Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Isoscalar giant resonances of $^{{\bf{18}}}_{{\boldsymbol{\Lambda\Lambda}}}{\bf{O}}$ in relativistic approach

Wen Jing Sun Shuai Cao Li-Gang Zhang Feng-Shou

Citation:

Isoscalar giant resonances of $^{{\bf{18}}}_{{\boldsymbol{\Lambda\Lambda}}}{\bf{O}}$ in relativistic approach

Wen Jing, Sun Shuai, Cao Li-Gang, Zhang Feng-Shou
PDF
HTML
Get Citation
  • The interactions between hyperon-nucleon and hyperon-hyperon have been an important topic in strangeness nuclear physics, which play an important role in understanding the properties of hypernuclei and equation of state of strangeness nuclear matter. It is very difficult to perform a direct scattering experiment of the nucleon and hyperon because the short lifetime of the hyperon. Therefore, the hyperon-nucleon interaction and the hyperon-hyperon interaction have been mainly investigated experimentally by $\gamma$ spectroscopy of single-$\Lambda$ hypernuclei or double-$\Lambda$ hypernuclei. There are also many theoretical methods developed to describe the properties of hypernuclei. Most of these models focus mostly on the ground state properties of hypernuclei, and have given exciting results in producing the banding energy, the energy of single-particle levels, deformations, and other properties of hypernuclei. Only a few researches adopting Skyrme energy density functionals is devoted to the study of the collective excitation properties of hypernuclei. In present work, we have extended the relativistic mean field and relativistic random phase approximation theories to study the collective excitation properties of hypernuclei, and use the methods to study the isoscalar collective excited state properties of double $\Lambda$ hypernuclei. First, the effect of $\Lambda$ hyperons on the single-particle energy of 16O and $^{18}_{\Lambda\Lambda}{\rm{O}}$ are discussed in the relativistic mean field theory, the calculations are performed within TM1 parameter set and related hyperon-nucleon interaction, and hyperon-hyperon interaction. We find that it gives a larger attractive effect on the ${{\mathrm{s}}}_{1/2}$ state of proton and neutron, while gives a weaker attractive effect on the state around Fermi surface. The self-consistent relativistic random phase approximation is used to study the collectively excited state properties of hypernucleus $^{18}_{\Lambda\Lambda}{\rm{O}}$. The isoscalar giant monopole resonance and quadrupole resonance are calculated and analysed in detail, we pay more attention to the effect of the inclusion of $\Lambda$ hyperons on the properties of giant resonances. Comparing with the strength distributions of 16O, changes of response function of $^{18}_{\Lambda\Lambda}{\rm{O}}$ are evidently found both on the isoscalar giant monopole resonance and quadrupole resonance. It is shown that the difference comes mainly from the change of Hartree energy of particle-hole configuration and the contribution of the excitations of $\Lambda$ hyperons. We find that the hyperon-hyperon residual interactions have small effect on the monopole resonance function and quadrupole response function in the low-energy region, and have almost no effect on the response functions in the high-energy region.
      Corresponding author: Cao Li-Gang, caolg@bnu.edu.cn ; Zhang Feng-Shou, fszhang@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275025, 11975096, 12135004, 11635003, 11961141004) and the Fundamental Research Fund for the Central Universities, China (Grant No. 2020NTST06).
    [1]

    Danysz M, Pniewski J 1953 Lond. Edinb. Dublin Philos. Mag. 44 348Google Scholar

    [2]

    Ma Y G 2013 J. Phys.: Conf. Ser. 420 012036Google Scholar

    [3]

    Brinkmann K T, Gianotti P, Lehmann I 2006 Nucl. Phys. News 16 15Google Scholar

    [4]

    Tamura H 2012 Prog. Theor. Exp. Phys. 2012 02B012

    [5]

    Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 317 263Google Scholar

    [6]

    Feng Z Q 2020 Phys. Rev. C 101 064601Google Scholar

    [7]

    Feng Z Q 2020 Phys. Rev. C 101 014605Google Scholar

    [8]

    Kohri H, Ajimura S, Hayakawa H, Kishimoto T, Matsuoka K, Minami S, Miyake, Mori T, Morikubo K, Saji E, Sakaguchi A, Shimizu Y, Sumihama M 2002 Phys. Rev. C 65 034607Google Scholar

    [9]

    Rayet M 1981 Nucl. Phys. A 367 381Google Scholar

    [10]

    Zhou X R, Schulze H J, Sagawa H, Wu C X, Zhao E G 2007 Phys. Rev. C 76 034312Google Scholar

    [11]

    Yamamoto Y, Hiyama E, Rijken T 2010 Nucl. Phys. A 835 350Google Scholar

    [12]

    Ma Z Y, Speth J, Krewald S, Chen B Q, Reuber A 1996 Nucl. Phys. A 608 305Google Scholar

    [13]

    Xu R L, Wu C, Ren Z Z 2012 J. Phys. G: Nucl. Part. Phys. 39 085107Google Scholar

    [14]

    Rong Y T, Tu Z H, Zhou S G 2021 Phys. Rev. C 104 054321Google Scholar

    [15]

    Haidenbauer J, Meiβner U G, Nogga A 2020 Eur. Phys. J. A 56 91Google Scholar

    [16]

    Nemura H, Akaishi Y, Suzuki Y 2002 Phys. Rev. Lett. 89 142504Google Scholar

    [17]

    Hiyama E, Yamada T 2009 Prog. Part. Nucl. Phys. 63 339Google Scholar

    [18]

    Isaka M, Yamamoto Y, Motoba T 2020 Phys. Rev. C 101 024301Google Scholar

    [19]

    Wang Y N, Shen H 2010 Phys. Rev. C 81 025801Google Scholar

    [20]

    Vidaña I, Polls A, Ramos A, Schulze H J 2001 Phys. Rev. C 64 044301Google Scholar

    [21]

    Tan Y H, Zhong X H, Cai C H, Ning P Z 2004 Phys. Rev. C 70 054306Google Scholar

    [22]

    Sun T T, Lu W L, Zhang S S 2017 Phys. Rev. C 96 044312Google Scholar

    [23]

    Lu B N, Hiyama E, Sagawa H, Zhou S G 2014 Phys. Rev. C 89 044307Google Scholar

    [24]

    Lu B N, Zhao E G, Zhou S G 2011 Phys. Rev. C 84 014328Google Scholar

    [25]

    Song C Y, Yao J M, Meng J 2009 Chin. Phys. Lett. 26 122102Google Scholar

    [26]

    Lu H F, Meng J, Zhang S Q, Zhou S G 2003 Eur. Phys. J. A 17 19Google Scholar

    [27]

    Yao J M, Li Z P, Hagino K, Win M T, Zhang Y, Meng J 2011 Nucl. Phys. A 868-869 12Google Scholar

    [28]

    Li A, Hiyama E, Zhou X R, Sagawa H 2013 Phys. Rev. C 87 014333Google Scholar

    [29]

    Zhang Y, Sagawa H, Hiyama E 2021 Phys. Rev. C 103 034321Google Scholar

    [30]

    Chen C F, Chen Q B, Zhou X R, Cheng Y Y, Cui J W, Schulze H J 2022 Chin. Phys. C 46 064109Google Scholar

    [31]

    Mei H, Hagino K, Yao J M 2016 Phys. Rev. C 93 011301(RGoogle Scholar

    [32]

    Gaitanos T, Lenske H 2014 Phys. Lett. B 737 256Google Scholar

    [33]

    Cheng H G, Feng Z Q 2022 Phys. Lett. B 824 136849Google Scholar

    [34]

    Ring P, Ma Z Y, Van Giai N, Vretenar D, Wandelt A, Cao L G 2001 Nucl. Phys. A 694 249Google Scholar

    [35]

    Ma Z Y, Wandelt A, Van Giai N, Vretenar D, Ring P, Cao L G 2002 Nucl. Phys. A 703 222Google Scholar

    [36]

    Paar N, Ring R, Nikšić T, Vretenar D 2003 Phys. Rev. C 67 034312Google Scholar

    [37]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Meng J 2017 Phys. Rev. C 95 044301Google Scholar

    [38]

    Wang Z H, Naito T, Liang H Z, Long W H 2020 Phys. Rev. C 101 064306Google Scholar

    [39]

    Cao L G, Ma Z Y 2004 Mod. Phys. Lett. A 19 2845Google Scholar

    [40]

    Kružić G, Oishi T, Vale D, Paar N 2020 Phys. Rev. C 102 044315Google Scholar

    [41]

    Chang S Y, Wang Z H, Niu Y F, Long W H 2022 Phys. Rev. C 105 034330Google Scholar

    [42]

    Yang D, Cao L G, Tian Y, Ma Z Y 2010 Phys. Rev. C 82 054305Google Scholar

    [43]

    Roca-Maza X, Cao L G, Colo G, Sagawa H 2016 Phys. Rev. C 94 044313Google Scholar

    [44]

    Cao L G, Roca-Maza X, Colo G, Sagawa H 2015 Phys. Rev. C 92 034308Google Scholar

    [45]

    Colo G, Cao L G, Giai N V, Capelli L 2013 Comput. Phys. Commun. 184 142Google Scholar

    [46]

    Cao L G, Sagawa H, Colo G 2011 Phys. Rev. C 83 034324Google Scholar

    [47]

    Wen P W, Cao L G, Margueron J, Sagawa H 2014 Phys. Rev. C 89 044311Google Scholar

    [48]

    Minato F, Hagino K 2012 Phys. Rev. C 85 024316Google Scholar

    [49]

    Lü H, Zhang S S, Zhang Z H, Wu Y Q, Liu J, Cao L G 2018 Chin. Phys. Lett. 35 062102Google Scholar

    [50]

    Serot B D, Walecka J D 1986 Advances in Nuclear Physics (Vol. 16) (New York-London: Plenum Press) pp77–105

    [51]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470Google Scholar

    [52]

    Vretenar D, Afanasjev A, Lalazissis G A, Ring P 2005 Phys. Rep. 409 101Google Scholar

    [53]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [54]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121–122 1

    [55]

    Cao L G, Ma Z Y 2004 Eur. Phys. J. A 22 189Google Scholar

    [56]

    An R, Jiang X, Cao L G, Zhang F S 2022 Phys. Rev. C 105 014325Google Scholar

    [57]

    An R, Dong X X, Cao L G, Zhang F S 2023 Commun. Theor. Phys. 75 035301Google Scholar

    [58]

    An R, Sun S, Cao L G, Zhang F S 2023 Nucl. Sci. Tech. 34 119Google Scholar

    [59]

    Zhong S Y, Zhang S S, Sun X X, Smith M S 2022 Sci. China Phys. Mech. Astron. 65 262011Google Scholar

    [60]

    Zhang S S, Sun B H, Zhou S G 2007 Chin. Phys. Lett. 24 1199Google Scholar

    [61]

    Xu X D, Zhang S S, Signoracci A J, Smith M S, Li Z P 2015 Phys. Rev. C 92 024324Google Scholar

    [62]

    Zhang Y, Luo Y X, Liu Q, Guo J Y 2023 Phys. Lett. B 838 137716Google Scholar

    [63]

    Ma Z Y, Giai N V, Toki H, L’Huillier M 1997 Phys. Rev. C 55 2385Google Scholar

    [64]

    Sugahara Y, Toki H 1994 Nucl. Phys. A 579 557Google Scholar

    [65]

    Shen H, Yang F, Toki H 2006 Prog. Theor. Phys. 115 325Google Scholar

  • 图 1  中子、质子和超子的单粒子能级. 黑色实线为16O的单粒子能级, 红色虚线为$^{18}_{\Lambda\Lambda}{\rm{O}}$的核子和超子单粒子能级

    Figure 1.  Single-particle energies of neutrons, protons, and Lambda hyperons. Energy levels of 16O are denoted by black solid lines while those of $^{18}_{\Lambda\Lambda}{\rm{O}}$ are denoted by red dashed lines.

    图 2  16O和$^{18}_{\Lambda\Lambda}{\rm{O}}$同位旋标量巨单极共振响应函数 (a) Hartree响应函数; (b) RRPA响应函数

    Figure 2.  Response functions of isoscalar monopole resonance for 16O and $^{18}_{\Lambda\Lambda}{\rm{O}}$: (a) Hartree response; (b) RRPA response.

    图 3  16O和$^{18}_{\Lambda\Lambda}{\rm{O}}$的同位旋标量巨四极共振响应函数 (a) Hartree响应函数; (b) RRPA响应函数

    Figure 3.  Response functions of isoscalar quadrupole resonance for 16O and $^{18}_{\Lambda\Lambda}{\rm{O}}$: (a) Hartree response; (b) RRPA response.

    表 1  TM1参数, 核子以及介子质量的单位为MeV

    Table 1.  Parameter sets TM1, and the masses of nucleons and mesons are given in MeV

    M mσ mω mρ mσ mω mρ g2/fm–1 g3 c3
    TM1 938.0 511.2 783.0 770.0 10.029 12.614 4.632 –7.233 0.618 71.307
    DownLoad: CSV

    表 2  使用相对论平均场模型计算得到的$^{16}$O和$^{18}_{\Lambda\Lambda}$O中质子、中子的单粒子能级($\varepsilon$), $\Delta \varepsilon$表示普通核与超核之间的相应能级差 (单位为MeV)

    Table 2.  Single-particle energies of neutrons and protons in $^{16}$O and $^{18}_{\Lambda\Lambda}$O, the results are obtained by using the RMF model. $\Delta \varepsilon$ is the difference of corresponding level in normal nucleus and hypernucleus (unit in MeV).

    p n
    $ \varepsilon $($^{16}{\rm O}$) $ \varepsilon ({}^{18}_{\Lambda\Lambda}{\rm O})$) $\Delta \varepsilon$ $ \varepsilon ({}^{16}{\rm O}$) $ \varepsilon ({}^{18}_{\Lambda\Lambda}{\rm O}$) $\Delta \varepsilon$
    ${\rm{1 s}}_{1/2}$ –36.55 –38.12 1.57 –40.72 –42.29 1.57
    ${\rm{1 p}}_{3/2}$ –17.75 –19.07 1.32 –21.66 –22.97 1.31
    ${\rm{1 p}}_{1/2}$ –12.14 –12.70 0.56 –15.99 –16.53 0.54
    ${\rm{1 d}}_{5/2}$ –1.20 –2.23 1.03 –4.67 –5.74 1.07
    ${\rm{2 s}}_{1/2}$ 0.70 0.35 0.35 –2.12 –2.56 0.44
    DownLoad: CSV
  • [1]

    Danysz M, Pniewski J 1953 Lond. Edinb. Dublin Philos. Mag. 44 348Google Scholar

    [2]

    Ma Y G 2013 J. Phys.: Conf. Ser. 420 012036Google Scholar

    [3]

    Brinkmann K T, Gianotti P, Lehmann I 2006 Nucl. Phys. News 16 15Google Scholar

    [4]

    Tamura H 2012 Prog. Theor. Exp. Phys. 2012 02B012

    [5]

    Yang J C, Xia J W, Xiao G Q, Xu H S, Zhao H W, Zhou X H, Ma X W, He Y, Ma L Z, Gao D Q, Meng J, Xu Z, Mao R S, Zhang W, Wang Y Y, Sun L T, Yuan Y J, Yuan P, Zhan W L, Shi J, Chai W P, Yin D Y, Li P, Li J, Mao L J, Zhang J Q, Sheng L N 2013 Nucl. Instrum. Methods Phys. Res., Sect. B 317 263Google Scholar

    [6]

    Feng Z Q 2020 Phys. Rev. C 101 064601Google Scholar

    [7]

    Feng Z Q 2020 Phys. Rev. C 101 014605Google Scholar

    [8]

    Kohri H, Ajimura S, Hayakawa H, Kishimoto T, Matsuoka K, Minami S, Miyake, Mori T, Morikubo K, Saji E, Sakaguchi A, Shimizu Y, Sumihama M 2002 Phys. Rev. C 65 034607Google Scholar

    [9]

    Rayet M 1981 Nucl. Phys. A 367 381Google Scholar

    [10]

    Zhou X R, Schulze H J, Sagawa H, Wu C X, Zhao E G 2007 Phys. Rev. C 76 034312Google Scholar

    [11]

    Yamamoto Y, Hiyama E, Rijken T 2010 Nucl. Phys. A 835 350Google Scholar

    [12]

    Ma Z Y, Speth J, Krewald S, Chen B Q, Reuber A 1996 Nucl. Phys. A 608 305Google Scholar

    [13]

    Xu R L, Wu C, Ren Z Z 2012 J. Phys. G: Nucl. Part. Phys. 39 085107Google Scholar

    [14]

    Rong Y T, Tu Z H, Zhou S G 2021 Phys. Rev. C 104 054321Google Scholar

    [15]

    Haidenbauer J, Meiβner U G, Nogga A 2020 Eur. Phys. J. A 56 91Google Scholar

    [16]

    Nemura H, Akaishi Y, Suzuki Y 2002 Phys. Rev. Lett. 89 142504Google Scholar

    [17]

    Hiyama E, Yamada T 2009 Prog. Part. Nucl. Phys. 63 339Google Scholar

    [18]

    Isaka M, Yamamoto Y, Motoba T 2020 Phys. Rev. C 101 024301Google Scholar

    [19]

    Wang Y N, Shen H 2010 Phys. Rev. C 81 025801Google Scholar

    [20]

    Vidaña I, Polls A, Ramos A, Schulze H J 2001 Phys. Rev. C 64 044301Google Scholar

    [21]

    Tan Y H, Zhong X H, Cai C H, Ning P Z 2004 Phys. Rev. C 70 054306Google Scholar

    [22]

    Sun T T, Lu W L, Zhang S S 2017 Phys. Rev. C 96 044312Google Scholar

    [23]

    Lu B N, Hiyama E, Sagawa H, Zhou S G 2014 Phys. Rev. C 89 044307Google Scholar

    [24]

    Lu B N, Zhao E G, Zhou S G 2011 Phys. Rev. C 84 014328Google Scholar

    [25]

    Song C Y, Yao J M, Meng J 2009 Chin. Phys. Lett. 26 122102Google Scholar

    [26]

    Lu H F, Meng J, Zhang S Q, Zhou S G 2003 Eur. Phys. J. A 17 19Google Scholar

    [27]

    Yao J M, Li Z P, Hagino K, Win M T, Zhang Y, Meng J 2011 Nucl. Phys. A 868-869 12Google Scholar

    [28]

    Li A, Hiyama E, Zhou X R, Sagawa H 2013 Phys. Rev. C 87 014333Google Scholar

    [29]

    Zhang Y, Sagawa H, Hiyama E 2021 Phys. Rev. C 103 034321Google Scholar

    [30]

    Chen C F, Chen Q B, Zhou X R, Cheng Y Y, Cui J W, Schulze H J 2022 Chin. Phys. C 46 064109Google Scholar

    [31]

    Mei H, Hagino K, Yao J M 2016 Phys. Rev. C 93 011301(RGoogle Scholar

    [32]

    Gaitanos T, Lenske H 2014 Phys. Lett. B 737 256Google Scholar

    [33]

    Cheng H G, Feng Z Q 2022 Phys. Lett. B 824 136849Google Scholar

    [34]

    Ring P, Ma Z Y, Van Giai N, Vretenar D, Wandelt A, Cao L G 2001 Nucl. Phys. A 694 249Google Scholar

    [35]

    Ma Z Y, Wandelt A, Van Giai N, Vretenar D, Ring P, Cao L G 2002 Nucl. Phys. A 703 222Google Scholar

    [36]

    Paar N, Ring R, Nikšić T, Vretenar D 2003 Phys. Rev. C 67 034312Google Scholar

    [37]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Meng J 2017 Phys. Rev. C 95 044301Google Scholar

    [38]

    Wang Z H, Naito T, Liang H Z, Long W H 2020 Phys. Rev. C 101 064306Google Scholar

    [39]

    Cao L G, Ma Z Y 2004 Mod. Phys. Lett. A 19 2845Google Scholar

    [40]

    Kružić G, Oishi T, Vale D, Paar N 2020 Phys. Rev. C 102 044315Google Scholar

    [41]

    Chang S Y, Wang Z H, Niu Y F, Long W H 2022 Phys. Rev. C 105 034330Google Scholar

    [42]

    Yang D, Cao L G, Tian Y, Ma Z Y 2010 Phys. Rev. C 82 054305Google Scholar

    [43]

    Roca-Maza X, Cao L G, Colo G, Sagawa H 2016 Phys. Rev. C 94 044313Google Scholar

    [44]

    Cao L G, Roca-Maza X, Colo G, Sagawa H 2015 Phys. Rev. C 92 034308Google Scholar

    [45]

    Colo G, Cao L G, Giai N V, Capelli L 2013 Comput. Phys. Commun. 184 142Google Scholar

    [46]

    Cao L G, Sagawa H, Colo G 2011 Phys. Rev. C 83 034324Google Scholar

    [47]

    Wen P W, Cao L G, Margueron J, Sagawa H 2014 Phys. Rev. C 89 044311Google Scholar

    [48]

    Minato F, Hagino K 2012 Phys. Rev. C 85 024316Google Scholar

    [49]

    Lü H, Zhang S S, Zhang Z H, Wu Y Q, Liu J, Cao L G 2018 Chin. Phys. Lett. 35 062102Google Scholar

    [50]

    Serot B D, Walecka J D 1986 Advances in Nuclear Physics (Vol. 16) (New York-London: Plenum Press) pp77–105

    [51]

    Meng J, Toki H, Zhou S G, Zhang S Q, Long W H, Geng L S 2006 Prog. Part. Nucl. Phys. 57 470Google Scholar

    [52]

    Vretenar D, Afanasjev A, Lalazissis G A, Ring P 2005 Phys. Rep. 409 101Google Scholar

    [53]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [54]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121–122 1

    [55]

    Cao L G, Ma Z Y 2004 Eur. Phys. J. A 22 189Google Scholar

    [56]

    An R, Jiang X, Cao L G, Zhang F S 2022 Phys. Rev. C 105 014325Google Scholar

    [57]

    An R, Dong X X, Cao L G, Zhang F S 2023 Commun. Theor. Phys. 75 035301Google Scholar

    [58]

    An R, Sun S, Cao L G, Zhang F S 2023 Nucl. Sci. Tech. 34 119Google Scholar

    [59]

    Zhong S Y, Zhang S S, Sun X X, Smith M S 2022 Sci. China Phys. Mech. Astron. 65 262011Google Scholar

    [60]

    Zhang S S, Sun B H, Zhou S G 2007 Chin. Phys. Lett. 24 1199Google Scholar

    [61]

    Xu X D, Zhang S S, Signoracci A J, Smith M S, Li Z P 2015 Phys. Rev. C 92 024324Google Scholar

    [62]

    Zhang Y, Luo Y X, Liu Q, Guo J Y 2023 Phys. Lett. B 838 137716Google Scholar

    [63]

    Ma Z Y, Giai N V, Toki H, L’Huillier M 1997 Phys. Rev. C 55 2385Google Scholar

    [64]

    Sugahara Y, Toki H 1994 Nucl. Phys. A 579 557Google Scholar

    [65]

    Shen H, Yang F, Toki H 2006 Prog. Theor. Phys. 115 325Google Scholar

  • [1] Yang Wei, Ding Shi-Yuan, Sun Bao-Yuan. Relativistic Hartree-Fock model of nuclear single-particle resonances based on real stabilization method. Acta Physica Sinica, 2024, 73(6): 062102. doi: 10.7498/aps.73.20231632
    [2] Chen Zai-Gao, Wang Jian-Guo, Wang Yue, Zhu Xiang-Qin, Zhang Dian-Hui, Qiao Hai-Liang. Numerical simulation of generation and radiation of super-radiation from relativistic backward wave oscillators. Acta Physica Sinica, 2014, 63(3): 038402. doi: 10.7498/aps.63.038402
    [3] Yuan Ying. Study of nuclear stopping in Au+Au collisions at alternating gradient synchrotron energies by the ultra-relativistic quantum molecular dynamic model. Acta Physica Sinica, 2013, 62(22): 222402. doi: 10.7498/aps.62.222402
    [4] Men Fu-Dian, He Xiao-Gang, Zhou Yong, Song Xin-Xiang. Relativistic effect of ultracold Fermi gas in a strong magnetic field. Acta Physica Sinica, 2011, 60(10): 100502. doi: 10.7498/aps.60.100502
    [5] Xu Hui, Sheng Zheng-Ming, Zhang Jie. Relativistic effects on resonance absorption in laser-plasma interaction. Acta Physica Sinica, 2006, 55(10): 5354-5361. doi: 10.7498/aps.55.5354
    [6] Hu Min, Zhu Da-Jun, Liu Sheng-Gang. Longitudinal self-modulation of an intense relativistic electron beam in a two-cavity system. Acta Physica Sinica, 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [7] Rong Jian, Ma Zhong-Yu. Relativistic microscopic description of proton-nucleus scattering at energies u p to 200MeV. Acta Physica Sinica, 2005, 54(4): 1528-1537. doi: 10.7498/aps.54.1528
    [8] CAO LI-GANG, LIU LING, CHEN BAO-QIU, MA ZHONG-YU. GIANT RESONANCE PROPERTIES IN β STABLEAND UNSTABLE NUCLEI. Acta Physica Sinica, 2001, 50(4): 638-643. doi: 10.7498/aps.50.638
    [9] ZHANG JING-YI. THE ELECTROMAGNETIC FIELD TENSOR FOR THE SOURCE OF FIELD POSSESSING BOTH ELECTRIC AND MAGNETIC CHARGES IN GENERAL RELATIVITY. Acta Physica Sinica, 1999, 48(12): 2158-2161. doi: 10.7498/aps.48.2158
    [10] ZHU PING, XU JIA-BAO, GAO QIN. RELATIVISTIC MICROSCOPIC OPTICAL POTENTIALS FOR NUCLEON-NUCLEUS IN THE IMPROVED LOCAL DENSITY APPROXIMATION. Acta Physica Sinica, 1993, 42(1): 9-16. doi: 10.7498/aps.42.9
    [11] MA JIN-XIU, SHENG ZHENG-MING, XU ZHI-ZHAN. EFFECT OF RELATIVISTIC HYSTERESIS ON RESONANCE ABSORPTION. Acta Physica Sinica, 1992, 41(2): 253-259. doi: 10.7498/aps.41.253
    [12] LI GUO-QIANG. ISOVECTOR GIANT RESONANCES ON HOT NUCLEI. Acta Physica Sinica, 1990, 39(1): 18-23. doi: 10.7498/aps.39.18-2
    [13] TONG XIAO-MIN, LI JIA-MING. TWO-PHOTON TRANSITIONS IN ATOMIC INNER-SHELLS FOR Xe——RELETIVISTIC EFFECT AND ATOMIC SCREENING EFFECT. Acta Physica Sinica, 1989, 38(9): 1406-1412. doi: 10.7498/aps.38.1406
    [14] WANG KE-LIN. DISCUSSION ON RANDOM PHASE APPROXIMATION OF HYPERNETTED CHAIN METHOD. Acta Physica Sinica, 1988, 37(5): 727-734. doi: 10.7498/aps.37.727
    [15] FANG LI-ZHI, XIANG SHOU-PING. THE STRUCTURE AND STABILITY OF THE RELATIVISTIC POLYTROPES WITH A COMPACT CORE. Acta Physica Sinica, 1982, 31(9): 1223-1234. doi: 10.7498/aps.31.1223
    [16] . Acta Physica Sinica, 1975, 24(4): 281-290. doi: 10.7498/aps.24.281
    [17] . Acta Physica Sinica, 1966, 22(4): 498-502. doi: 10.7498/aps.22.498
    [18] . Acta Physica Sinica, 1966, 22(3): 377-380. doi: 10.7498/aps.22.377
    [19] . Acta Physica Sinica, 1965, 21(3): 674-676. doi: 10.7498/aps.21.674
    [20] WU SHI-SHU. ON A VARIATIONAL METHOD AND THE RP-HRP APPROXIMATION. Acta Physica Sinica, 1965, 21(1): 12-18. doi: 10.7498/aps.21.12
Metrics
  • Abstract views:  2255
  • PDF Downloads:  59
  • Cited By: 0
Publishing process
  • Received Date:  19 September 2023
  • Accepted Date:  21 November 2023
  • Available Online:  29 November 2023
  • Published Online:  20 February 2024

/

返回文章
返回