Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nanosecond pulse X-ray emission source based on ultrafast laser modulation

Li Yun Su Tong Sheng Li-Zhi Zhang Rui-Li Liu Duo Liu Yong-An Qiang Peng-Fei Yang Xiang-Hui Xu Ze-Fang

Citation:

Nanosecond pulse X-ray emission source based on ultrafast laser modulation

Li Yun, Su Tong, Sheng Li-Zhi, Zhang Rui-Li, Liu Duo, Liu Yong-An, Qiang Peng-Fei, Yang Xiang-Hui, Xu Ze-Fang
PDF
HTML
Get Citation
  • In response to the growing demand for miniaturized ultrafast pulsed X-ray sources in the fields of fundamental science and space applications, we design and develop an ultrafast pulsed X-ray generator based on a laser-modulated light source and a photoelectric cathode. This innovative technology addresses the limitations commonly encountered in traditional X-ray emission devices, such as low repetition rate, insufficient time stability, and suboptimal pulse characteristics.Our effort is to study and develop the ultrafast modulation control module for the pulsed X-ray generator. This effort results in achieving high levels of time accuracy and stability in ultrafast time-varying photon signals. Moreover, we successfully generate nanosecond pulsed X-rays by using a laser-controlled light source.Theoretically, we establish a comprehensive time response model for the pulsed X-ray generator in response to short pulses. This includes a thorough analysis of the time characteristics of the emitted pulsed X-rays in the time domain. Experimentally, we conduct a series of tests related to various time-related parameters of the laser-controlled light source. Additionally, we design and implemente an experimental test system for assessing the time characteristics of pulsed X-rays, by using an ultrafast scintillation detector.The experimental results clearly demonstrate that our pulsed X-ray generator achieves impressive capabilities, including high repetition rates (12.5 MHz), ultrafast pulses (4 ns), and exceptional time stability (400 ps) in X-ray emission. These results closely align with our established theoretical model. Compared with traditional modulation techniques, our system exhibits significant improvement in pulse time parameters, thereby greatly expanding its potential applications.This research provides a valuable insight into achieving ultra-high time stability and ultrafast pulsed X-ray emission sources. These advances will further enhance the capabilities of X-ray technology for scientific research and space applications.
      Corresponding author: Su Tong, sutong@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62271483).
    [1]

    胡慧君 2012 博士学位论文(北京: 中国科学院大学)

    Hu H J 2012 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [2]

    徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮 2017 物理学报 66 059701Google Scholar

    Xu N, Sheng L Z, Zhang D P, Chen C, Zhao B S, Zheng W, Liu C L 2017 Acta Phys. Sin. 66 059701Google Scholar

    [3]

    赵宝升, 苏桐, 盛立志 2016 空间X射线通信概论 (北京: 科学出版社) 第114页

    Zhao B S, Su T, Sheng L Z 2016 Introduction to Space X-ray Communication (Beijing: Science Press) p114

    [4]

    唐添, 徐捷, 王新, 穆宝忠 2019 光学仪器 41 76Google Scholar

    Tang T, Xu J, Wang X, Mu B Z 2019 Opt. Instrum. 41 76Google Scholar

    [5]

    Zhao B, Yan Q, Sheng L, Liu Y 2017 US Patent 9 577 766 B2

    [6]

    马晓飞, 赵宝升, 盛立志, 刘永安, 刘舵, 邓宁勤 2014 物理学报 16 160701Google Scholar

    Xiao F, Zhao B S, Sheng L Z, Liu Y A, Liu D, Deng N L 2014 Acta Phys. Sin. 16 160701Google Scholar

    [7]

    全林, 屠荆, 樊亚军, 刘月恒, 张永民, 周金山, 刘胜, 马彦良, 张继红, 李达 2007 强激光与粒子束 19 1049

    Quan L, Tu J, Fan Y J, Liu Y H, Zhang Y M, Zhou J S, Liu S, Ma Y L, Zhang J H, Li D 2007 High Power Laser Part Beams 19 1049

    [8]

    Blankespoor S, Derenzo S, Moses W, Rossington C, Ito M, Oba K 1994 IEEE Trans. Nucl. Sci. 41 698Google Scholar

    [9]

    Derenzo S, Moses W, Blankespoor S, Ito M, Oba K 1992 IEEE Conference on Nuclear Science Symposium and Medical Imaging Orlando, the United States, October 25–31, 1992 p37

    [10]

    Gopal L, Sim M L 2008 6th National Conference on Telecommunication Technologies and 2nd Malaysia Conference on Photonics Putrajaya, Malaysia, August 26–28, 2008 p304

    [11]

    Timofeev G, Potrakhov N 2018 5th International Conference on X-ray, Electrovacuum and Biomedical Technique St. Petersburg, Russia, November 29–30, 2018 p020020

    [12]

    安毓英, 刘继芳 2016 光电子技术 (北京: 电子工业出版社) 第236页

    An Y Y, Liu J F 2016 Optoelectronic Technology (Beijing: Electronic Industry Press) p236

    [13]

    Xuan H, Liu Y A, Qiang P F, Su T, Yang X H, Sheng L Z 2021 Chin. Phys. B 30 118502Google Scholar

    [14]

    李瑶, 苏桐, 盛立志, 强鹏飞, 徐能, 李林森, 赵宝升 2017 光子学报 46 1106002Google Scholar

    Li Y, Su T, Sheng L Z, Qiang P F, Xu N, Li L S, Zhao B S 2017 Acta Photon. Sin. 46 1106002Google Scholar

    [15]

    李瑶, 苏桐, 石峰, 盛立志, 强鹏飞, 赵宝升 2018 红外与激光工程 47 622001Google Scholar

    Li Y, Su T, Shi F, Sheng L Z, Qiang P F, Zhao B S 2018 Infrared Laser Eng. 47 622001Google Scholar

    [16]

    Liu C Y, Wu C C, Tang L C, Cheng W H, Chang E Y, Peng C Y, Kuo H C 2022 Photonics 9 652Google Scholar

    [17]

    王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵 2015 物理学报 64 120701Google Scholar

    Wang L Q, Su T, Zhao B S, Sheng L Z, Liu Y A, Liu D 2015 Acta Phys. Sin. 64 120701Google Scholar

    [18]

    David R, Allard B, Branca X, Joubert C 2021 Microelectron. J. 113 105056Google Scholar

    [19]

    Dawood A A, Mansour T S, Mohammed L T 2019 Iraqi Laser J. 18 27

    [20]

    Yaffe M, Rowlands J 1997 Phys. Med. Biol. 42 1Google Scholar

  • 图 1  脉冲X射线发生器的原理图

    Figure 1.  Schematic diagram of pulsed X-ray generator.

    图 2  激光控制光源的设计图

    Figure 2.  Design diagram of laser controlled light source.

    图 3  脉冲X射线发生器对短脉冲的时间响应曲线

    Figure 3.  Time response curve of pulsed X-ray generator to short pulse.

    图 4  脉冲X射线发生器的时间弥散曲线

    Figure 4.  Time dispersion curve of pulsed X-ray generator.

    图 5  不同重复频率下激光控制光源的输出光信号(蓝色为输入电信号, 红色为MPPC探测器接收到的光信号) (a) 1 MHz; (b) 5 MHz; (c) 10 MHz; (d) 40 MHz

    Figure 5.  Light signals of LD light source at different modulation rates under different modulation frequencies (Blue is the input electrical signal, red is the light signal received by the MPPC detector): (a) 1 MHz; (b) 5 MHz; (c) 10 MHz; (d) 40 MHz.

    图 6  基于超快闪烁体探测器的脉冲X射线时间特性实验测试系统

    Figure 6.  Experimental testing system for pulsed X-ray time characteristics based on ultrafast scintillator detector.

    图 7  重复频率为12.5 MHz的实验结果图 (蓝色为输入电信号, 红色为超快闪烁体探测器得到的X射线信号)

    Figure 7.  Experimental results with a modulation frequency of 12.5 MHz (Blue is the input electrical signal, red is the X-ray signal from scintillator detection).

    图 8  脉冲宽度为4 ns的实验结果图 (蓝色为输入电信号, 红色为超快闪烁体探测器得到的X射线信号)

    Figure 8.  Experimental results with a pulse width of 4 ns (Blue is the input electrical signal, red is the X-ray signal from scintillator detection).

    表 1  激光控制光源的特性参数

    Table 1.  Characteristics of laser controlled light source.

    Properties Parameters
    Emission wavelength/nm 468—478
    Rated power/mW 3600
    Optical output power/mW 1200
    Response time/ns 1.8
    Pulse repetition rate DC to MHz
    Divergence angle/(°) 12
    Timing pulse jitter tl/ps $\pm $70
    DownLoad: CSV
  • [1]

    胡慧君 2012 博士学位论文(北京: 中国科学院大学)

    Hu H J 2012 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [2]

    徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮 2017 物理学报 66 059701Google Scholar

    Xu N, Sheng L Z, Zhang D P, Chen C, Zhao B S, Zheng W, Liu C L 2017 Acta Phys. Sin. 66 059701Google Scholar

    [3]

    赵宝升, 苏桐, 盛立志 2016 空间X射线通信概论 (北京: 科学出版社) 第114页

    Zhao B S, Su T, Sheng L Z 2016 Introduction to Space X-ray Communication (Beijing: Science Press) p114

    [4]

    唐添, 徐捷, 王新, 穆宝忠 2019 光学仪器 41 76Google Scholar

    Tang T, Xu J, Wang X, Mu B Z 2019 Opt. Instrum. 41 76Google Scholar

    [5]

    Zhao B, Yan Q, Sheng L, Liu Y 2017 US Patent 9 577 766 B2

    [6]

    马晓飞, 赵宝升, 盛立志, 刘永安, 刘舵, 邓宁勤 2014 物理学报 16 160701Google Scholar

    Xiao F, Zhao B S, Sheng L Z, Liu Y A, Liu D, Deng N L 2014 Acta Phys. Sin. 16 160701Google Scholar

    [7]

    全林, 屠荆, 樊亚军, 刘月恒, 张永民, 周金山, 刘胜, 马彦良, 张继红, 李达 2007 强激光与粒子束 19 1049

    Quan L, Tu J, Fan Y J, Liu Y H, Zhang Y M, Zhou J S, Liu S, Ma Y L, Zhang J H, Li D 2007 High Power Laser Part Beams 19 1049

    [8]

    Blankespoor S, Derenzo S, Moses W, Rossington C, Ito M, Oba K 1994 IEEE Trans. Nucl. Sci. 41 698Google Scholar

    [9]

    Derenzo S, Moses W, Blankespoor S, Ito M, Oba K 1992 IEEE Conference on Nuclear Science Symposium and Medical Imaging Orlando, the United States, October 25–31, 1992 p37

    [10]

    Gopal L, Sim M L 2008 6th National Conference on Telecommunication Technologies and 2nd Malaysia Conference on Photonics Putrajaya, Malaysia, August 26–28, 2008 p304

    [11]

    Timofeev G, Potrakhov N 2018 5th International Conference on X-ray, Electrovacuum and Biomedical Technique St. Petersburg, Russia, November 29–30, 2018 p020020

    [12]

    安毓英, 刘继芳 2016 光电子技术 (北京: 电子工业出版社) 第236页

    An Y Y, Liu J F 2016 Optoelectronic Technology (Beijing: Electronic Industry Press) p236

    [13]

    Xuan H, Liu Y A, Qiang P F, Su T, Yang X H, Sheng L Z 2021 Chin. Phys. B 30 118502Google Scholar

    [14]

    李瑶, 苏桐, 盛立志, 强鹏飞, 徐能, 李林森, 赵宝升 2017 光子学报 46 1106002Google Scholar

    Li Y, Su T, Sheng L Z, Qiang P F, Xu N, Li L S, Zhao B S 2017 Acta Photon. Sin. 46 1106002Google Scholar

    [15]

    李瑶, 苏桐, 石峰, 盛立志, 强鹏飞, 赵宝升 2018 红外与激光工程 47 622001Google Scholar

    Li Y, Su T, Shi F, Sheng L Z, Qiang P F, Zhao B S 2018 Infrared Laser Eng. 47 622001Google Scholar

    [16]

    Liu C Y, Wu C C, Tang L C, Cheng W H, Chang E Y, Peng C Y, Kuo H C 2022 Photonics 9 652Google Scholar

    [17]

    王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵 2015 物理学报 64 120701Google Scholar

    Wang L Q, Su T, Zhao B S, Sheng L Z, Liu Y A, Liu D 2015 Acta Phys. Sin. 64 120701Google Scholar

    [18]

    David R, Allard B, Branca X, Joubert C 2021 Microelectron. J. 113 105056Google Scholar

    [19]

    Dawood A A, Mansour T S, Mohammed L T 2019 Iraqi Laser J. 18 27

    [20]

    Yaffe M, Rowlands J 1997 Phys. Med. Biol. 42 1Google Scholar

  • [1] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [2] Su Jian-Yu, Fang Hai-Yan, Bao Wei-Min, Sun Hai-Feng, Zhao Liang. Simulation method of X-ray pulsar observation signal at spacecraft. Acta Physica Sinica, 2022, 71(22): 229701. doi: 10.7498/aps.71.20221097
    [3] Zhou Qing-Yong, Wei Zi-Qing, Jiang Kun, Deng Lou-Lou, Liu Si-Wei, Ji Jian-Feng, Ren Hong-Fei, Wang Yi-Di, Ma Gao-Feng. A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar. Acta Physica Sinica, 2018, 67(5): 050701. doi: 10.7498/aps.67.20172352
    [4] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [5] Wang Yu-Ying, Yan Da-Wei, Tan Xiu-Lan, Wang Xue-Min, Gao Yang, Peng Li-Ping, Yi You-Gen, Wu Wei-Dong. Fabrication and X-ray photoemission characteristics of Au spherical shell photocathodes. Acta Physica Sinica, 2015, 64(9): 094103. doi: 10.7498/aps.64.094103
    [6] Dai Jin-Fei, Zhao Bao-Sheng, Sheng Li-Zhi, Zhou Yan-Nan, Chen Chen, Song Juan, Liu Yong-An, Li Lin-Sen. Ffluorescence X-ray source used for calibrating the detector of X-ray navigation. Acta Physica Sinica, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [7] Zhang Zhi-Guo. Realization and experiment of vertical multijunction integrated photovoltaic Si X-ray detector. Acta Physica Sinica, 2014, 63(24): 248501. doi: 10.7498/aps.63.248501
    [8] Sheng Li-Zhi, Zhao Bao-Sheng, Wu Jian-Jun, Zhou Feng, Song Juan, Liu Yong-An, Shen Jing-Shi, Yan Qiu-Rong, Deng Ning-Qin, Hu Hui-Jun. Research of X-ray pulsar navigation simulation source. Acta Physica Sinica, 2013, 62(12): 129702. doi: 10.7498/aps.62.129702
    [9] Bai Yi-Ling, Zhang Qiu-Ju, Tian Mi, Cui Chun-Hong. Generation of attosecond X-ray pulse of wavelength below 0.4 nm from the interaction of ultra-relativistic intense lasers with thin foil targets. Acta Physica Sinica, 2013, 62(12): 125206. doi: 10.7498/aps.62.125206
    [10] Yu Bo, Chen Bo-Lun, Hou Li-Fei, Su Ming, Huang Tian-Xuan, Liu Shen-Ye. Hard X-ray measurement for indirect-driven imploding by chemical vapor deposited diamond detectors. Acta Physica Sinica, 2013, 62(5): 058102. doi: 10.7498/aps.62.058102
    [11] Zhang Xiao-Dong, Qiu Meng-Tong, Zhang Jian-Fu, Ouyang Xiao-Ping, Zhang Xian-Peng, Chen Liang. A fission neutron detector based on helium scintillator. Acta Physica Sinica, 2012, 61(23): 232502. doi: 10.7498/aps.61.232502
    [12] Hu Hui-Jun, Zhao Bao-Sheng, Sheng Li-Zhi, Sai Xiao-Feng, Yan Qiu-Rong, Chen Bao-Mei, Wang Peng. X-ray photon counting detector for x-ray pulsar-based navigation. Acta Physica Sinica, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [13] Hou Li-Fei, Li Fang, Yuan Yong-Teng, Yang Guo-Hong, Liu Shen-Ye. Chemical vapor deposited diamond detectors for soft X-ray power measurement. Acta Physica Sinica, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [14] Liu Hui-Shi, Xin Xiang-Jun, Yin Xiao-Li, Yu Chong-Xiu, Zhang Qi. An optimization scheme for generating of Chebyshev optical chaotic sequence. Acta Physica Sinica, 2009, 58(4): 2231-2234. doi: 10.7498/aps.58.2231
    [15] Yao Jun-Cai, Shen Jing, Wang Jian-Hua. Experimental research of human vision characteristic in the range of luminance of cathode ray tube display. Acta Physica Sinica, 2008, 57(7): 4034-4041. doi: 10.7498/aps.57.4034
    [16] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [17] MA GUO-BIN, TAN WEI-HAN. SOFT X-RAY LASER IN EXPANSION PLASMA PUMPING BY SHORT PULSED LASER. Acta Physica Sinica, 1994, 43(6): 942-949. doi: 10.7498/aps.43.942
    [18] HE SHAO-TANG, CHUNYU SHUTAI, SHEN HUA-ZHONG, YOU YONG-LU, ZHANG QI-REN, DU FENG-YING, GU YUAN-YUAN, YANG SHANG-JIN, HUANG WEN-ZHONG, CAI YU-QIN, KONG LING-HUA, GU YU-QIU, SUN YONG-LIANG, HE AN, LIU SU. INVESTIGATION OF DOUBLE EXPLODING FOIL EXPERIMENT ON INNER-SHELL PHOTOIONIZATION X-RAY LASER SCHEME. Acta Physica Sinica, 1993, 42(12): 1933-1937. doi: 10.7498/aps.42.1933
    [19] SUN JING-WEN. PULSE CALIBRATION TECHNIQUE OF X-RAY DETECTOR. Acta Physica Sinica, 1986, 35(7): 864-873. doi: 10.7498/aps.35.864
    [20] GUO CHANG-LIN. QUANTITATIVE DETERMINATION OF SPECTRAL PURITY OF X-RAY TUBES FOR DIFFRACTION ANALYSIS. Acta Physica Sinica, 1980, 29(1): 35-45. doi: 10.7498/aps.29.35
Metrics
  • Abstract views:  832
  • PDF Downloads:  34
  • Cited By: 0
Publishing process
  • Received Date:  15 September 2023
  • Accepted Date:  30 October 2023
  • Available Online:  18 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回