Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Composite velocity imaging spectrometer on Shanghai soft X-ray free electron laser facility

LIAO Jianfeng FENG Yunfei WU Kefei TAO Jianfei ZHU Wentao HUANG Jianye DING Bocheng LIU Xiaojing

Citation:

Composite velocity imaging spectrometer on Shanghai soft X-ray free electron laser facility

LIAO Jianfeng, FENG Yunfei, WU Kefei, TAO Jianfei, ZHU Wentao, HUANG Jianye, DING Bocheng, LIU Xiaojing
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Temporal- and angular-resolved photoionization experiments are essential for probing the geometric configuration and electronic state evolution of atoms and molecules, which requires measuring the full spatial angular distributions of electrons and ions in free electron laser (FEL) experiments. Here, we present the first experimental results from the composite velocity imaging spectrometer (CpVMI) on the Shanghai soft X-ray free electron laser facility (SXFEL). The study demonstrates its ability to capture energy and angular information of electrons and ions with high resolution and full solid-angle collection.Krypton (Kr) atoms and carbon tetrachloride (CCl4) molecules are ionized using FEL pulses at 263.8 eV. Electron momentum images are recorded with an Andor Zyla 4.2 PLUS camera, and ion time-of-flight mass spectra and momentum distributions are acquired using a TPX3CAM. For Kr, the electron spectrum contains peaks from 3p, 3d, and 4p photoionization, as well as the Auger electrons from 3d and 3p levels. The measured anisotropy parameters (β) of these electrons show good agreement with previous theoretical Hartree-Fock calculations. The ion abundance in the time-of-flight mass spectra of Kr is consistent with the ratio derived from the intensities of the corresponding photoelectron peaks.For CCl4, the electron spectrum contains Cl 2p photoelectrons, 2p Auger electrons, and valence-shell photoelectrons, with their angular distribution parameters also aligning with theoretical predictions. The TPX3CAM can directly measure the momenta of fragment ions without the need of inverse Abel transformation. By integrating the high-resolution flight time mass spectrometry and momentum imaging data obtained from TPX3CAM, we successfully visualize and analyze the key photodissociation pathways of CCl4 molecules under the action of soft X-ray FEL. In particular, it can distinguish between direct two-body dissociation and multi-step dissociation processes, and observe the unique angular distributions and kinetic energy release characteristics of different dissociation channels.In conclusion, the experimental results clearly show that the CpVMI fully meets the technical requirements for FEL user experiments in terms of energy, angular distribution, and momentum measurement, providing a platform for FEL light-induced dynamics research. Future enhancements, including improved light focusing and the use of supersonic molecular beams, are expected to further improve the performance of the instrument.
  • 图 1  复合速度成像谱仪示意图, 其中气体样品通过超声分子束或者空心针注入主腔, 气体样品与光相互作用后, 产生的电子和离子在电场的引导下飞行到两端的荧光屏探测器, 利用相机记录实验图像

    Figure 1.  Schematic diagram of the velocity imaging spectrometer. The gas sample is injected into the main chamber through an ultrasonic molecular beam or a hollow needle. After interacting with the light, the electrons and ions produced by the gas sample fly to the fluorescent screen detectors at both ends under the guidance of an electric field. The experimental images are recorded by two cameras.

    图 2  Kr的光电子图像 (a) 图像左半部分是原始图像, 右半部分是反阿贝尔变换后的动量谱, 中间红色的双箭头表示自由电子激光的极化方向; (b) 将动量谱全角度积分后得到的电子能谱

    Figure 2.  Photoelectron images of Kr: (a) The left half of the image is the raw image, and the right half is the momentum spectrum obtained after the inverse Abel transformation. The red double-headed arrow in the middle indicates the polarization direction of the free electron laser. (b) The electron energy spectrum obtained by integrating the momentum spectrum over all angles.

    图 3  Kr的飞行时间质谱

    Figure 3.  ToF mass spectrum of Kr.

    图 4  CCl4的光电子图像 (a) 图像左半部分是原始图像, 右半部分是经反阿贝尔变换后得到的动量谱, 中间红色的双箭头表示自由电子激光的极化方向; (b) 将动量谱全角度积分后得到的电子能谱

    Figure 4.  Photoelectron images of CCl4: (a) The left half of the image is the raw image, and the right half is the momentum spectrum obtained after the inverse Abel transformation. The red double-headed arrow in the middle indicates the polarization direction of the free electron laser. (b) The electron energy spectrum obtained by integrating the momentum spectrum over all angles.

    图 5  (a) CCl4的飞行时间质谱; (b)—(g) 灰色区间内的离子二维动量切片

    Figure 5.  (a) The ToF mass spectrum of CCl4; (b)–(g) the ion momentum images within the gray area of the mass spectrum.

    表 1  Kr和CCl4的光电子以及俄歇电子角分布

    Table 1.  Angular distribution of photoelectrons and Auger electrons of Kr and CCl4.

    样品名称 Kr CCl4-Cl
    能级 3p 3p Aug 3d 3d sat 4p 2p 2p Aug 3p
    βa 0.15 –0.16 0.93 0.75 1.5 0.96 0.05 1.63
    βb[39] 0.5 0.8 1.5 1.2 1.6
    DownLoad: CSV
  • [1]

    赵振堂, 冯超 2018 物理 47 481

    Zhao Z T, Feng C 2018 Physics 47 481

    [2]

    Huang S, Ding Y, Feng Y, Hemsing E, Huang Z, Krzywinski J, Lutman A A, Marinelli A, Maxwell T J, Zhu D 2017 Phys. Rev. Lett. 119 154801Google Scholar

    [3]

    Ackermann W, Asova G, Ayvazyan V, Azima A, Baboi N, Bähr J, Balandin V, Beutner B, Brandt A, Bolzmann A, et al. 2007 Nat. Photonics 1 336Google Scholar

    [4]

    仲银鹏, 杨霞 2024 物理学报 73 194101Google Scholar

    Zhong Y P, Yang X 2024 Acta Phys. Sin. 73 194101Google Scholar

    [5]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, et al. 2010 Nat. Photonics 4 641Google Scholar

    [6]

    Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N, Bizen T, Ego H, Fukami K, Fukui T, Furukawa Y, Goto S, et al. 2012 Nature Photonics 6 540Google Scholar

    [7]

    Allaria E, Castronovo D, Cinquegrana P, Craievich P, Dal Forno M, Danailov M B, D'Auria G, Demidovich A, De Ninno G, Di Mitri S, et al. 2013 Nat. Photonics 7 913Google Scholar

    [8]

    Kang H S, Min C K, Heo H, Kim C, Yang H, Kim G, Nam I, Baek S Y, Choi H J, Mun G, et al. 2017 Nat. Photonics 11 708Google Scholar

    [9]

    Milne C J, Schietinger T, Aiba M, Alarcon A, Alex J, Anghel A, Arsov V, Beard C, Beaud P, Bettoni S, et al. 2017 Appl. Sci. 7 720Google Scholar

    [10]

    Weise H, Decking W 2017 FEL2017 Santa Fe, USA, August

    [11]

    Zhao Z T, Wang D, Gu Q, Yin L X, Fang G, Gu M, Leng Y B, Zhou Q, Liu B, Tang C, Huang W, Liu Z, Jiang H D 2017 Synchrotron Radiat. News 30 29

    [12]

    Halavanau A, Decker F J, Emma C, Sheppard J, Pellegrini C 2019 J. Synchrotron Radiat. 26 635Google Scholar

    [13]

    Liu T, Huang N S, Yang H X, Qi Z, Zhang K Q, Gao Z F, Chen S, Feng C, Zhang W, Luo H, Fu X X, Liu H, Faatz B, Deng H X, Liu B, Wang D, Zhao Z T 2023 Front. Phys. 11 1172368Google Scholar

    [14]

    Zhaunerchyk V, Kamińska M, Mucke M, Squibb R J, Eland J H D, Piancastelli M N, Frasinski L J, Grilj J, Koch M, McFarland B K, et al. 2015 J. Phys. B At. Mol. Opt. 48 244003Google Scholar

    [15]

    Liu X J, Miao Q, Gel'mukhanov F, Patanen M, Travnikova O, Nicolas C, Ågren H, Ueda K, Miron C 2015 Nat. Photonics 9 120Google Scholar

    [16]

    Öhrwall G, Karlsson P, Wirde M, Lundqvist M, Andersson P, Ceolin D, Wannberg B, Kachel T, Dürr H, Eberhardt W, Svensson S 2011 J. Electron Spectrosc. 183 125Google Scholar

    [17]

    Patanen M, Svensson S, Martensson N 2015 J. Electron Spectrosc. 200 78Google Scholar

    [18]

    Hikosaka Y, Sawa M, Soejima K, Shigemasa E 2014 J. Electron Spectrosc. 192 69Google Scholar

    [19]

    刘小井, 池华敬, 肖志松 2017 中国科学: 物理学, 力学, 天文学 47 033003

    Liu X J, CHI H, XIAO Z 2017 Sci. Sin. Phys. Mech. Astron. 47 033003

    [20]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [21]

    Kastirke G, Schöffler M S, Weller M, Rist J, Boll R, Anders N, Baumann T M, Eckart S, Erk B, De Fanis A, et al. 2020 Phys. Rev. Lett. 125 163201Google Scholar

    [22]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [23]

    O’Keeffe P, Feyer V, Bolognesi P, Coreno M, Callegari C, Cautero G, Moise A, Prince K C, Richter R, Sergo R, Alagia M, de Simone M, Kivimäki A, Devetta M, Mazza T, Piseri P, Lyamayev V, Katzy R, Stienkemeier F, Ovcharenko Y, Möller T, Avaldi L 2012 Nucl. Instrum. Meth. B 284 69Google Scholar

    [24]

    Skruszewicz S, Passig J, Przystawik A, Truong N X, Köther M, Tiggesbäumker J, Meiwes-Broer K H 2014 Int. J. Mass Spectrom. 365 338

    [25]

    Kling N G, Paul D, Gura A, Laurent G, De S, Li H, Wang Z, Ahn B, Kim C H, Kim T K, Litvinyuk I V, Cocke C L, Ben-Itzhak I, Kim D, Kling M F 2014 J. Instrum. 9 P05005Google Scholar

    [26]

    Schomas D, Rendler N, Krull J, Richter R, Mudrich M 2017 J. Chem. Phys. 147 013942Google Scholar

    [27]

    Ding B C, Xu W Q, Wu R C, Feng Y F, Tian L F, Li X H, Huang J Y, Liu Z, Liu X J 2021 Appl. Sci. 11 10272Google Scholar

    [28]

    Feng Y F, Ding B C, Wu R C, Jin X, Wu K F, Liao J F, Huang J Y, Liu X J 2024 Appl. Sci. 14 2190Google Scholar

    [29]

    Dribinski V, Ossadtchi A, Mandelshtam V A, Reisler H 2002 Rev. Sci. Instrum. 73 2634Google Scholar

    [30]

    Zhao A, van Beuzekom M, Bouwens B, Byelov D, Chakaberia I, Cheng C, Maddox E, Nomerotski A, Svihra P, Visser J, Vrba V, Weinacht T 2017 Rev. Sci. Instrum. 88 113104Google Scholar

    [31]

    Poikela T, Plosila J, Westerlund T, Campbell M, Gaspari M D, Llopart X, Gromov V, Kluit R, Beuzekom M v, Zappon F, Zivkovic V, Brezina C, Desch K, Fu Y, Kruth A 2014 J. Instrum. 9 C05013Google Scholar

    [32]

    刘志, 万唯实, 王东 2024 自然杂志 46 161

    Liu Z, Wan W S, Wang D 2024 Chin. J. Nat. 46 161

    [33]

    Thompson A, Attwood D, Gulikson E, Howells M, Kim K J, Kirz J, Kortright J, Lindau I, Pianetta P, Robinson A 2001

    [34]

    Hickstein D D, Gibson S T, Yurchak R, Das D D, Ryazanov M 2019 Rev. Sci. Instrum. 90 065115Google Scholar

    [35]

    Palaudoux J, Lablanquie P, Andric L, Ito K, Shigemasa E, Eland J H D, Jonauskas V, Kučas S, Karazija R, Penent F 2010 Phys. Rev. A 82 043419Google Scholar

    [36]

    Jauhiainen J, Kivimaki A, Aksela S, Sairanen O P, Aksela H 1995 J. Phys. B At. Mol. Opt. 28 4091Google Scholar

    [37]

    Tamenori Y, Okada K, Tanimoto S, Ibuki T, Nagaoka S, Fujii A, Haga Y, Suzuki I H 2003 J. Phys. B At. Mol. Opt. 37 117

    [38]

    Tamenori Y, Okada K, Nagaoka S, Ibuki T, Tanimoto S, Shimizu Y, Fujii A, Haga Y, Yoshida H, Ohashi H, Suzuki I H 2002 J. Phys. B At. Mol. Opt. 35 2799Google Scholar

    [39]

    Yeh J J, Lindau I 1985 At. Data Nucl. Data 32 1Google Scholar

    [40]

    Fournier P G, Comtet G, Fournier J, Svensson S, Karlsson L, Keane M P, Naves de Brito A 1989 Phys. Rev. A 40 163Google Scholar

    [41]

    Ohta T, Kuroda H 1976 Bull. Chem. Soc. Jpn. 49 2939Google Scholar

    [42]

    Kime Y J, Driscoll D C, Dowben P A 1987 J. Chem. Soc. Faraday Trans. 2: Mol. Chem. Phys. 83 403

    [43]

    Tsuji M, Furusawa M, Mizuguchi T, Muraoka T, Nishimura Y 1992 J. Chem. Phys. 97 245Google Scholar

    [44]

    Dos Santos A C F, Maciel J B, Rocha A B, de Souza G G B 2024 Atoms 12 74Google Scholar

  • [1] Nie Yong-Gan, Gao Zi-Chen, Tong Ya-Jun, Fan Jia-Dong, Liu Gong-Fa, Jiang Huai-Dong. Design and implementation of timing system for single-shot imaging at Shanghai soft X-ray free-electron laser. Acta Physica Sinica, doi: 10.7498/aps.73.20240383
    [2] Li Hui, Tan Fang-Rui, Yin Hao-Yu, Ma Yue-Yang, Wu Xiao-Bin. Simulation study of decoherence and light intensity uniformization for extreme ultraviolet of uniform light pipe. Acta Physica Sinica, doi: 10.7498/aps.73.20240335
    [3] Du Xiao-Jiao, Wei Long, Sun Yu, Hu Shui-Ming. Free electron laser prepared high-intensity metastable helium and helium-like ions. Acta Physica Sinica, doi: 10.7498/aps.73.20240554
    [4] Zhong Yin-Peng, Yang Xia. Advances in free-electron-laser based scattering techniques and spectroscopic methods. Acta Physica Sinica, doi: 10.7498/aps.73.20240930
    [5] Mou Jia-Lian, Lü Jun-Guang, Sun Xi-Lei, Lan Xiao-Fei, Huang Yong-Sheng. Time of flight detector for charged particle identification based on circular electron-positron collider. Acta Physica Sinica, doi: 10.7498/aps.72.20222271
    [6] He Shu-Kai, Qi Wei, Jiao Jin-Long, Dong Ke-Gong, Deng Zhi-Gang, Teng Jian, Zhang Bo, Zhang Zhi-Meng, Hong Wei, Zhang Hui, Shen Bai-Fei, Gu Yu-Qiu. Picosecond laser-driven proton acceleration study of SGⅡ-U device based on charged particle activation method. Acta Physica Sinica, doi: 10.7498/aps.67.20181504
    [7] Song Wen-Juan, Guo Fu-Ming, Chen Ji-Gen, Yang Yu-Jun. Theoretical investigation of atomic low-order harmonics under irradiation of two high frequency laser pulses. Acta Physica Sinica, doi: 10.7498/aps.67.20172129
    [8] Li Ming, Yang Xing-Fan, Xu Zhou, Shu Xiao-Jian, Lu Xiang-Yang, Huang Wen-Hui, Wang Han-Bin, Dou Yu-Huan, Shen Xu-Ming, Shan Li-Jun, Deng De-Rong, Xu Yong, Bai Wei, Feng Di-Chao, Wu Dai, Xiao De-Xin, Wang Jian-Xin, Luo Xing, Zhou Kui, Lao Cheng-Long, Yan Long-Gang, Lin Si-Fen, Zhang Peng, Zhang Hao, He Tian-Hui, Pan Qing, Li Xiang-Kun, Li Peng, Liu Yu, Yang Lin-De, Liu Jie, Zhang De-Min, Li Kai, Chen Ya-Nan. Experimental study on the stimulated saturation of terahertz free electron laser. Acta Physica Sinica, doi: 10.7498/aps.67.20172413
    [9] Guo Jing, Guo Fu-Ming, Chen Ji-Gen, Yang Yu-Jun. Pulse duration effect on photoelectron spectrum of atom irradiated by strong high frequency laser. Acta Physica Sinica, doi: 10.7498/aps.67.20172440
    [10] He Shu-Kai, Liu Dong-Xiao, Jiao Jin-Long, Deng Zhi-Gang, Teng Jian, Zhang Zhi-Meng, Hong Wei, Gu Yu-Qiu. Charged paricle activation analysis for characterizing parameters of laser-accelerated protons. Acta Physica Sinica, doi: 10.7498/aps.66.205201
    [11] Wang Qian, Xu Jin-Qiang, Wu Jin, Li Yong-Gui. The imaging of chemical samples with a scanning near-field infrared microscope. Acta Physica Sinica, doi: 10.7498/aps.52.298
    [12] LI ZHI-KUAN. DAMPED MOTION OF AN ELECTRON IN FREE-ELECTRON LASER. Acta Physica Sinica, doi: 10.7498/aps.49.893
    [13] LI ZHI-KUAN. QUASI-DIRAC EQUATION IN FREE-ELECTRON LASER. Acta Physica Sinica, doi: 10.7498/aps.46.1349
    [14] WEN SHUANG-CHUN. HARMONICS IN NOVEL WIGGLER FREE-ELECTRON LASER. Acta Physica Sinica, doi: 10.7498/aps.46.272
    [15] ZHU JIA-QING. ENERGY CONVERSION OF FREE ELECTRON LASER. Acta Physica Sinica, doi: 10.7498/aps.45.52
    [16] FANG HONG-LIE, G. T. MOORE, M. O. SCULLY. THE EFFECT OF AN INJECTION SIGNAL ON THE FREE-ELECTRON-LASER. Acta Physica Sinica, doi: 10.7498/aps.34.17
    [17] FANG HONG-LIE, FU SHU-FEN, G. T. MOORE. STATIONARY PULSE SOLUTIONS FOR A FREE ELECTRON LASER. Acta Physica Sinica, doi: 10.7498/aps.33.935
    [18] YIN YUAN-ZHAO. THEORETICAL ANALYSIS OF FREE ELECTRON LASER AMPLIFIER. Acta Physica Sinica, doi: 10.7498/aps.32.1407
    [19] YANG JIN-GANG, LI WEI-JIANG, GUO QING-JIANG, ZHU GUANG-HUA, JIANG CHEN-LIE. A CHARGED PARTICLE SPECTROGRAPH OF SEMICONDUCTOR DETECTOR WITH A SMALL MAGNETIC ANALYZER. Acta Physica Sinica, doi: 10.7498/aps.23.52
    [20] WANG AO, LI HO-NIAN, CHEN ER-CHIH, HSIAO CINEN. THE DIRECT PRODUCTION OF ELECTRON PAIRS BY HIGH ENERGY CHARGED PARTICLES. Acta Physica Sinica, doi: 10.7498/aps.17.263
Metrics
  • Abstract views:  279
  • PDF Downloads:  9
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2025
  • Accepted Date:  07 November 2025
  • Available Online:  20 November 2025
  • /

    返回文章
    返回