Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Advances in Free-Electron-Laser based scattering techniques and spectroscopic methods

Yinpeng Zhong Jiatai Feng Xia Yang

Citation:

Advances in Free-Electron-Laser based scattering techniques and spectroscopic methods

Yinpeng Zhong, Jiatai Feng, Xia Yang
PDF
Get Citation
  • In 2005, the FLASH soft X-ray free-electron laser (FEL) in Hamburg, Germany, achieved its first lasing, marking the beginning of an intensive phase of global FEL construction. Subsequently, the United States, Japan, South Korea, China, Italy, and Switzerland have all commenced building this type of photon facility. Recently, the new generation of FEL has started to utilize superconducting acceleration technology to achieve high-repetition-rate pulse output, thereby improving experimental efficiency. Currently completed facilities include the European XFEL, with ongoing constructions of the LCLS-II in the United States and the SHINE facility in Shanghai. The Shenzhen Superconducting soft X-ray Free-electron Laser (S3FEL) is also in preparation.
    These FEL facilities generate coherent and tunable ultrashort pulses across the extreme ultraviolet to hard X-ray spectrum, advancing FEL-based scattering techniques such as ultrafast X-ray scattering, spectroscopy, and X-ray nonlinear optics, thereby transforming the way we study correlated quantum materials at ultrafast timescales.
    The Self-Amplified Spontaneous Emission (SASE) process in FEL leads to timing jitter between FEL pulses and the synchronized pump laser, impacting the accuracy of ultrafast time-resolved measurements. To address this issue, timing tools have been developed to measure these jitters and reindex each pump-probe signal after measurement. This success enables ultrafast X-ray diffraction (UXRD) to be first realized, a systematic study of Peierls distorted materials is demonstrated. Furthermore, the high flux of FEL pulses enable Fourier Transform Inelastic X-ray Scattering (FT-IXS) method, which allows the extraction the phonon dispersion curves throughout the entire Brillouin zone by applying the Fourier transform to the measured momentum dependent coherent phonon scattering signals, even when the system is in a non-equilibrium state.
    UXRD is typically employed to study ultrafast lattice dynamics, which requires hard X-ray wavelengths. In contrast, time resolved resonant elastic X-ray scattering (tr-REXS) in the soft X-ray regime has become a standard method for investigating nano-sized charge and spin orders in correlated quantum materials at ultrafast time scales.
    In correlated quantum materials, the interplay between electron and lattice dynamics represents another important research direction. In addition to Zhi-Xun Shen's successful demonstration of the combined tr-ARPES and UXRD method at SLAC, this paper also reports attempts to integrate UXRD with Resonant X-ray Emission Spectroscopy (RXES) for the simultaneous measurement of electronic and lattice dynamics.
    Resonant Inelastic X-ray Scattering (RIXS) is a powerful tool for studying elementary and collective excitations in correlated quantum materials. However, in FEL-based soft X-ray spectroscopy, the wavefront tilt introduced by the widely used grating monochromators inevitably stretches the FEL pulses, which degrades the time resolution. Therefore, the new design at FEL beamlines employs low line density gratings with long exit arms to reduce pulse stretch and achieve relatively high energy resolution. For example, the Heisenberg-RIXS instrument at the European XFEL achieves an energy resolution of 92 meV at the Cu L3 edge and approximately 150 fs time resolution.
    In recent years, scientists at SwissFEL's Furka station have drawn inspiration from femtosecond optical covariance spectroscopy to propose a new method for generating two-dimensional time-resolved Resonant Inelastic X-ray Scattering (2D tr-RIXS) spectra. This method involves real-time detection of single-shot FEL incident and scattered spectra, followed by deconvolution calculation to avoid photon waste and wavefront tilt caused by monochromator slits. The SQS experimental station at European XFEL, in 2023, features a 1D-XUV spectrometer that utilizes subtle variations in photon energy absorption across the sample to induce spatial energy dispersion. Using Wolter mirrors, it directly images spatially resolved fluorescence emission from the sample onto the detector to generate 2D tr-RIXS spectra without the need for deconvolution. However, this design is limited to specific samples. Currently, the S3FEL is designing a novel 2D tr-RIXS instrument that uses an upstream low line density grating monochromator to generate spatial dispersion of the beam spot, allowing the full bandwidth of SASE to project spatially dispersed photon energy onto the sample. Subsequently, a similar optical design to the 1D-XUV spectrometer will be employed to achieve two-dimensional tr-RIXS spectra, thereby expanding the applicability beyond specific liquid samples. These new instruments are designed to minimize pulse elongation by fully utilizing SASE's full bandwidth, approaching Fourier-transform-limited RIXS spectra in both time and energy resolution.
    Nonlinear X-ray optics techniques such as sum-frequency generation (SFG) and second-harmonic generation are being adapted for X-ray wavelengths, opening new avenues for probing elementary excitations. X-ray transient grating spectroscopy extends capabilities to study charge transport and spin dynamics on ultrafast timescales. The future developing of these scattering methods offer unique opportunities for probing dynamical events in a wide variety of systems, including surface and interface processes, chirality, nanoscale transport and the termed as multidimensional core-level spectroscopy.
  • [1]

    Rossbach J, Schneider J R, Wurth W. 2019 Phys. Rep. 808, 1–74.

    [2]

    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F -J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering Ph, Huang Z, Iverson R, Loos H, Messerschmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, Galayda J. 2010 Nat. Photonics 4, 641-647.

    [3]

    Ishikawa T, Aoyagi H, Asaka T, Asano Y, Azumi N, Bizen T, Ego H, Fukami K, Fukui T, Furukawa Y, Goto S, Hanaki H, Hara T, Hasegawa T, Hatsui T, Higashiya A, Hirono T, Hosoda N, Ishii M, Inagaki T, Inubushi Y, Itoga T, Joti Y, Kago M, Kameshima T, Kimura H, Kirihara Y, Kiyomichi A, Kobayashi T, Kondo C, Kudo T, Maesaka H, Maréchal X M, Masuda T, Matsubara S, Matsumoto T, Matsushita T, Matsui S, Nagasono M, Nariyama N, Ohashi H, Ohata T, Ohshima T, Ono S, Otake Y, Saji C, Sakurai T, Sato T, Sawada K, Seike T, Shirasawa K, Sugimoto T, Suzuki S, Takahashi S, Takebe H, Takeshita K, Tamasaku K, Tanaka H, Tanaka R, Tanaka T, Togashi T, Togawa K, Tokuhisa A, Tomizawa H, Tono K, Wu S K, Yabashi M, Yamaga M, Yamashita A, Yanagida K, Zhang C, Shintake T, Kitamura H, Kumagai N. 2012 Nat. Photonics 6, 540-544.

    [4]

    Allaria E, Castronovo D, Cinquegrana P, Craievich P, Dal Forno M, Danailov M B, D'Auria G, Demidovich A, De Ninno G, Di Mitri S, Diviacco B, Fawley W M, Ferianis M, Ferrari E, Froehlich L, Gaio G, Gauthier D, Giannessi L, Ivanov R, Mahieu B, Mahne N, Nikolov I, Parmigiani F, Penco G, Raimondi L, Scafuri C, Serpico C, Sigalotti P, Spampinati S, Spezzani C, Svandrlik M, Svetina C, Trovo M, Veronese M, Zangrando D, Zangrando, M. 2013 Nat. Photonics 7, 913-918.

    [5]

    Wang H L, Yu Y, Chang Y, Su S, Yu S R, Li Q M, Tao K, Ding H L, Yang J Y, Wang G L, Che L, He Z G, Chen Z C, Wang X G, Zhang W Q, Dai D X, Wu G R, Yuan K J, Yang X M. 2018 J. Chem. Phys. 148, 124301.

    [6]

    Kang H S, Min C K, Heo H, Kim C, Yang H, Kim G, Nam I, Baek S Y, Choi H J, Mun G, Park B R, Suh Y J, Shin D C, Hu J, Hong J, Jung S, Kim S H, Kim K, Na D, Park S S, Park Y J, Han J H, Jung Y G, Jeong S H, Lee H G, Lee S, Lee S, Lee W W, Oh B, Suh H S, Parc Y W, Park S J, Kim M H, Jung N S, Kim Y C, Lee M S, Lee B H, Sung C W, Mok I S, Yang J M, Lee C S, Shin H, Kim J H, Kim Y, Lee J H, Park S Y, Kim J, Park J, Eom I, Rah S, Kim S, Nam K H, Park J, Park J, Kim S, Kwon S, Park S H, Kim K S, Hyun H, Hyun S N, Kim S, Hwang S M, Kim M J, Lim C Y, Yu C J, Kim B S, Kang T H, Kim K W, Kim S H, Lee H S, Lee H S, Park K H, Koo T Y, Kim D E, Ko I S. 2017 Nat. Photonics 11, 708-713.

    [7]

    Milne C J, Schietinger T, Aiba M, Alarcon A, Alex J, Anghel A, Arsov V, Beard C, Beaud P, Bettoni S, Bopp M, Brands H, Brönnimann M, Brunnenkant I, Calvi M, Citterio A, Craievich P, Csatari Divall M, Dällenbach M, D’Amico M, Dax A, Deng Y, Dietrich A, Dinapoli R, Divall E, Dordevic S, Ebner S, Erny C, Fitze H, Flechsig U, Follath R, Frei F, Gärtner F, Ganter R, Garvey T, Geng Z Q, Gorgisyan I, Gough C, Hauff A, Hauri C P, Hiller N, Humar T, Hunziker S, Ingold G, Ischebeck R, Janousch M, Juranić P, Jurcevic M, Kaiser M, Kalantari B, Kalt R, Keil B, Kittel C, Knopp G, Koprek W, Lemke H T, Lippuner T, Llorente Sancho D, Löhl F, Lopez-Cuenca C, Märki F, Marcellini F, Marinkovic G, Martiel I, Menzel R, Mozzanica A, Nass K, Orlandi G L, Ozkan Loch C, Panepucci E, Paraliev M, Patterson B, Pedrini B, Pedrozzi M, Pollet P, Pradervand C, Prat E, Radi P, Raguin J Y, Redford S, Rehanek J, Réhault J, Reiche S, Ringele M, Rittmann J, Rivkin L, Romann A, Ruat M, Ruder C, Sala L, Schebacher L, Schilcher T, Schlott V, Schmidt T, Schmitt B, Shi X T, Stadler M, Stingelin L, Sturzenegger W, Szlachetko J, Thattil D, Treyer Daniel M, Trisorio A, Tron W, Vetter S, Vicario C, Voulot D, Wang M T, Zamofing T, Zellweger C, Zennaro R, Zimoch E, Abela R, Patthey L, Braun H H. 2017 Appl. Sci. 7, 720.

    [8]

    Zhao Z T, Wang D, Gu Q, Yin L X, Fang G P, Gu M, Leng Y B, Zhou Q G, Liu B, Tang C X, Huang W H, Liu Z, Jiang H D. 2017 Synchrotron Radiat. News 30, 29-33.

    [9]

    Ball P. 2017 Nature 548, 7669.

    [10]

    Halavanau A, Decker F J, Emma C, Sheppard J, Pellegrini C. 2019 J. Synchrotron Radiat. 26, 635-646.

    [11]

    Zhu Z Y, Zhao Z T, Wang D, Liu Z, Li R X, Yin L X, Yang Z H. 2017 Santa Fe: Proceedings of the 38th International Free-Electron Laser Conference 20-25.

    [12]

    Simmermacher M, Moreno Carrascosa A, E Henriksen N, B Møller K, Kirrander A. 2019 J. Chem. Phys. 151, 174302.

    [13]

    Reich C, Gibbon P, Uschmann I, Förster E. 2000 Phys. Rev. Lett. 84, 4846.

    [14]

    Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A, Lefebvre E. 2013 Rev. Mod. Phys. 85, 1-48.

    [15]

    Zamponi F, Ansari Z, V. Korff Schmising C, Rothhardt P, Zhavoronkov N, Woerner M, Elsaesser T, Bargheer M, Trobitzsch-Ryll T, Haschke M. 2009 Appl. Phys. A 96, 51–58.

    [16]

    Rose-Petruck C, Jimenez R, Guo T, Cavalleri A, Siders C W, Rksi F, Squier J A, Walker B C, Wilson K R, Barty C P J. 1999 Nature 398, 310–312.

    [17]

    Cavalleri A, Tóth C, Siders C W, Squier J A, Ráksi F, Forget P, Kieffer J C. 2001 Phys. Rev. Lett. 87, 237401.

    [18]

    Sokolowski-Tinten K, Blome C, Blums J, Cavalleri A, Dietrich C, Tarasevitch A, Uschmann I, Förster E, Kammler M, Horn-von-Hoegen M, Von der Linde D. 2003 Nature 422, 287–289.

    [19]

    Fabricius N, Hermes P, Von der Linde D, Pospieszczyk A, Stritzker B. 1986 Solid State Commun. 58, 239-242.

    [20]

    Rethfeld B, Sokolowski-Tinten K, Von der Linde D, Anisimov S I. 2002 Phys. Rev. B 65, 092103.

    [21]

    Huang N S, Deng H X, Liu B, Wang D, Zhao Z T. 2021 The Innovation 2, 100097.

    [22]

    Zhao Z T, Wang D, Chen J H, Chen Z H, Deng H X, Ding J G, Feng C, Gu Q, Huang M M, Lan T H, Leng Y B, Li D G, Lin G Q, Liu B, Prat E, Wang X T, Wang Z S, Ye K R, Yu L Y, Zhang H O, Zhang J Q, Zhang M, Zhang M, Zhang T, Zhong S P, Zhou Q G. 2012 Nat. Photonics 6, 360–363.

    [23]

    Kondratenko A M, Saldin E L. 1980 Part. Accel. 10, 207-216.

    [24]

    Fritz D M, Reis D A, Adams B, Akre R A, Arthur J, Blome C, Bucksbaum P H, Cavalieri A L, Engemann S, Fahy S, Falcone R W, Fuoss P H, Gaffney K J, George M J, Hajdu J, Hertlein M P, Hillyard P B, Horn-von Hoegen M, Kammler M, Kaspar J, Kienberger R, Krejcik P, Lee S H, Lindenberg A M, Mcfarland B, Meyer D, Montagne T, Murray E D, Nelson A J, Nicoul M, Pahl R, Rudati J, Schlarb H, Siddons D P, Sokolowski-tinten K, Tschentscher TH, Von Der Linde D, Hastings J B. 2007 Science 315, 633–636.

    [25]

    Harmand, M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, Cammarata M. 2013 Nat. Photonics 7, 215–218.

    [26]

    Epp S W, Hada M, Zhong Y, Kumagai Y, Motomura K, Mizote S, Ono T, Owada S, Axford D, Bakhtiarzadeh S, Fukuzawa H, Hayashi Y, Katayama T, Marx A, Müller-Werkmeister H M, Owen R L, Sherrell D A, Tono K, Ueda K, Westermeier F, Miller R J D. 2017 Struct. Dyn. 4, 054308.

    [27]

    Krasniqi F S, Zhong Y, Epp S W, Foucar L, Trigo M, Chen J, Reis D A, Wang H L, Zhao J H, Lemke H T, Zhu D, Chollet M, Fritz D M, Hartmann R, Englert L, Strüder L, Schlichting I, Ullrich J. 2018 Phys. Rev. Lett. 120, 105501.

    [28]

    Chuang Y D, Lee W S, Kung Y F, Sorini A P, Moritz B, Moore R G, Patthey L, Trigo M, Lu D H, Kirchmann P S, Yi M, Krupin O, Langner M, Zhu Y, Zhou S Y, Reis D A, Huse N, Robinson J S, Kaindl R A, Schoenlein R W, Johnson S L, Först M, Doering D, Denes P, Schlotter W F, Turner J J, Sasagawa T, Hussain Z, Shen Z X, Devereaux T P. 2013 Phys. Rev. Lett. 110, 127404.

    [29]

    Först M, Beyerlein K R, Mankowsky R, Hu W, Mattoni G, Catalano S, Gibert M, Yefanov O, Clark J N, Frano A, Glownia J M, Chollet M, Lemke H, Moser B, Collins S P, Dhesi S S, Caviglia A D, Triscone J M, Cavalleri A. 2017 Phys. Rev. Lett. 118, 027401.

    [30]

    Doering D, Chuang Y D, Andresen N, Chow K, Contarato D, Cummings C, Domning E, Joseph J, Pepper J S, Smith B, Zizka G, Ford C, Lee W S, Weaver M, Patthey L, Weizeorick J, Hussain Z, Denes P. 2011 Rev. Sci. Instrum. 82, 073303.

    [31]

    Jang H Y, Kim H D, Kim M, Park S H, Kwon S, Lee J Y, Park S Y, Park G, Kim S, Hyun H, Hwang S, Lee C S, Lim C Y, Gang W, Kim M, Heo S, Kim J, Jung G, Kim S, Park J, Kim J, Shin H, Park J, Koo T Y, Shin H J, Heo H, Kim C, Min C, Han J H, Kang H S, Lee H S, Kim K S, Eom I, Rah S. 2020 Rev. Sci. Instrum. 91, 083904.

    [32]

    Trigo M, Fuchs M, Chen J, Jiang M P, Cammarata M, Fahy S, Fritz D M, Gaffney K, Ghimire S, Higginbotham A, Johnson S L, Kozina M E, Larsson J, Lemke H, Lindenberg A M, Ndabashimiye G, Quirin F, Sokolowski-Tinten K, Uher C, Wang G, Wark J S, Zhu D, Reis D A. 2013 Nat. Phys. 9, 790–794.

    [33]

    Zhu D L, Robert A, Henighan T, T. Lemke H, Chollet M, Glownia J M, A. Reis D, Trigo M. 2015 Phys. Rev. B 92, 054303.

    [34]

    Engel R Y, Miedema P S, Turenne D, Vaskivskyi I, Brenner G, Dziarzhytski S, Kuhlmann M, Schunck J O, Döring F, Styervoyedov A, Parkin S S P, David C, Schüßler-Langeheine C, Dürr H A, Beye M. 2020 Appl. Sci. 10, 6947.

    [35]

    Gerber S, Yang S L, Zhu D, Soifer H, Sobota J A, Rebec S, Lee J J, Jia T, Moritz B, Jia C, Gauthier A, Li Y, Leuenberger D, Zhang Y, Chaix L, Li W, Jang H, Lee J S, Yi M, Dakovski G L, Song S, Glownia J M, Nelson S, Kim K W, Chuang Y D, Hussain Z, Moore R G, Devereaux T P, Lee W S, Kirchmann P S, Shen Z X. 2017 Science 357, 71–75.

    [36]

    Krasniqi F S, Zhong Y P, Reis D A. Scholz M, Hartmann R, Hartmann A, Rolles D, Rudenko A, Epp S W, Foucar L, Trigo M, Fuchs M, Fritz D M, Cammarata M, Zhu D L, Lemke H, Braune M, Ilchen M, Larsson J, Techert S, Strüder L, Schlichting L, Ullrich J. 2012 Research in Optical Sciences, ICUSD 3–5.

    [37]

    Zastrau U, Appel K, Baehtz C, Baehr O, Batchelor L, Berghäuser A, Banjafar M, Brambrink E, Cerantola V, Cowan T E, Damker H, Dietrich S, Di Dio Cafiso S, Dreyer J, Engel H -O, Feldmann T, Findeisen S, Foese M, Fullà Marsà D, Göde S, Hassan M, Hauser J, Herrmannsdörfer T, Höppner H, Kaa J, Kaever P, Knöfel K, Konôpková Z, Laso García A, Liermann H -P, Mainberger J, Makita M, Martens E -C, McBride E E, Möller D, Nakatsutsumi M, Pelka A, Plückthun C, Prescher C, Preston T, Röper M, Schmidt A, Seidel W, Schwinkendorf J -P, Schölmerich M, Schramm U, Schropp A, Strohm C, Sukharnikov K, Talkovski P, Thorpe I, Toncian M, Toncian T, Wollenweber L, Yamamoto S, Tschentscher T. 2021 J. Synchrotron Radiat. 28, 1393–1416.

    [38]

    Wollenweber L, Preston T R, Descamps A, Cerantola V, Comley A, Eggert J H, Fletcher L B, Geloni G, Gericke D O, Glenzer S H, Göde S, Hastings J, Humphries O S, Jenei A, Karnbach O, Konopkova Z, Loetzsch R, Marx-Glowna B, McBride E E, McGonegle D, Monaco G, Ofori-Okai B K, Palmer C A J, Plückthun C, Redmer R, Strohm C, Thorpe I, Tschentscher T, Uschmann I, Wark J S, White T G, Appel K, Gregori G, Zastrau U. 2021 Rev. Sci. Instrum. 92, 013101.

    [39]

    Dean M P M, Cao Y, Liu X, Wall S, Zhu D, Mankowsky R, Thampy V, Chen X M, Vale J G, Casa D, Kim J, Said A H, Juhas P, Alonso-Mori R, Glownia J M, Robert A, Robinson J, Sikorski M, Song S, Kozina M, Lemke H, Patthey L, Owada S, Katayama T, Yabashi M, Tanaka Y, Togashi T, Liu J, Serrao C R, Kim B J, Huber L, Chang C L, McMorrow D F, Först M, Hill J P. 2016 Phys. Rev. Lett. 116, 147201.

    [40]

    Gerasimova N, La Civita D, Samoylova L, Vannoni M, Villanueva R, Hickin D, Carley R, Gort R, Van Kuiken B E, Miedema P, Le Guyarder L, Mercadier L, Mercurio G, Schlappa J, Teichman M, Yaroslavtsev A, Sinna H, Scherza A. 2022 J. Synchrotron Radiat. 29, 1299–1308.

    [41]

    Tollerud J O, Sparapassi G, Montanaro A, Asban S, Glerean F, Giusti F, Marciniak A, Kourousias G, Billè F, Cilento F, Mukamel S, Fausti D. 2019 Proc. Natl. Acad. Sci. 116, 5383–5386.

    [42]

    Chergui M, Beye M, Mukamel S, Svetina C, Masciovecchio C. 2023 Nat. Rev. Phys. 5, 578–596.

    [43]

    Harter J W, Zhao Z Y, Yan J Q, Mandrus D G, Hsieh D. 2017 Science 356, 295–299.

    [44]

    Lam R K, Raj S L, Pascal T A, Pemmaraju C D, Foglia L, Simoncig A, Fabris N, Miotti P, Hull C J, Rizzuto A M, Smith J W, Mincigrucci R, Masciovecchio C, Gessini A, Allaria E, De Ninno G, Diviacco B, Roussel E, Spampinati S, Penco G, Di Mitri S, Trovò M, Danailov M, Christensen S T, Sokaras D, Weng T C, Coreno M, Poletto L, Drisdell W S, Prendergast D, Giannessi L, Principi E, Nordlund D, Saykally R J, Schwartz C P. 2018 Phys. Rev. Lett. 120, 23901.

    [45]

    Zhao L, Belvin C A, Liang R, Bonn D A, Hardy W N, Armitage N P, Hsieh D. 2017 Nat. Phys. 13, 250–254.

    [46]

    Uzundal C B, Jamnuch S, Berger E, Woodahl C, Manset P, Hirata Y, Sumi T, Amado A, Akai H, Kubota Y, Owada S, Tono K, Yabashi M, Freeland J W, Schwartz C P, Drisdell W S, Matsuda I, Pascal T A, Zong A, Zuerch M. 2021 Phys. Rev. Lett. 127, 237402.

    [47]

    Patterson B D. 2010 SLAC Technical Note SLAC-TN-10-026.

    [48]

    Glover T E, Fritz D M, Cammarata M, Allison T K, Coh S, Feldkamp J M, Lemke H, Zhu D, Feng Y, Coffee R N, Fuchs M, Ghimire S, Chen J, Shwartz S, Reis D A, Harris S E, Hastings J B. 2012 Nature 488, 603–608.

    [49]

    Rottke H, Engel R Y, Schick D, Schunck J O, Miedema P S, Borchert M C, Kuhlmann M, Ekanayake N, Dziarzhytski S, Brenner G, Eichmann U, von Korff Schmising C, Beye M, Eisebitt S. 2022 Sci. Adv. 8, 5127.

    [50]

    Beye M. 2021 Nat. Photonics 15, 490–492.

    [51]

    Bencivenga F., Mincigrucci R, Capotondi F, Foglia L, Naumenko D, Maznev A A, Pedersoli E, Simoncig A, Caporaletti F, Chiloyan V, Cucini R, Dallari F, Duncan R A, Frazer T D, Gaio G, Gessini A, Giannessi L, Huberman S, Kapteyn H, Knobloch J, Kurdi G, Mahne N, Manfredda M, Martinelli A, Murnane M, Principi E, Raimondi L, Spampinati S, Spezzani C, Trovò M, Zangrando M, Chen G, Monaco G, Nelson K A, Masciovecchio C. 2019 Sci. Adv. 5, 5805.

    [52]

    Mincigrucci R, Foglia L, Naumenko D, Pedersoli E, Simoncig A, Cucini R, Gessini A, Kiskinova M, Kurdi G, Mahne N, Manfredda M, Nikolov I P, Principi E, Raimondi L, Zangrando M, Masciovecchio C, Capotondi F, Bencivenga F. 2018 Nucl. Instrum. Meth. A 907, 132–148.

    [53]

    Rouxel J R, Fainozzi D, Mankowsky R, Rösner B, Seniutinas G, Mincigrucci R, Catalini S, Foglia L, Cucini R, Döring F, Kubec A, Koch F, Bencivenga F, Al Haddad A, Gessini A, A. Maznev A, Cirelli C, Gerber S, Pedrini B, F. Mancini G, Razzoli E, Burian M, Ueda H, Pamfilidis G, Ferrari E, Deng Y P, Mozzanica A, J. M. Johnson P, Ozerov D, Izzo M G, Bottari C, Arrell C, Divall E J, Zerdane S, Sander M, Knopp G, Beaud P, T. Lemke H, J. Milne C, David C, Torre R, Chergui M, A. Nelson K, Masciovecchio C, Staub U, Patthey L, Svetina C. 2021 Nat. Photonics 15, 499–503.

    [54]

    Jonnard P, André J M, Le Guen K, Le, Wu M Y, Principi E, Simoncig A, Gessini A, Mincigrucci R, Masciovecchio C, Peyrusse O. 2017 Struct. Dyn. 4, 054306.

    [55]

    Foglia L, Mincigrucci R, Maznev A A, Baldi G, Capotondi F, Caporaletti F, Comin R, De Angelis D, Duncan R A, Fainozzi D, Kurdi G, Li J, Martinelli A, Masciovecchio C, Monaco G, Milloch A, Nelson K A, Occhialini C A, Pancaldi M, Pedersoli E, Pelli-Cresi J S, Simoncig A, Travasso F, Wehinger B, Zanatta M, Bencivenga F. 2023 Photoacoustics 29, 100453.

    [56]

    Sumi T, Horio M, Senoo T, Wada T, Tsujikawa Y, Zhang X, Manset P, Araki M, Hirata Y, Drisdell W S, Freeland J W, Amado A, Zuerch M, Kubota Y, Owada S, Tono K, Yabashi M, Schwartz C P, Matsuda I. 2022 E-j. Surf. Sci. Nanotechnol. 20, 31-35.

    [57]

    Robin Y E, Oliver A, Kaan A, Uwe B, Jens B, Robert C Michele C, Valentin C, Gheorghe S C, Christian D, Florian D, Andrea E, Natalia G, Frank de G, Loïc L G, Oliver S H, Manuel I, Emmanuelle J, Adam K, Tim L, Charles-Henri L, Jan L, Jonathan P M, Laurent M, Giuseppe M, Piter S M, Katharina O, Bastian P, Benedikt R, Kai R, Nico R, Andreas S, Justine S, Markus S, Jan O S, Kiana S, Christian S, Simone T, Sam M V, Heiko W, Alexander A Y, Zhong Y, Martin B. 2023 Struct. Dyn. 10, 054501.

  • [1] Nie Yong-Gan, Gao Zi-Chen, Tong Ya-Jun, Fan Jia-Dong, Liu Gong-Fa, Jiang Huai-Dong. Design and implementation of timing system for single-shot imaging at Shanghai soft X-ray free-electron laser. Acta Physica Sinica, doi: 10.7498/aps.73.20240383
    [2] Li Hui, Tan Fang-Rui, Yin Hao-Yu, Ma Yue-Yang, Wu Xiao-Bin. Simulation study of decoherence and light intensity uniformization for extreme ultraviolet of uniform light pipe. Acta Physica Sinica, doi: 10.7498/aps.73.20240335
    [3] Li Yun, Su Tong, Sheng Li-Zhi, Zhang Rui-Li, Liu Duo, Liu Yong-An, Qiang Peng-Fei, Yang Xiang-Hui, Xu Ze-Fang. Nanosecond pulse X-ray emission source based on ultrafast laser modulation. Acta Physica Sinica, doi: 10.7498/aps.73.20231505
    [4] Du Xiao-Jiao, Wei Long, Sun Yu, Hu Shui-Ming. Free electron laser prepared high-intensity metastable helium and helium-like ions. Acta Physica Sinica, doi: 10.7498/aps.73.20240554
    [5] Zhang Shao-Jun, Guo Zhi, Cheng Jia-Min, Wang Yong, Chen Jia-Hua, Liu Zhi. Arrival time diagnosis method of high refrequency hard X-ray free electron laser. Acta Physica Sinica, doi: 10.7498/aps.72.20222424
    [6] Guo Jing, Guo Fu-Ming, Chen Ji-Gen, Yang Yu-Jun. Pulse duration effect on photoelectron spectrum of atom irradiated by strong high frequency laser. Acta Physica Sinica, doi: 10.7498/aps.67.20172440
    [7] Song Wen-Juan, Guo Fu-Ming, Chen Ji-Gen, Yang Yu-Jun. Theoretical investigation of atomic low-order harmonics under irradiation of two high frequency laser pulses. Acta Physica Sinica, doi: 10.7498/aps.67.20172129
    [8] Li Ming, Yang Xing-Fan, Xu Zhou, Shu Xiao-Jian, Lu Xiang-Yang, Huang Wen-Hui, Wang Han-Bin, Dou Yu-Huan, Shen Xu-Ming, Shan Li-Jun, Deng De-Rong, Xu Yong, Bai Wei, Feng Di-Chao, Wu Dai, Xiao De-Xin, Wang Jian-Xin, Luo Xing, Zhou Kui, Lao Cheng-Long, Yan Long-Gang, Lin Si-Fen, Zhang Peng, Zhang Hao, He Tian-Hui, Pan Qing, Li Xiang-Kun, Li Peng, Liu Yu, Yang Lin-De, Liu Jie, Zhang De-Min, Li Kai, Chen Ya-Nan. Experimental study on the stimulated saturation of terahertz free electron laser. Acta Physica Sinica, doi: 10.7498/aps.67.20172413
    [9] Wang Chen, An Hong-Hai, Qiao Xiu-Mei, Fang Zhi-Heng, Xiong Jun, Wang Wei, Sun Jin-Ren, Zheng Wu-Di. An experimental attempt to produce Thomson scattering with soft X-ray lasers. Acta Physica Sinica, doi: 10.7498/aps.62.135203
    [10] Zhao Shi-Hua, Lü Qing-Zheng, Yuan Su-Ying, Li Ying-Jun. General formulation of nonlinear Thomson scattering of arbitrary polarized laser and optimal conditions for X-ray production. Acta Physica Sinica, doi: 10.7498/aps.60.054209
    [11] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xeq+ on Mo surface. Acta Physica Sinica, doi: 10.7498/aps.59.6059
    [12] Zhang Xiang-Zhi, Xu Zi-Jian, Zhen Xiang-Jun, Wang Yong, Guo Zhi, Yan Rui, Chang Rui, Zhou Ran-Ran, Tai Ren-Zhong. Soft X-ray spectromicroscopy dual-energy contrast image for element spatial distribution analysis. Acta Physica Sinica, doi: 10.7498/aps.59.4535
    [13] Huang Wen-Zhong, Li Yu-Tong, Xiong Yong, Zhang Shuang-Gen, Wen Xian-Lun, Hong Wei, Gu Yu-Qiu, Wen Tian-Shu, He Ying-Ling. Investigation on Kα X-ray emission from ultraintense laser-produced hot electrons. Acta Physica Sinica, doi: 10.7498/aps.57.111
    [14] Zhao Yong-Tao, Xiao Guo-Qing, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Li Fu-Li, Zhang Yan-Ping, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The x-ray spectra of hollow atoms. Acta Physica Sinica, doi: 10.7498/aps.54.85
    [15] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, doi: 10.7498/aps.54.4979
    [16] Wang Qian, Xu Jin-Qiang, Wu Jin, Li Yong-Gui. The imaging of chemical samples with a scanning near-field infrared microscope. Acta Physica Sinica, doi: 10.7498/aps.52.298
    [17] HE SHAO-TANO, HE AN, CHUNYU SHUTAI, ZHANG QI-PEN, GU YUAN-YUAN, NI YUAN-LONG, YU SONG-YU, ZHOU ZHENG-LIANG. MEASUREMENTS OF BEAM OPTICAL CHARACTERISTICS OF NEON-LIKE GERMANIUM X-RAY LASER. Acta Physica Sinica, doi: 10.7498/aps.41.573
    [18] HE AN, HE SHAO-TANG, CHUNYU SHU-TAI, FANG QUAN-YU, ZOU YU, XU YUAN-GUANG. ALUMINIUM XUV SPECTRA EXCITED IN A LINE FOCUS LASER——PRODUCED PLASMA. Acta Physica Sinica, doi: 10.7498/aps.40.1765
    [19] ZHANG HUI-HUANG, LIN ZUN-QI, HE XING-FA, ZHANG ZHENG-QUAN, WANG XIAO-QIN, LU QI-RONG, GU ZHONG-MIN, ZHUANG YU-FEI, CUI JI-XIU, YU WEN-YAN, LI JIA-MING, GONG MEI-XIA, ZHANG XIAO-QIU, LEI ZHI-YUAN, YANG BIN-ZHOU, ZHAO WEI. FEATURES OF ELECTRON DENSITY AND TIME-RESOLVED X-RAY SPECTRA FROM LATERAL JET NOZZLE OF Mg MICROTUBE TARGET. Acta Physica Sinica, doi: 10.7498/aps.38.1838
    [20] GUO CHANG-LIN, JI ANG, TAO GUANG-YI. QUANTITATIVE DETERMINATION OF INTENSITY DISTRIBUTION OF PRIMARY X-RAY SPECTRUM. Acta Physica Sinica, doi: 10.7498/aps.30.1351
Metrics
  • Abstract views:  74
  • PDF Downloads:  1
  • Cited By: 0
Publishing process
  • Available Online:  27 August 2024

/

返回文章
返回