev. Lett. 131 236002Google Scholar

    [27]

    Luo Z H, Hu X W, Wang M, Wu W, Yao D X 2023 Phys. Rev. Lett. 131 126001Google Scholar

    [28]

    Oh H, Zhang Y H 2023 Phys. Rev. B 108 174511Google Scholar

    [29]

    Qin Q, Yang Y F 2023 Phys. Rev. B 108 L140504Google Scholar

    [30]

    Shen Y, Qin M P, Zhang G M 2023 Chin. Phys. Lett. 40 127401Google Scholar

    [31]

    Shilenko D A, Leonov I V 2023 Phys. Rev. B 108 125105Google Scholar

    [32]

    Yang Q G, Wang D, Wang Q H 2023 Phys. Rev. B 108 140505Google Scholar

    [33]

    Yang Y F, Zhang G M, Zhang F C 2023 Phys. Rev. B 108 L201108Google Scholar

    [34]

    Zhang Y, Lin L F, Moreo A, Dagotto E 2023 Phys. Rev. B 108 L180510Google Scholar

    [35]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2023 Phys. Rev. B 108 165141Google Scholar

    [36]

    Cao Y Y, Yang Y F 2024 Phys. Rev. B 109 L081105Google Scholar

    [37]

    Chen J L, Yang F, Li W 2024 Phys. Rev. B 110 L041111Google Scholar

    [38]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 38Google Scholar

    [39]

    Heier G, Park K, Savrasov S Y 2024 Phys. Rev. B 109 104508Google Scholar

    [40]

    Jiang K, Wang Z Q, Zhang F C 2024 Chin. Phys. Lett. 41 017402Google Scholar

    [41]

    Kakoi M, Kaneko T, Sakakibara H, Ochi M, Kuroki K 2024 Phys. Rev. B 109 L201124Google Scholar

    [42]

    Kaneko T, Sakakibara H, Ochi M, Kuroki K 2024 Phys. Rev. B 109 045154Google Scholar

    [43]

    Lange H, Homeier L, Demler E, Schollwöck U, Bohrdt A, Grusdt F 2024 Phys. Rev. B 110 L081113Google Scholar

    [44]

    Lange H, Homeier L, Demler E, Schollwöck U, Grusdt F, Bohrdt A 2024 Phys. Rev. B 109 045127Google Scholar

    [45]

    Lechermann F, Bötzel S, Eremin I M 2024 Phys. Rev. Mater. 8 074802Google Scholar

    [46]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. B 110 094509Google Scholar

    [47]

    Lu C, Pan Z M, Yang F, Wu C J 2024 Phys. Rev. Lett. 132 146002Google Scholar

    [48]

    Luo Z H, Lv B, Wang M, Wu W, Yao D X 2024 npj Quantum Mater. 9 61Google Scholar

    [49]

    Meier Q N, de Vaulx J B, Bernardini F, Botana A S, Blase X, Olevano V, Cano A 2024 Phys. Rev. B 109 184505Google Scholar

    [50]

    Ouyang Z F, Gao M, Lu Z Y 2024 npj Quantum Mater. 9 80Google Scholar

    [51]

    Ouyang Z F, Wang J M, Wang J X, He R Q, Huang L, Lu Z Y 2024 Phys. Rev. B 109 115114Google Scholar

    [52]

    Pan Z M, Lu C, Yang F, Wu C J 2024 Chin. Phys. Lett. 41 087401Google Scholar

    [53]

    Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, Su G 2024 Phys. Rev. Lett. 132 036502Google Scholar

    [54]

    Rhodes L C, Wahl P 2024 Phys. Rev. Mater. 8 044801Google Scholar

    [55]

    Sakakibara H, Kitamine N, Ochi M, Kuroki K 2024 Phys. Rev. Lett. 132 106002Google Scholar

    [56]

    Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, Kuroki K 2024 Phys. Rev. B 109 144511Google Scholar

    [57]

    Schlömer H, Schollwöck U, Grusdt F, Bohrdt A 2024 Commun. Phys. 7 366Google Scholar

    [58]

    Talantsev E F, Chistyakov V V 2024 Lett. Mater. 14 262Google Scholar

    [59]

    Tian Y H, Chen Y, Wang J M, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165154Google Scholar

    [60]

    Worm P, Wang Q S, Kitatani M, Biało I, Gao Q, Ren X L, Choi J, Csontosová D, Zhou K J, Zhou X J, Zhu Z H, Si L, Chang J, Tomczak J M, Held K 2024 Phys. Rev. B 109 235126Google Scholar

    [61]

    Wu X F, Yang H, Zhang Y H 2024 Phys. Rev. B 110 125122Google Scholar

    [62]

    Yang H, Oh H, Zhang Y H 2024 Phys. Rev. B 110 104517Google Scholar

    [63]

    Yang Y F 2025 Chin. Phys. Lett. 42 017301Google Scholar

    [64]

    Zhang H Y, Bai Y J, Kong F J, Wu X Q, Xing Y H, Xu N 2024 New J. Phys. 26 123027Google Scholar

    [65]

    Zhang J X, Zhang H K, You Y Z, Weng Z Y 2024 Phys. Rev. Lett. 133 126501Google Scholar

    [66]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 109 045151Google Scholar

    [67]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Nat. Commun. 15 2470Google Scholar

    [68]

    Zhang Y, Lin L F, Moreo A, Maier T A, Dagotto E 2024 Phys. Rev. B 110 L060510Google Scholar

    [69]

    Huo Z H, Luo Z H, Zhang P, Yang A Q, Liu Z T, Tao X R, Zhang Z H, Guo S M, Jiang Q W, Chen W X, Yao D X, Duan D F, Cui T 2025 Sci. China. Phys. Mech. 68 237411Google Scholar

    [70]

    Jiang K Y, Cao Y H, Yang Q G, Lu H Y, Wang Q H 2025 Phys. Rev. Lett. 134 076001Google Scholar

    [71]

    Ni X S, Ji Y Y, He L X, Xie T, Yao D X, Wang M, Cao K 2025 npj Quantum Mater. 10 17Google Scholar

    [72]

    Wang Y L 2025 Phys. Rev. B 111 085117Google Scholar

    [73]

    Xia C L, Liu H Q, Zhou S J, Chen H H 2025 Nat. Commun. 16 1054Google Scholar

    [74]

    Zhao Y F, Botana A S 2025 Phys. Rev. B 111 115154Google Scholar

    [75]

    Zhu C, Li B, Fan Y X, Yin C H, Zhai J J, Cheng J, Liu S L, Shi Z X 2025 Comp. Mater. Sci. 250 113676Google Scholar

    [76]

    Puggioni D, Rondinelli J M 2018 Phys. Rev. B 97 115116Google Scholar

    [77]

    Chen C Q, Luo Z H, Wang M, W. W, Yao D X 2024 Phys. Rev. B 110 014503Google Scholar

    [78]

    Huo Z H, Zhang P, Zhang Z H, Duan D F, Cui T 2024 arXiv: 2407.00327 [cond-mat.str-el]

    [79]

    LaBollita H, Kapeghian J, Norman M R, Botana A S 2024 Phys. Rev. B 109 195151Google Scholar

    [80]

    Leonov I V 2024 Phys. Rev. B 109 235123Google Scholar

    [81]

    Tian P F, Ma H T, Ming X, Zheng X J, Li H 2024 J. Phys. : Condens. Matter 36 355602Google Scholar

    [82]

    Wang J X, Ouyang Z F, He R Q, Lu Z Y 2024 Phys. Rev. B 109 165140Google Scholar

    [83]

    Bernardini F, Fiebig M, Cano A 2024 arXiv: 2401.12910 [cond-mat.mtrl-sci]

    [84]

    Gu Y, Le C, Yang Z, Wu X, Hu J 2023 arXiv: 2306.07275 [cond-mat.supr-con]

    [85]

    Zhang R Q, Huang C Y, Kargarian M, Verma R, Markiewicz R S, Bansil A, Sun J W, Singh B 2023 arXiv: 2311.03302 [cond-mat.supr-con]

    [86]

    Chen X J, Jiang P H, Li J, Zhong Z C, Lu Y 2023 arXiv: 2307.07154 [cond-mat.supr-con]

    [87]

    Jiang R S, Hou J N, Fan Z Y, Lang Z J, Ku W 2023 arXiv: 2308.11614 [cond-mat.supr-con]

    [88]

    Kitamine N, Ochi M, Kuroki K 2023 arXiv: 2308.12750 [cond-mat.supr-con]

    [89]

    LaBollita H, Pardo V, Norman M R, Botana A S 2023 arXiv: 2309.17279 [cond-mat.str-el]

    [90]

    Ryee S, Witt N, Wehling T O 2023 arXiv: 2310.17465 [cond-mat.supr-con]

    [91]

    Liu H Q, Xia C L, Zhou S J, Chen H H 2023 arXiv: 2311.07316 [cond-mat.supr-con]

    [92]

    Chang W X, Guo S B, You Y Z, Li Z X 2023 arXiv: 2311.09970 [cond-mat.str-el]

    [93]

    Sui X L, Han X R, Chen X J, Qiao L, Shao X H, Huang B 2023 arXiv: 2312.01271 [cond-mat.mtrl-sci]

    [94]

    Lu D C, Li M, Zeng Z Y, Hou W D, Wang J V, Yang F, You Y Z 2023 arXiv: 2308.11195 [cond-mat.str-el]

    [95]

    Wu W, Luo Z H, Yao D X, Wang M 2023 arXiv: 2307.05662 [cond-mat.str-el]

    [96]

    Wang Y X, Jiang K, Wang Z Q, Zhang F C, Hu J P 2024 arXiv: 2401.15097 [cond-mat.supr-con]

    [97]

    LaBollita H, Pardo V, Norman M R, Botana A S 2024 arXiv: 2407.14409 [cond-mat.str-el]

    [98]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 arXiv: 2411.14600 [cond-mat.supr-con]

    [99]

    Wang Z, Jiang K, Zhang F C 2024 arXiv: 2412.18469 [cond-mat.str-el]

    [100]

    Lechermann F, Bötzel S, Eremin I M 2024 arXiv: 2412.19617 [cond-mat.str-el]

    [101]

    Le C C, Zhan J, X. W X, P. H J 2025 arXiv: 2501.14665 [cond-mat.supr-con]

    [102]

    Xu H X, Xie Y, Guterding D, Wang Z J 2025 arXiv: 2501.05254 [cond-mat.supr-con]

    [103]

    Liu X, Jiang M 2025 arXiv: 2501.11907 [cond-mat.str-el]

    [104]

    Lu C, Zhang M, Pan Z M, Wu C J, Yang F 2025 arXiv: 2502.14324 [cond-mat.supr-con]

    [105]

    Huo Z H, Zhang P, Shi H L, Yan X C, Duan D F, Cu T 2025 arXiv: 2502.19664 [cond-mat.supr-con]

    [106]

    Geisler B, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2025 arXiv: 2503.10902 [cond-mat.supr-con]

    [107]

    Inoue D, Yamakawa Y, Onari S, Kontani H 2025 arXiv: 2503.12925 [cond-mat.supr-con]

    [108]

    Shi L, Luo Y, Wu W, Zhang Y W 2025 arXiv: 2503.13197 [cond-mat.supr-con]

    [109]

    Xi W H, Yu S L, Li J X 2025 arXiv: 2503.15038 [cond-mat.supr-con]

    [110]

    Kaneko T, Kakoi M, Kuroki K 2025 arXiv: 2504.10114 [cond-mat.str-el]

    [111]

    Ji J H, Lu C, Shao Z Y, Pan Z M, Yang F, Wu C J 2025 arXiv: 2504.12127 [cond-mat.supr-con]

    [112]

    Zhang R Q, Wang Y Y, Engel M, Lane C, Miranda H, Hou L, Chowdhury S, Singh B, Barbiellini B, Zhu J X, Markiewicz R S, Gross E K U, Kresse G, Bansil A, Sun J W 2025 arXiv: 2504.13025 [cond-mat.str-el]

    [113]

    Haque M E, Ali R, Masum M A, Hassan J, Naqib S H 2025 arXiv: 2504.15853 [cond-mat.supr-con]

    [114]

    Zhang Y, Lin L F, Moreo A, Okamoto S, Maier T A, Dagotto E 2025 arXiv: 2503.05075 [cond-mat.supr-con]

    [115]

    Zhao Y F, Botana A S 2024 arXiv: 2412.04391 [cond-mat.supr-con]

    [116]

    Bhatta H C R B, Zhang X L, Zhong Y, Jia C J 2025 arXiv: 2502.01624 [cond-mat.supr-con]

    [117]

    LaBollita H, Pardo V, Norman M R, Botana A S 2024 Phys. Rev. Mater. 8 L111801Google Scholar

    [118]

    Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, Shu L 2024 Phys. Rev. Lett. 132 256503Google Scholar

    [119]

    Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H L, Huang X, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, Feng D L 2024 Nat. Commun. 15 9597Google Scholar

    [120]

    Chen X L, Zhang J J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F, Mitchell J F 2024 J. Am. Chem. Soc. 146 3640Google Scholar

    [121]

    Cui T, Choi S, Lin T, Liu C, Wang G, Wang N N, Chen S R, Hong H T, Rong D K, Wang Q Y, Jin Q, Wang J O, Gu L, Ge C, Wang C, Cheng J G, Zhang Q H, Si L, Jin K J, Guo E J 2024 Commun. Mater. 5 32Google Scholar

    [122]

    Geisler B, Fanfarillo L, Hamlin J J, Stewart G R, Hennig R G, Hirschfeld P J 2024 npj Quantum Mater. 9 89Google Scholar

    [123]

    Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702Google Scholar

    [124]

    Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhang X F, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L, Yang L X 2024 Sci. Bull. 70 180Google Scholar

    [125]

    Li Y D, Du X, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Qi Y P, Guo H J, Chen Y L, Yang L X 2024 Chin. Phys. Lett. 41 087402Google Scholar

    [126]

    Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, Wen H H 2024 Nat. Commun. 15 7570Google Scholar

    [127]

    Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Chen L C, Ma X L, Wang M, Hong F, Wang X B, Yu X H 2024 Nat. Commun. 15 10408Google Scholar

    [128]

    Puphal P, Reiss P, Enderlein N, Wu Y M, Khaliullin G, Sundaramurthy V, Priessnitz T, Knauft M, Suthar A, Richter L, Isobe M, van Aken P A, Takagi H, Keimer B, Suyolcu Y E, Wehinger B, Hansmann P, Hepting M 2024 Phys. Rev. Lett. 133 146002Google Scholar

    [129]

    Wang H Z, Chen L, Rutherford A, Zhou H D, Xie W W 2024 lnorg. Chem. 63 5020Google Scholar

    [130]

    Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, Liu H Z 2024 J. Am. Chem. Soc. 146 7506Google Scholar

    [131]

    Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, Wang M 2024 Sci. Bull. 69 3221Google Scholar

    [132]

    Yang J G, Sun H L, Hu X W, Xie Y Y, Miao T M, Luo H L, Chen H, Liang B, Zhu W P, Qu G X, Chen C Q, Huo M W, Huang Y B, Zhang S J, Zhang F F, Yang F, Wang Z M, Peng Q J, Mao H Q, Liu G D, Xu Z Y, Qian T, Yao D X, Wang M, Zhao L, Zhou X J 2024 Nat. Commun. 15 4373Google Scholar

    [133]

    Yilmaz H, Küster K, Starke U, Clemens O, Isobe M, Puphal P 2024 npj Quantum Mater. 9 92Google Scholar

    [134]

    Shi M Z, Peng D, Li Y K, Xing Z F, Wang Y Z, Fan K B, Li H P, Wu R Q, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2501.14202 [cond-mat.supr-con]

    [135]

    Chen Y, Zhang K, Xu M H, Zhao Y, Xiao H Y, Qiao L 2025 Sci. China. Phys. Mech. 68 247411Google Scholar

    [136]

    Liu C, Huo M W, Yang H, Li Q, Zhang Y J, Xiang Z N, Wang M, Wen H H 2025 Sci. China. Phys. Mech. 68 247412Google Scholar

    [137]

    Ren X L, Sutarto R, Wu X X, Zhang J F, Huang H, Xiang T, Hu J P, Comin R, Zhou X J, Zhu Z H 2025 Commun. Phys. 8 52Google Scholar

    [138]

    Wang G, Wang N N, Lu T L, Calder S, Yan J Q, Shi L F, Hou J, Ma L, Zhang L L, Sun J P, Wang B S, Meng S, Liu M, Cheng J G 2025 npj Quantum Mater. 10 1Google Scholar

    [139]

    Yuan N, Elghandour A, Arneth J, Dey K, Klingeler R 2024 J. Cryst. Growth 627 127511Google Scholar

    [140]

    Shi M Z, Li Y K, Wang Y X, Peng D, Yang S H, Li H P, Fan K B, Jiang K, He J F, Zeng Q S, Song D S, Ge B H, Xiang Z J, Wang Z Y, Ying J J, Wu T, Chen X H 2025 Nat. Commun. 16 2887Google Scholar

    [141]

    Xu S X, Chen C Q, Huo M W, Hu D Y, Wang H, Wu Q, Li R S, Wu D, Wang M, Yao D X, Dong T, Wang N L 2025 Phys. Rev. B 111 075140Google Scholar

    [142]

    Liu Z, Li J, Huo M W, Ji B K, Hao J H, Dai Y M, Ou M J, Li Q, Sun H L, Xu B, Lu Y, Wang M, Wen H H 2024 arXiv: 2411.08539 [cond-mat.supr-con]

    [143]

    Deswal S, Kumar D, Rout D, Singh S, Kumar P 2024 arXiv: 2411.13933 [cond-mat.str-el]

    [144]

    Du X, Li Y D, Cao Y T, Pei C Y, Zhang M X, Zhao W X, Zhai K Y, Xu R Z, Liu Z K, Li Z W, Zhao J K, Li G, Chen Y L, Qi Y P, Guo H J, Yang L X 2024 arXiv: 2405.19853 [cond-mat.supr-con]

    [145]

    Xu S X, Wang H, Huo M W, Hu D Y, Wu Q, Yue L, Wu D, Wang M, Dong T, Wang N L 2025 arXiv: 2503.05176 [cond-mat.supr-con]

    [146]

    Cao Y T, Liu A D, Wang B, Zhang M X, Qi Y P, Hicken T J, Luetkens H, Fu Z D, Gardner J S, Zhao J K, Guo A J 2025 arXiv: 2503.14128 [cond-mat.supr-con]

    [147]

    Khasanov R, Hicken T J, Plokhikh I, Sazgari V, Keller L, Pomjakushin V, Bartkowiak M, Królak S, Winiarski M I J, Krieger J A, Luetkens H, Klimczuk T, Gawryluk D J, Guguchia Z 2025 arXiv: 2503.04400 [cond-mat.supr-con]

    [148]

    Li M Z, Gong J S, Zhu Y H, Chen Z Y, Zhang J K, Zhang E K, Li Y J, Yin R T, Wang S Y, Zhao J, Feng D L, Du Z Y, Yan Y J 2025 arXiv: 2501.18885 [cond-mat.supr-con]

    [149]

    Li Z, Guo W, Zhang T T, Song J H, Gao T Y, Gu Z B, Nie Y F 2025 arXiv: 2305.10271 [cond-mat.supr-con]

    [150]

    Li M T, Wang Y M, Pei C Y, Zhang M X, Li N N, Guan J Y, Amboage M, Adama N, Kong Q Y, Qi Y P, Yang W G 2024 arXiv: 2410.04230 [cond-mat.supr-con]

    [151]

    Zhou X X, He W H, Zhou Z J, Ni K P, Huo M W, Hu D Y, Zhu Y H, Zhang E K, Jiang Z C, Zhang S K, Su S W, Jiang J, Yan Y J, Wang Y L, Shen D W, Liu X, Zhao J, Wang M, Liu M K, Du Z Y, Feng D L 2024 arXiv: 2410.06602 [cond-mat.supr-con]

    [152]

    Su B, Huang C X, Zhao J Z, Huo M W, Luo J L, Wang M, Chen Z G 2024 arXiv: 2411.10786 [cond-mat.supr-con]

    [153]

    Mijit E, Ma P Y, Sahle C J, Rosa A D, Hu Z W, Angelis F D, Lopez A, Amatori S, Tchoudinov G, Joly Y, Irifune T, Rodrigues J E F S, Garbarino G, Parra S G, Wang M, Yu R Z, Mathon O 2024 arXiv: 2412.08269 [cond-mat.supr-con]

    [154]

    Chen K W, Liu X Q, Wang Y, Zhu Z Y, Jiao J C, Jiang C Y, Guo Y F, Shu L 2024 arXiv: 2412.09003 [cond-mat.str-el]

    [155]

    Zhang Y L, Pei C Y, Guo N, Fan L L, Zhang M X, Wang L Z, Zhang G T, Li F Y, Wang Y N, Ma C, Cheng W Y, Wang S P, Zheng Q, Qi Y P, Zhang J J 2025 arXiv: 2502.01501 [cond-mat.supr-con]

    [156]

    Plokhikh I, Hicken T J, Keller L, Pomjakushin V, Moody S H, Foury-Leylekian P F, Krieger J J, Luetkens H, Guguchia Z, Khasanov R, Gawryluk D J 2025 arXiv: 2503.05287 [cond-mat.supr-con]

    [157]

    Khasanov R, Plokhikh I, Hicken T J, Luetkens H, Gawryluk D J, Guguchia Z 2025 arXiv: 2503.06560 [cond-mat.supr-con]

    [158]

    Yashima M, Seto N, Oshita Y, Kakoi M, Sakurai H, Takano Y, Mukuda H 2025 arXiv: 2503.09288 [cond-mat.str-el]

    [159]

    Au-Yeung C C, Chen X, Smit S, Bluschke M, Zimmermann V, Michiardi M, Moen P, Kraan J, Pang C S B, Suen C T, Zhdanovich S, Zonno M, Gorovikov S, Liu Y, Levy G, Elfimov I S, Berciu M, Sawatzky G A, Mitchell J F, Damascelli A 2025 arXiv: 2502.20450 [cond-mat.supr-con]

    [160]

    Puphal P, Sundaramurthy V, Zimmermann V, Küster K, Starke U, Isobe M, Keimer B, Hepting M 2023 APL Mater. 11 081107Google Scholar

    [161]

    Puphal P, Wehinger B, Nuss J, Küster K, Starke U, Garbarino G, Keimer B, Isobe M, Hepting M 2023 Phys. Rev. Mater. 7 014804Google Scholar

    [162]

    Rathnayaka S, Yano S, K. K, J. A, M. B C, J. N, D. L 2024 arXiv: 2403.09826 [cond-mat.supr-con]

    [163]

    Kim C H, Jung M Y, Khim Y G, Lee K J, Chang Y J, Chang S H 2024 arXiv: 2412.21110 [cond-mat.mtrl-sci]

    [164]

    Cheng B, Cheng D, Lee K, Luo L, Chen Z Y, Lee Y H, Wang B Y, Mootz M, Perakis I E, Shen Z X, Hwang H Y, Wang J G 2024 Nat. Mater. 23 775Google Scholar

    [165]

    Rout D, Mudi S R, Karmakar S, Rawat R, Singh S 2024 Phys. Rev. B 110 094412Google Scholar

    [166]

    Shi M Z, Peng D, Fan K B, Xing Z F, Yang S H, Wang Y Z, Li H P, Wu R Q, Du M, Ge B H, Zeng Z D, Zeng Q S, Ying J J, Wu T, Chen X H 2025 arXiv: 2502.01018 [cond-mat.supr-con]

    [167]

    Chow S L E, Luo Z Y, Ariando A 2025 Nature 642 58Google Scholar

    [168]

    Lee Y H, Wei X, Yu Y J, Bhatt L, Lee K, Goodge B H, Harvey S P, Wang B Y, Muller D A, Kourkoutis L F, Lee W S, Raghu S, Hwang H Y 2025 Nat. Synth. 4 573Google Scholar

    [169]

    Zhao D, Zhou Y B, Huo M W, Wang Y, Nie L P, Yang Y, Ying J J, Wang M, Wu T, Chen X H 2025 Sci. Bull. 70 1239Google Scholar

    [170]

    Gupta N K, Gong R, Wu Y, Kang M, Parzyck C T, Gregory B Z, Costa N, Sutarto R, Sarker S, Singer A, Schlom D G, Shen K M, Hawthorn D G 2024 arXiv: 2409.03210 [cond-mat.supr-con]

    [171]

    Keimer B, Kivelson S A, Norman M R, Uchida S, Zaanen J 2015 Nature 518 179Google Scholar

    [172]

    Zhou X J, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P, Eremets M 2021 Nat. Rev. Phys. 3 462Google Scholar

    [173]

    Si Q M, Yu R, Abrahams E 2016 Nat. Rev. Mater. 1 16017Google Scholar

    [174]

    Tsuei C C, Kirtley J R 2000 Rev. Mod. Phys. 72 969Google Scholar

    [175]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645Google Scholar

    [176]

    Hashimoto M, Vishik I M, He R H, Devereaux T P, Shen Z X 2014 Nat. Phys. 10 483Google Scholar

    [177]

    Dagotto E 1994 Rev. Mod. Phys. 66 763Google Scholar

    [178]

    Damascelli A, Hussain, Z., Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [179]

    Fernandes R M, Coldea A I, Ding H, Fisher I R, Hirschfeld P J, Kotliar G 2022 Nature 601 35Google Scholar

    [180]

    Pan G A, Ferenc Segedin D, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Cordova Carrizales D, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, Mundy J A 2022 Nat. Mater. 21 160Google Scholar

    [181]

    Sobota J A, He Y, Shen Z X 2021 Rev. Mod. Phys. 93 025006Google Scholar

    [182]

    Lv B, Qian T, Ding H 2019 Nat. Rev. Phys. 1 609Google Scholar

    [183]

    Boschini F, Zonno M, Damascelli A 2024 Rev. Mod. Phys. 96 015003Google Scholar

    [184]

    Yang H F, Liang A J, Chen C, Zhang C F, Schroeter N B M, Chen Y L 2018 Nat. Rev. Mater. 3 341Google Scholar

    [185]

    Lu D H, Vishik I M, Yi M, Chen Y L, Moore R G, Shen Z X 2012 Annu. Rev. Condens. Matter Phys. 3 129Google Scholar

    [186]

    Zhang C F, Li Y W, Pei D, Liu Z K, Chen Y L 2020 Annu. Rev. Mater. Res. 50 131Google Scholar

    [187]

    Chen Y J, Gu X, Li Y W, Du X, Yang L X, Chen Y L 2020 Matter 3 1114Google Scholar

    [188]

    Xu R Z, Gu X, Zhao W X, Zhou J S, Zhang Q Q, Du X, Li Y D, Mao Y H, Huang K, Zhang C F, Liu Z K, Chen Y L, X. Y L 2023 Rev. Sci. Instrum. 94 023903Google Scholar

    [189]

    Bao C H, Tang P Z, Sun D, Zhou S Y 2021 Nat. Rev. Phys. 4 33Google Scholar

    [190]

    Zhang H Y, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T, Zhou S Y 2022 Nat. Rev. Method Primer 2 54Google Scholar

    [191]

    Ding H, Richard P, Nakayama K, Sugawara K, Arakane T, Sekiba Y, Takayama A, Souma S, Sato T, Takahashi T, Wang Z, Dai X, Fang Z, Chen G F, Luo J L, Wang N L 2008 Europhys. Lett. 83 47001Google Scholar

    [192]

    Li H X, Zhou X Q, Nummy T, Zhang J J, Pardo V, Pickett W E, Mitchell J F, Dessau D S 2017 Nat. Commun. 8 704Google Scholar

    [193]

    Abadi S, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D H, Moritz B, Keimer B, Devereaux T P, Hepting M, Shen Z X 2025 Phys. Rev. Lett. 134 126001Google Scholar

    [194]

    Uchida M, Ishizaka K, Hansmann P, Kaneko Y, Ishida Y, Yang X, Kumai R, Toschi A, Onose Y, Arita R, Held K, Andersen O K, Shin S, Tokura Y 2011 Phys. Rev. Lett. 106 027001Google Scholar

    [195]

    Taylor N K, D. F S, Turkiewicz A B, Zhang Y, Doyle S T, Pan G A, Jiang H Y, Bostwick A, Jozwiak C, Rotenberg E, Lanzara A, El Baggari I, Brooks C M, N'Diaye A T, Moreschini L, Mundy J A 2025 Phys. Rev. Mater. 9 L032001Google Scholar

    [196]

    Yang L X, Rohde G, Rohwer T, Stange A, Hanff K, Sohrt C, Rettig L, Cortés R, Chen F, Feng D L, Wolf T, Kamble B, Eremin I, Popmintchev T, Murnane M M, Kapteyn H C, Kipp L, Fink J, Bauer M, Bovensiepen U, Rossnagel K 2014 Phys. Rev. Lett. 112 207001Google Scholar

    [197]

    Rohwer T, Hellmann S, Wiesenmayer M, Sohrt C, Stange A, Slomski B, Carr A, Liu Y, Avila L M, Kallane M, Mathias S, Kipp L, Rossnagel K, Bauer M 2011 Nature 471 490Google Scholar

    [198]

    Schmitt F, Kirchmann P S, Bovensiepen U, Moore R G, Rettig L, Krenz M, Chu J H, Ru N, Perfetti L, Lu D H, Wolf M, Fisher I R, Shen Z X 2008 Science 321 1649Google Scholar

    [199]

    Lee W S, Chuang Y D, Moore R G, Zhu Y, Patthey L, Trigo M, Lu D H, Kirchmann P S, Krupin O, Yi M, Langner M, Huse N, Robinson J S, Chen Y, Zhou S Y, Coslovich G, Huber B, Reis D A, Kaindl R A, Schoenlein R W, Doering D, Denes P, Schlotter W F, Turner J J, Johnson S L, Först M, Sasagawa T, Kung Y F, Sorini A P, Kemper A F, Moritz B, Devereaux T P, Lee D H, Shen Z X, Hussain Z 2012 Nat. Commun. 3 838Google Scholar

    [200]

    Coslovich G, Huber B, Lee W S, Chuang Y D, Zhu Y, Sasagawa T, Hussain Z, Bechtel H A, Martin M C, Shen Z X, Schoenlein R W, Kaindl R A 2013 Nat. Commun. 4 2643Google Scholar

    [201]

    Coslovich G, Kemper A F, Behl S, Huber B, Bechtel H A, Sasagawa T, Martin M C, Lanzara A, Kaindl R A 2017 Sci. Adv. 3 e1600735Google Scholar

    [202]

    Zhang J J, Botana A S, Freeland J W, Phelan D, Zheng H, Pardo V, Norman M R, Mitchell J F 2017 Nat. Phys. 13 864Google Scholar

    [203]

    Poltavets V V, Lokshin K A, Nevidomskyy A H, Croft M, Tyson T A, Hadermann J, Van Tendeloo G, Egami T, Kotliar G, ApRoberts-Warren N, Dioguardi A P, Curro N J, Greenblatt M 2010 Phys. Rev. Lett. 104 206403Google Scholar

    [204]

    Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, Lee W S 2020 Nat. Mater. 19 381Google Scholar

    [205]

    Sakakibara H, Usui H, Suzuki K, Kotani T, Aoki H, Kuroki K 2020 Phys. Rev. Lett. 125 077003Google Scholar

    [206]

    Lau B, Berciu M, Sawatzky G A 2011 Phys. Rev. Lett. 106 036401Google Scholar

    [207]

    Li F Y, Guo N, Zheng Q, Shen Y, Wang S L, Cui Q H, Liu C, Wang S P, Tao X T, Zhang G M, Zhang J J 2024 Phys. Rev. Mater. 8 053401Google Scholar

    [208]

    Zhang J J, Zheng H, Chen Y S, Ren Y, Yonemura M, Huq A, Mitchell J F 2020 Phys. Rev. Mater. 4 083402Google Scholar

    [209]

    Wang B Y, Zhong Y, Abadi S, Liu Y D, Yu Y J, Zhang X L, Wu Y M, Wang R H, Li J R, Tarn Y J, Ko E K, Thampy V, Hashimoto M, Lu D H, Lee Y S, Devereaux T P, Jia C J, Hwang H Y, Shen Z X 2025 arXiv: 2504.16372 [cond-mat.supr-con]

    [210]

    Li P, Zhou G D, Lv W, Li Y Y, Yue C M, Huang H L, Xu L Z, Shen J C, Miao Y, Song W H, Nie Z H, Chen Y Q, Wang H, Chen W Q, Huang Y B, Chen Z H, Qian T, Lin J H, He J F, Sun Y J, Chen Z Y, Xue Q K 2025 Natl. Sci. Rev nwaf205Google Scholar

    [211]

    Shen J, Zhou G, Miao Y, Li P, Ou Z, Chen Y, Wang Z, Luan R, Sun H, Feng Z, Yong X, Li Y, Xu L, Lv W, Nie Z, Wang H, Huang H, Sun Y J, Xue Q K, He J, Chen Z 2025 arXiv: 2502.17831 [cond-mat.supr-con]

    [212]

    Sun W, Jiang Z, Hao B, Yan S, Zhang H, Wang M, Yang Y, Sun H, Liu Z, Ji D, Gu Z, Zhou J, Shen D, Feng D, Nie Y 2025 arXiv: 2507.07409 [cond-mat.supr-con]

    [213]

    Liu Y D, Ko E K, Tarn Y J, Bhatt L, Li J R, Thampy V, Goodge B H, Muller D A, Raghu S, Yu Y J, Hwang H Y 2025 Nat. Mater. 24 1221Google Scholar

    [214]

    Ding X, Fan Y, Wang X X, Li C H, An Z T, Ye J H, Tang S L, Lei M N, Sun X T, Guo N, Chen Z H, Sangphet S, Wang Y L, Xu H C, Peng R, Feng D L 2024 Natl. Sci. Rev. 11 nwae194Google Scholar

    [215]

    Sun W, Jiang Z, Xia C, Hao B, Yan S, Wang M, Li Y, Liu H, Ding J, Liu J, Liu Z, Liu J, Chen H, Shen D, Nie Y 2025 Sci. Adv. 11 eadr5116Google Scholar

    [216]

    Li H X, Hao P P, Zhang J J e, Gordon K, Linn A G, Chen X L, Zheng H, Zhou X Q, Mitchell J F, Dessau D S 2023 Sci. Adv. 9 eade4418Google Scholar

    [217]

    Du X, Kang L, Lv Y Y, Zhou J S, Gu X, Xu R Z, Zhang Q Q, Yin Z X, Zhao W X, Li Y D, He S M, Pei D, Chen Y B, Wang M X, Liu Z K, Chen Y L, Yang L X 2022 Nat. Phys. 19 40Google Scholar

    [218]

    Kang L, Du X, Zhou J S, Gu X, Chen Y J, Xu R Z, Zhang Q Q, Sun S C, Yin Z X, Li Y W, Pei D, Zhang J, Gu R K, Wang Z G, Liu Z K, Xiong R, Shi J, Zhang Y, Chen Y L, Yang L X 2021 Nat Commun 12 6183Google Scholar

    [219]

    Yashima M, Seto N, Oshita Y, Kakoi M, Sakurai H, Takano Y, Mukuda H 2025 J. Phys. Soc. Jpn. 94 054704Google Scholar

    [220]

    Zhang J J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S Y G, Qiu Y M, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, Mitchell J F 2020 Nat. Commun. 11 6003Google Scholar

    [221]

    Zong A, Zhang Q, Zhou F, Su Y, Hwangbo K, Shen X, Jiang Q, Liu H, Gage T E, Walko D A, Kozina M E, Luo D, Reid A H, Yang J, Park S, Lapidus S H, Chu J H, Arslan I, Wang X, Xiao D, Xu X, Gedik N, Wen H 2023 Nature 620 988Google Scholar

    [222]

    Yang L, Sinitsyn N A, Chen W B, Yuan J G, Zhang J, Lou J, Crooker S A 2015 Nat. Phys. 11 830Google Scholar

    [223]

    Lin Z B, Zhigilei L V, Celli V 2008 Phys. Rev. B 77 075133Google Scholar

    [224]

    Rothwarf A, Taylor B N 1967 Phys. Rev. Lett. 19 27Google Scholar

    [225]

    Mohr-Vorobeva E, Johnson S L, Beaud P, Staub U, De Souza R, Milne C, Ingold G, Demsar J, Schaefer H, Titov A 2011 Phys. Rev. Lett. 107 036403Google Scholar

    [226]

    Tomeljak A, Schäfer H, Städter D, Beyer M, Biljakovic K, Demsar J 2009 Phys. Rev. Lett. 102 066404Google Scholar

    [227]

    Yang L X, Rohde G, Hanff K, Stange A, Xiong R, Shi J, Bauer M, Rossnagel K 2020 Phys. Rev. Lett. 125 266402Google Scholar

    [228]

    Lobad A I, Taylor A J 2001 Phys. Rev. B 64 180301Google Scholar

    [229]

    Ruello P, Gusev V E 2015 Ultrasonics 56 21Google Scholar

    [230]

    Luo C W, Wu I H, Cheng P C, Lin J Y, Wu K H, Uen T M, Juang J Y, Kobayashi T, Chareev D A, Volkova O S, Vasiliev A N 2012 Phys. Rev. Lett. 108 257006Google Scholar

    [231]

    Avigo I, Cortés R, Rettig L, Thirupathaiah S, Jeevan H S, Gegenwart P, Wolf T, Ligges M, Wolf M, Fink J, Bovensiepen U 2013 J. Phys. : Condens. Matter 25 094003Google Scholar

    [232]

    Kabanov V V, Alexandrov A S 2008 Phys. Rev. B 78 174514Google Scholar

    [233]

    Lai Y P, Chen H J, Wu K H, Liu J M 2014 Appl. Phys. Lett. 105 232110Google Scholar

    [234]

    Wu G Q, Neumeier J J, Hundley M F 2001 Phys. Rev. B 63 245120Google Scholar

    [235]

    Taneda T, Pepe G P, Parlato L, Golubov A A, Sobolewski R 2007 Phys. Rev. B 75 174507Google Scholar

    [236]

    Zhan J, Gu Y H, Wu X X, Hu J P 2025 Phys. Rev. Lett. 134 136002Google Scholar

    [237]

    Kumar S, Fjellvåg Ø, Sjåstad A O, Fjellvåg H 2020 J. Magn. Magn. Mater. 496 165915Google Scholar

  • [1] Jia Yun-Zhe, Meng Sheng. Ultrafast dynamics of water system under photoexcitation. Acta Physica Sinica, 2024, 73(8): 084204. doi: 10.7498/aps.73.20240047
    [2] Tao Chen-Yu, Lei Jian-Ting, Yu Xuan, Luo Yan, Ma Xin-Wen, Zhang Shao-Feng. Development of attosecond pulses and their application to ultrafast dynamics of atoms and molecules. Acta Physica Sinica, 2023, 72(5): 053202. doi: 10.7498/aps.72.20222436
    [3] Zhong Guo-Hua, Lin Hai-Qing. Aromatic superconductors: Electron-phonon coupling and electronic correlations. Acta Physica Sinica, 2023, 72(23): 237403. doi: 10.7498/aps.72.20231751
    [4] Su Jie, Liu Zi-Chao, Liao Jian-Ying, Li Ying-Bin, Huang Cheng. Intensity-dependent electron correlation in nonsequential double ionization of Ar atoms in counter-rotating two-color elliptically polarized laser fields. Acta Physica Sinica, 2022, 71(19): 193201. doi: 10.7498/aps.71.20221044
    [5] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission spectroscopy studies on the electronic structure and superconductivity mechanism for high temperature superconductors. Acta Physica Sinica, 2021, 70(1): 017406. doi: 10.7498/aps.70.20201913
    [6] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [7] Ye Shu-Ji,  Li Chuan-Zhao,  Zhang Jia-Hui,  Tan Jun-Jun,  Luo Yi. Research progress of molecular structure and dynamics of biological water. Acta Physica Sinica, 2019, 68(1): 013101. doi: 10.7498/aps.68.20181273
    [8] Zhao Lin, Liu Guo-Dong, Zhou Xing-Jiang. Angle-resolved photoemission studies on iron based high temperature superconductors. Acta Physica Sinica, 2018, 67(20): 207413. doi: 10.7498/aps.67.20181768
    [9] Zhang Bin, Zhao Jian, Zhao Zeng-Xiu. Multiconfiguration time-dependent Hartree-Fock treatment of electron correlation in strong-field ionization of H2 molecules. Acta Physica Sinica, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [10] Luo Jin-Long, Ling Feng-Zi, Li Shuai, Wang Yan-Mei, Zhang Bing. Ultrafast photodissociation dynamics of butanone in 3s Rydberg state. Acta Physica Sinica, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [11] Wu Shao-Quan, Fang Dong-Kai, Zhao Guo-Ping. Effect of electronic correlations on magnetotransport through a parallel double quantum dot. Acta Physica Sinica, 2015, 64(10): 107201. doi: 10.7498/aps.64.107201
    [12] Li Xia, Feng Dong-Hai, He Hong-Yan, Jia Tian-Qing, Shan Lu-Fan, Sun Zhen-Rong, Xu Zhi-Zhan. Ultrafast carrier dynamics in CdTe/CdS Core/Shell quantum dots. Acta Physica Sinica, 2012, 61(19): 197801. doi: 10.7498/aps.61.197801
    [13] Xing Zhong-Wen, Liu Mei, Li Bin. Magnetism and phonon softening of LiFeAs superconductors. Acta Physica Sinica, 2011, 60(7): 077402. doi: 10.7498/aps.60.077402
    [14] Cui Dong-Meng, Xie Quan, Chen Qian, Zhao Feng-Juan, Li Xu-Zhen. First-principles study on the band structure and optical properties of strained Ru2Si3 semiconductor. Acta Physica Sinica, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [15] Liang Wei-Hua, Ding Xue-Cheng, Chu Li-Zhi, Deng Ze-Chao, Guo Jian-Xin, Wu Zhuan-Hua, Wang Ying-Long. First-principles study of electronic and optical properties of Ni-doped silicon nanowires. Acta Physica Sinica, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [17] Wang Wei, Sun Jia-Fa, Liu Mei, Liu Su. First-principles calculations on the electronic band structure of β-Pyrochlore superconductors AOs2O6 (A=K,Rb,Cs). Acta Physica Sinica, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [18] First principles calculations of the effect of tension of MgB2 film on its superconductivity. Acta Physica Sinica, 2007, 56(12): 7262-7265. doi: 10.7498/aps.56.7262
    [19] Zhu Sheng Xiang, Li Rui, Yang Xiu Wen, Xue Chun Rong. Study on electronic structures of PuH2 with DVM. Acta Physica Sinica, 2003, 52(1): 67-71. doi: 10.7498/aps.52.67
    [20] TAN MING-QIU, TAO XIANG-MING. STUDY ON THE ELECTRONIC STRUCTURE OF HIGH-TC SUPERCONDUCTOR MgB2. Acta Physica Sinica, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
Metrics
  • Abstract views:  478
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  30 June 2025
  • Accepted Date:  23 July 2025
  • Available Online:  25 July 2025
  • Published Online:  05 September 2025
  • /

    返回文章
    返回