Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Picosecond laser-driven proton acceleration study of SGⅡ-U device based on charged particle activation method

He Shu-Kai Qi Wei Jiao Jin-Long Dong Ke-Gong Deng Zhi-Gang Teng Jian Zhang Bo Zhang Zhi-Meng Hong Wei Zhang Hui Shen Bai-Fei Gu Yu-Qiu

Citation:

Picosecond laser-driven proton acceleration study of SGⅡ-U device based on charged particle activation method

He Shu-Kai, Qi Wei, Jiao Jin-Long, Dong Ke-Gong, Deng Zhi-Gang, Teng Jian, Zhang Bo, Zhang Zhi-Meng, Hong Wei, Zhang Hui, Shen Bai-Fei, Gu Yu-Qiu
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The laser-driven proton acceleration experiment is carried out on the SGⅡ-U device based on charged particle activation method, and the target parameters are optimized. The charged particle method is used to measure the maximum cutoff energy of proton, angular profile, total yield and conversion efficiency of laser energy to proton energy for different copper film thickness under the same laser condition. It is found that the optimal copper film thickness for the SGⅡ-U picoseond laser-driven proton experiment is 10 μm, the highest proton energy obtained is about 40 MeV, and the total yield of protons (>4 MeV) is about 4×1012, the conversion efficiency of laser energy to proton energy is about 2%. Thicker or thinner copper film can reduce the maximum cut-off energy of accelerated proton; when the target thickness is reduced to 1 μm, the pre-pulse of the laser begins to have a significant effect on the target normal sheath acceleration (TNSA) proton, proton energy drops sharply, the proton beam porfile exhibits a hollow structure; when the target thickness is increased to 35 μm, although the energy of the proton is reduced, the proton beam spot is more uniform. According to our experimental results, when using SGⅡ-U picosecond laser to generate protons as a backlight diagnostics, a thicker Cu film can be selected which can supply more uniform proton beams. When the target is too thin, the TNSA proton itself has a modulation structure which will cause interference to yield the photographic results; when the protons generated by the SGⅡ-U picosecond are used to generate neutron source, the higher proton energy and yield are required, and 10 μm Cu film is suitable. The further enhancing the TNSA accelerated proton energy and quantity of the SGⅡ-U picosecond laser requires the further improving of the laser contrast.
      Corresponding author: He Shu-Kai, shukai.he@caep.cn
    • Funds: Project supported by the National Key Programme for Science and Technology Research and Development, China (Grant No. 2016YFA0401100), the Science Challenge Project, China (Grant No. TZ2018005), and the National Grand Instrument Project, China (Grant No. 2012YQ03014206).
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [3]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Roth M, Cowan T E, Gauthier J C, Vehn J M, Allen M, Audebert P, Blazevic A, Fuchs J, Geissel M, Hegelich M, Karsch S, Pukhov A, Schlegel T 2002 Phys. Rev. ST Accel. Beams 5 061301

    [5]

    Roth M, Brambrink E, Audeert P, Basko M, Blazevic A, Clarke R, Cobble J, Cowan T E, Fernandez J, Fuchs J, Hegelich M, Ledingham K, Logan B G, Neely D, Ruhl H, Schollmeier M 2005 Plasma Phys. Control. Fusion 47 B841

    [6]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A, Snavely R A 2001 Phys. Plasmas 8 2

    [7]

    Ceccotti T, Levy A, Popescu H, Reau F, Oliveira P D, Monot P, Geindre J P, Lefebvre E, Martin P 2007 Phys. Rev. Lett. 99 185002

    [8]

    Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, McKenna P 2007 Nature Phys. 3 58

    [9]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, LeSage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [10]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [11]

    Yin L, Albright B J, Bowers K J, Jung D, Fernandez J C, Hegelich B M 2011 Phys. Rev. Lett. 107 045003

    [12]

    Yin L, Albright B J, Jung D, Shah R C, Palaniyappan S, Bowers K J, Henig A, Fernandez J C, Hegelich B M 2011 Phys. Plasmas 18 063103

    [13]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser and Particle Beams 24 291

    [14]

    Jung D, Yin L, Gautier D C, Wu H C, Letzring S 2013 Phys. Plasmas 20 083103

    [15]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 175003

    [16]

    Esirkepov T Z, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [17]

    Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301

    [18]

    Jiao J L, He S K, Deng Z G, Lu F, Zhang Y, Yang L, Zhang F Q, Dong K G, Wang S Y, Zhang B, Teng J, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 085201 (in Chinese) [矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋 2017 物理学报 66 085201]

    [19]

    Zhang H, Shen B F, Wang W P, Xu Y, Liu Y Q, Liang X Y, Leng Y X, Li R X, Yan X Q, Chen J E, Xu Z Z 2015 Phys. Plasmas 22 013113

    [20]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [21]

    Shan L Q, Cai H B, Zhang W S, Tang Q, Zhang F, Song Z F, Bi B, Ge F J, Chen J B, Liu D X, Wang W W, Yang Z H, Qi W, Tian C, Yuan Z Q, Zhang B, Yang L, Jiao J L, Cui B, Zhou W M, Cao L F, Zhou C T, Gu Y Q, Zhang B H, Zhu S P, He X T 2018 Phys. Rev. Lett. 120 195001

    [22]

    He S K, Liu D X, Jiao J L, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 205201 (in Chinese) [贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋 2017 物理学报 66 205201]

    [23]

    Meadows J W 1953 Phys. Rev. 91 885

  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [3]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Roth M, Cowan T E, Gauthier J C, Vehn J M, Allen M, Audebert P, Blazevic A, Fuchs J, Geissel M, Hegelich M, Karsch S, Pukhov A, Schlegel T 2002 Phys. Rev. ST Accel. Beams 5 061301

    [5]

    Roth M, Brambrink E, Audeert P, Basko M, Blazevic A, Clarke R, Cobble J, Cowan T E, Fernandez J, Fuchs J, Hegelich M, Ledingham K, Logan B G, Neely D, Ruhl H, Schollmeier M 2005 Plasma Phys. Control. Fusion 47 B841

    [6]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A, Snavely R A 2001 Phys. Plasmas 8 2

    [7]

    Ceccotti T, Levy A, Popescu H, Reau F, Oliveira P D, Monot P, Geindre J P, Lefebvre E, Martin P 2007 Phys. Rev. Lett. 99 185002

    [8]

    Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, McKenna P 2007 Nature Phys. 3 58

    [9]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, LeSage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [10]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [11]

    Yin L, Albright B J, Bowers K J, Jung D, Fernandez J C, Hegelich B M 2011 Phys. Rev. Lett. 107 045003

    [12]

    Yin L, Albright B J, Jung D, Shah R C, Palaniyappan S, Bowers K J, Henig A, Fernandez J C, Hegelich B M 2011 Phys. Plasmas 18 063103

    [13]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser and Particle Beams 24 291

    [14]

    Jung D, Yin L, Gautier D C, Wu H C, Letzring S 2013 Phys. Plasmas 20 083103

    [15]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 175003

    [16]

    Esirkepov T Z, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [17]

    Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301

    [18]

    Jiao J L, He S K, Deng Z G, Lu F, Zhang Y, Yang L, Zhang F Q, Dong K G, Wang S Y, Zhang B, Teng J, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 085201 (in Chinese) [矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋 2017 物理学报 66 085201]

    [19]

    Zhang H, Shen B F, Wang W P, Xu Y, Liu Y Q, Liang X Y, Leng Y X, Li R X, Yan X Q, Chen J E, Xu Z Z 2015 Phys. Plasmas 22 013113

    [20]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [21]

    Shan L Q, Cai H B, Zhang W S, Tang Q, Zhang F, Song Z F, Bi B, Ge F J, Chen J B, Liu D X, Wang W W, Yang Z H, Qi W, Tian C, Yuan Z Q, Zhang B, Yang L, Jiao J L, Cui B, Zhou W M, Cao L F, Zhou C T, Gu Y Q, Zhang B H, Zhu S P, He X T 2018 Phys. Rev. Lett. 120 195001

    [22]

    He S K, Liu D X, Jiao J L, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 205201 (in Chinese) [贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋 2017 物理学报 66 205201]

    [23]

    Meadows J W 1953 Phys. Rev. 91 885

  • [1] Yang Nan-Nan, Wang Shang-Min, Zhang Jia-Liang, Wen Xiao-Qiong, Zhao Kai. Improved electro-mechanical model and energy conversion efficiency analysis of pulsed plasma thrusters. Acta Physica Sinica, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] Cao Jia-Hui, Liu Yan-Yan, Ai Bao-Quan, Huang Ren-Zhong, Gao Tian-Fu. Transport performance of spatial non-uniform friction ratchets. Acta Physica Sinica, 2021, 70(23): 230201. doi: 10.7498/aps.70.20210802
    [3] Yan Ming-Yue, Zhang Xu, Liu Chen-Hao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Energy conversion efficiency of feedback pulsing ratchet. Acta Physica Sinica, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [4] Liu Li-Juan, Kong Xiao-Bo, Liu Yong-Gang, Xuan Li. Enhancement of conversion efficiency for an organic semiconductor laser based on a holographic polymer dispersed liquid crystal. Acta Physica Sinica, 2017, 66(24): 244204. doi: 10.7498/aps.66.244204
    [5] Yang Si-Qian, Zhou Wei-Min, Wang Si-Ming, Jiao Jin-Long, Zhang Zhi-Meng, Cao Lei-Feng, Gu Yu-Qiu, Zhang Bao-Han. Focusing effect of channel target on ultra-intense laser-accelerated proton beam. Acta Physica Sinica, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [6] Fan Li-Ming, Lü Ming-Tao, Huang Ren-Zhong, Gao Tian-Fu, Zheng Zhi-Gang. Investigation on the directed transport efficiency of feedback-control ratchet. Acta Physica Sinica, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [7] He Shu-Kai, Liu Dong-Xiao, Jiao Jin-Long, Deng Zhi-Gang, Teng Jian, Zhang Zhi-Meng, Hong Wei, Gu Yu-Qiu. Charged paricle activation analysis for characterizing parameters of laser-accelerated protons. Acta Physica Sinica, 2017, 66(20): 205201. doi: 10.7498/aps.66.205201
    [8] Wang Qian, Zhao Jiang-Shan, Luo Shi-Wen, Zuo Du-Luo, Zhou Yi. Energy efficiency analysis of ArF excimer laser system. Acta Physica Sinica, 2016, 65(21): 214205. doi: 10.7498/aps.65.214205
    [9] Ding Guang-Tao. Analytical mechanics representations of a moving charged particle in a magnetic field with radiation friction. Acta Physica Sinica, 2012, 61(2): 020204. doi: 10.7498/aps.61.020204
    [10] Yu Jin-Qing, Zhou Wei-Min, Jin Xiao-Lin, Li Bin, Zhao Zong-Qing, Cao Lei-Feng, Dong Ke-Gong, Liu Dong-Xiao, Fan Wei, Wei Lai, Yan Yong-Hong, Qian Feng, Yang Zu-Hua, Hong Wei, Gu Yu-Qiu. The effect of the proton layer initial size on the proton beam characteristic in target normal sheath acceleration. Acta Physica Sinica, 2012, 61(17): 175202. doi: 10.7498/aps.61.175202
    [11] Zhang Chun-Li, Qi Yue-Ying, Liu Xue-Shen, Ding Pei-Zhu. Numerical study of the enhancement of efficiency of high-order harmonic generation in two-color laser field. Acta Physica Sinica, 2009, 58(5): 3078-3083. doi: 10.7498/aps.58.3078
    [12] Sun Jian, Bai Min-Dong, Mao Cheng-Qi, Bai Xi-Yao. Study on measurement of concentration of uni-polarity particles. Acta Physica Sinica, 2007, 56(7): 3972-3976. doi: 10.7498/aps.56.3972
    [13] Zhang Chun-Li, Qi Yue-Ying, Liu Xue-Shen, Ding Pei-Zhu. The enhancement of efficiency of high-order harmonic generation in two-color laser field. Acta Physica Sinica, 2007, 56(2): 774-780. doi: 10.7498/aps.56.774
    [14] Deng Cheng-Liang, Shao Ming-Zhu, Luo Shi-Yu. Interaction between charged particle and strained superlattice and chaotic behaviours of the system. Acta Physica Sinica, 2006, 55(5): 2422-2426. doi: 10.7498/aps.55.2422
    [15] WU QI-XUE. DOUBLE-WAVE FUNCTION DESCRIPTION FOR THE MOTION OF CHARGED PARTICLE IN BOTH UNIF ORM MAGNETIC FIELD AND THREE-DIMENSIONAL HARMONIC OSCILLATOR POTENTIAL FIELD. Acta Physica Sinica, 2000, 49(7): 1211-1214. doi: 10.7498/aps.49.1211
    [16] HUANG XIANG-YOU. DOUBLE WAVE DESCRIPTION OF THE MOTION FOR A CHARGED PARTICLE IN MASS SPECTROMETER. Acta Physica Sinica, 1996, 45(5): 729-737. doi: 10.7498/aps.45.729
    [17] HUANG XIANG-YOU, LIU QUAN-HUI, TIAN XU, QIU ZHONG-PING. DOUBLE WAVE DESCRIPTION OF THE MOTION OF A CHARGED PARTICLE IN A UNIFORM MAGNETIC FIELD. Acta Physica Sinica, 1993, 42(2): 180-187. doi: 10.7498/aps.42.180
    [18] TIAN REN-HE. BEAM TEMPERATURES AND THE ENERGY BROADENING OF A RELATIVISTIC CHARGED-PARTICLE BEAM IN AXIALLY SYMMETRIC ELECTRIC- AND MAGNETIC-FIELDS. Acta Physica Sinica, 1993, 42(5): 750-756. doi: 10.7498/aps.42.750
    [19] WANG PEY. THE PERIPHERAL ELECTROMAGNETIC INTERACTIONS OF THE FAST CHARGED PARTICLES AND NUCLEONS. Acta Physica Sinica, 1965, 21(8): 1533-1543. doi: 10.7498/aps.21.1533
    [20] WANG AO, LI HO-NIAN, CHEN ER-CHIH, HSIAO CINEN. THE DIRECT PRODUCTION OF ELECTRON PAIRS BY HIGH ENERGY CHARGED PARTICLES. Acta Physica Sinica, 1961, 17(6): 263-272. doi: 10.7498/aps.17.263
Metrics
  • Abstract views:  5775
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  08 August 2018
  • Accepted Date:  20 September 2018
  • Published Online:  20 November 2019

/

返回文章
返回