Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and implementation of timing system for single-shot imaging at Shanghai soft X-ray free-electron laser

Nie Yong-Gan Gao Zi-Chen Tong Ya-Jun Fan Jia-Dong Liu Gong-Fa Jiang Huai-Dong

Citation:

Design and implementation of timing system for single-shot imaging at Shanghai soft X-ray free-electron laser

Nie Yong-Gan, Gao Zi-Chen, Tong Ya-Jun, Fan Jia-Dong, Liu Gong-Fa, Jiang Huai-Dong
PDF
Get Citation
  • X-ray free-electron laser (XFEL) as the novel advanced x-ray light source, has excellent properties, such as ultra-high brightness, ultra-shot pulse duration and full coherence. The development of XFEL provides unprecedented opportunities for ultra-fast and ultra-fine science. The XFEL based experimental methods have been widely applied to the frontier research in physics, chemistry, biology etc. High resolution imaging as one of the most promising methods, can provide a direct view of the microworld. The coherent X-ray diffraction imaging (CDI) is a lensless imaging method. It has a lot of advantages at high resolution and quantitative imaging compared with the traditional lens based X-ray imaging methods. As one of the driving forces to constructing XFEL, it has become one of the most important imaging methods at XFEL facilities. By combing the excellent properties of XFEL and advantages of CDI, the single-shot imaging has been realized, based on the concept of “diffraction before destruction”. With the femtosecond XFEL pulse, structural information of the sample can be captured in a single-shot without multiple measurements or data accumulation. The single-shot imaging can effectively avoid radiation damage and improve the spatial resolution of the images. Shanghai soft X-ray free-electron laser facility (SXFEL) is the first XFEL facility operated at the X-ray wavelength in China. The SXFEL can generate ultra-intense coherent femtosecond X-ray pulses with wavelengths spanning 2-15 nm (80-620 eV). There are two undulator lines and two beamlines. Five endstations were designed and constructed for ultrafast chemistry and physics science, atomic and molecular science and biological imaging. The coherent scattering and imaging (CSI) endstation is the first commissioned endstation at SXFEL and focuses on the high spatiotemporal imaging for nano and micro materials with a single-shot imaging method. To realize the single-shot experiment at XFEL, especially for single-shot imaging, the timing system plays a crucial role to ensure the operation of the equipment in sequence. The timing system is responsible for generating precise and adjustable trigger signals that are used to trigger different devices. These signals can be adjusted according to the specific requirements of the devices being triggered, ensuring that the devices are triggered at the desired moments. In a single-shot experiment, only a single pulse should be transmitted to interact with the sample, and all others must be blocked before the previous single-shot experiment is finished. To carry out the single-shot imaging at CSI endstation, a timing system was designed and commissioned at SXFEL. As the maximum repetition rate of SXFEL is 50Hz, a fast X-ray shutter was applied to select only one XFEL pulse. This paper introduces the design and implement procession of timing for SXFEL single-shot imaging. The timing system implemented with White Rabbit(WR) and digital delay and pulse generator (BNC505). Single-shot imaging is realized by synchronizing the sample scanning stages movement and X-ray shutter to select a single pulse to illuminate the sample. At the same time, the X-ray detector was triggered with the timing system to record the single-shot diffraction pattern. During commissioning, the gold nanodisks with a side length of approximately 300 nm and a thickness of about 30nm were imaged at the CSI endstation as test sample. The nanodisks were uniformly dispersed on Si3N4 membranes for single-shot imaging. Because of the ultra-high peak intensity at the focus spot, the samples and membrane were ionized for each XFEL pulse shot. A raster scan was performed on the membranes with an interval of 50 μm to update the sample. With the timing system and X-ray shutter, single-shot diffraction patterns could be recorded using an X-ray detector. From the image of the Si3N4 membrane after raster scanning, the ionized holes with an interval of 50 μm can be recognized. Finally, phase retrieval was applied to the single-shot diffraction pattern to obtain a real-space image of the sample. The resolution of the reconstructed image was estimated by calculating the phase-retrieval transfer function (PRTF). With a citation of the PRTF curve dropping below 1⁄e, the spatial frequency cutoff was determined to be 22.6μm-1, corresponding to a half period resolution of 22.1 nm. The results show that the designed timing system can accurately control the time sequence of the imaging process, meeting the requirement for single-shot imaging within 50Hz at SXFEL.
  • [1]

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702(in Chinese)[范家东,江怀东2012物理学报61 218702]

    [2]

    Sakdinawat A, Attwood D 2010 Nat. Photonics 4 840

    [3]

    Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701(in Chinese)[周光照,佟亚军,陈灿,任玉琦,王玉丹,肖体乔2011物理学报60 028701]

    [4]

    Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701(in Chinese)[周光照,王玉丹,任玉琦,陈灿,叶琳琳,肖体乔2012物理学报61 018701]

    [5]

    Thibault P, Dierolf M, Menzel A, Bunk O, David C, Pfeiffer F 2008 Science 321 379

    [6]

    Song C Y, Jiang H D, Mancuso A, Amirbekian B, Peng L, Sun R, Shah S S, Zhou Z H, Ishikawa T, Miao J W 2008 Phys. Rev. Lett. 101 158101

    [7]

    Jiang H D, Song C Y, Chen C C, Xu R, Raines K S, Fahimian B P, Lu C H, Lee T K, Nakashima A, Urano J, Ishikawa T, Tamano F, Miao J W 2010 Proc. Natl. Acad. Sci. USA 107 11234

    [8]

    Chapman H N, Barty A, Bogan M J, Boutet S, Frank M, Hau-Riege S P, Marchesini S, Woods B W, Bajt S, Benner W H, London R A, Plönjes E, Kuhlmann M, Treusch R, Düsterer S, Tschentscher T, Schneider J R, Spiller E, Möller T, Bostedt C, Hoener M, Shapiro D A, Hodgson K O, van der Spoel D, Burmeister F, Bergh M, Caleman C, Huldt G, Seibert M M, Maia F R N C, Lee R W, Szöke A, Timneanu N, Hajdu J 2006 Nat. Phys. 2 839

    [9]

    Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J 2000 Nature 406 752

    [10]

    Ihm Y, Cho D H, Sung D, Nam D, Jung C, Sato T, Kim S, Park J, Kim S, Gallagher-Jones M, Kim Y, Xu R, Owada S, Shim J H, Tono K, Yabashi M, Ishikawa T, Miao J, Noh D Y, Song C 2019 Nat. Commun. 10 2411

    [11]

    Gaffney K J, Chapman H N 2007 Science 316 1444

    [12]

    Miao J, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530

    [13]

    Hidvegi A, Gessler P, Rehlich K, Bohm C 2011 IEEE Trans. Nucl. Sci. 58 1852

    [14]

    Ye Y, Li H, Li J, Yan Y, Yu P, Gong G 2022 J. Instrum. 17 T09009

    [15]

    Fan J D, Tong Y J, Nie Y G, Gao Z C, He B, Luan H, Lu D H, Zhang J H, Zhang D F, Yuan X Y, Chen J H, Guo Z, Liu T, Zhang M, Feng C, Deng H X, Liu B, Zhao Z T, Liu Z, Jiang H D 2022 Nucl. Sci. Tech. 33 114

    [16]

    MFR homepage, http://www.mrf.fi/.[2024-4-11]

    [17]

    Kim C, Baek S Y, Kang H-S, Kim J, Kim K-w, Ko I S, Mun G, Park B R 2015 Proceedings of the 15th International Conference on Accelerator and Large Experimental Physics Control Systems Melbourne, Australia, October 17-23, 2015 p79

    [18]

    Kalantari B, Biffiger R 2017 Proceedings of 16th International Conference on Accelerator and Large Experimental Physics Control Systems Barcelona, Spain, October 8-13, 2017 p232

    [19]

    Krejcik P, Akre R A, Allison S, Browne M, Dalesio L R, Dusatko J E, Frisch J C, Fuller R, Gromme A E, Kotturi K D, Norum S, Rogind D, White W E, Zelazny M 2007 Proceedings of the 8th European Workshop on Beam Diagnostics and Instrumentation for Particle Accelerators Venice, Italy, May 20-23, 2007 p373

    [20]

    WR homepage, https://white-rabbit.web.cern.ch/[2024-4-11]

    [21]

    Yu P G,Yan Y B 2023 Nucl. Electron. Detect. Technol.43 923(in Chinese)[余鹏翔,阎映炳2023核电子学与探测技术43 923]

    [22]

    Yan Y B, Chen G H, Gong G H, Gu J L, Jiang Z Y, Xiao Q W, Ye Y M, Yu P X, Zhao L 2022 Proceedings of the 13th International Particle Accelerator Conference Bangkok, Thailand, June 12-17, 2022 p2415

    [23]

    Yu C L, Zhao H, Hu S M, Ding J G 2019 Nucl. Tech. 42 11(in Chinese)[于春蕾,赵欢,胡守明,丁建国2019核技术42 11]

    [24]

    Tong Y, Fan J, Nie Y, Guo Z, Gao Z, Yuan X, He B, Chen J, Zhang D, Luan H, Zhang J, Lu D, Xie M, Cheng P, Feng C, Liu T, Deng H, Liu B, Liu Z, Jiang H 2022 Front. Phys. 10

    [25]

    Park J, Eom I, Kang T-H, Rah S, Nam K H, Park J, Kim S, Kwon S, Park S H, Kim K S, Hyun H, Kim S N, Lee E H, Shin H, Kim S, Kim M-j, Shin H-J, Ahn D, Lim J, Yu C-J, Song C, Kim H, Noh D Y, Kang H S, Kim B, Kim K-W, Ko I S, Cho M-H, Kim S 2016 Nucl. Instrum. Methods Phys. Res., Sect. A 810 74

    [26]

    Rodriguez J A, Xu R, Chen C-C, Zou Y, Miao J 2013 J. Appl. Cryst. 46 312

    [27]

    Shapiro D, Thibault P, Beetz T, Elser V, Howells M, Jacobsen C, Kirz J, Lima E, Miao H, Neiman A M, Sayre D 2005 Proc. Natl. Acad. Sci. 102 15343

    [28]

    Chapman H N, Barty A, Marchesini S, Noy A, Hau-Riege S P, Cui C, Howells M R, Rosen R, He H, Spence J C H, Weierstall U, Beetz T, Jacobsen C, Shapiro D 2006 J. Opt. Soc. Am. A 23 1179

  • [1] Pan Xin-Yu, Bi Xiao-Xue, Dong Zheng, Geng Zhi, Xu Han, Zhang Yi, Dong Yu-Hui, Zhang Cheng-Long. Review of development for ptychography algorithm. Acta Physica Sinica, doi: 10.7498/aps.72.20221889
    [2] Chen Ji-Hui, Wang Feng, Li Yu-Long, Zhang Xing, Yao Ke, Guan Zan-Yang, Liu Xiang-Ming. Tomographic incoherent holography for microscale X-ray source. Acta Physica Sinica, doi: 10.7498/aps.72.20230920
    [3] Zhang Shao-Jun, Guo Zhi, Cheng Jia-Min, Wang Yong, Chen Jia-Hua, Liu Zhi. Arrival time diagnosis method of high refrequency hard X-ray free electron laser. Acta Physica Sinica, doi: 10.7498/aps.72.20222424
    [4] Zhang Hai-Peng, Zhao Chang-Zhe, Ju Xiao-Lu, Tang Jie, Xiao Ti-Qiao. Improving quality of crystal diffraction based X-ray ghost imaging through iterative reconstruction algorithm. Acta Physica Sinica, doi: 10.7498/aps.71.20211978
    [5] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, doi: 10.7498/aps.71.20220976
    [6] Zhou Shao-Tong, Ren Xiao-Dong, Huang Xian-Bin, Xu Qiang. Soft x-ray imaging system used for Z-pinch experiments. Acta Physica Sinica, doi: 10.7498/aps.70.20200957
    [7] Xu Wen-Hui, Ning Shou-Cong, Zhang Fu-Cai. Review of partially coherent diffraction imaging. Acta Physica Sinica, doi: 10.7498/aps.70.20211020
    [8] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, doi: 10.7498/aps.69.20191586
    [9] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, doi: 10.7498/aps.66.245201
    [10] Feng Lei, Jiang Gang. 2000 eV X-ray laser transparent mechanism of neon atom. Acta Physica Sinica, doi: 10.7498/aps.66.153201
    [11] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, doi: 10.7498/aps.65.219501
    [12] Liu Cheng, Pan Xing-Chen, Zhu Jian-Qiang. Coherent diffractive imaging based on the multiple beam illumination with cross grating. Acta Physica Sinica, doi: 10.7498/aps.62.184204
    [13] Liu Hai-Gang, Xu Zi-Jian, Zhang Xiang-Zhi, Guo Zhi, Tai Ren-Zhong. Influence of central beamstop on ptychographic coherent diffractive imaging. Acta Physica Sinica, doi: 10.7498/aps.62.150702
    [14] Zhou Guang-Zhao, Wang Yu-Dan, Ren Yu-Qi, Chen Can, Ye Lin-Lin, Xiao Ti-Qiao. Digital simulation for 3D reconstruction of coherent x-ray diffractive imaging. Acta Physica Sinica, doi: 10.7498/aps.61.018701
    [15] Fan Jia-Dong, Jiang Huai-Dong. Coherent X-ray diffraction imaging and its applications in materials science and biology. Acta Physica Sinica, doi: 10.7498/aps.61.218702
    [16] Cheng Guan-Xiao, Hu Chao. X-ray Zernike apodized photon sieves for phase-contrast microscopy. Acta Physica Sinica, doi: 10.7498/aps.60.080703
    [17] Zhou Guang-Zhao, Tong Ya-Jun, Chen Can, Ren Yu-Qi, Wang Yu-Dan, Xiao Ti-Qiao. Digital simulation for coherent X-ray diffractive imaging. Acta Physica Sinica, doi: 10.7498/aps.60.028701
    [18] Wang Chen, Zheng Wu-Di, Fang Zhi-Heng, Sun Jin-Ren, Wang Wei, Xiong Jun, Fu Si-Zu, Gu Yuan, Wang Shi-Ji, Qiao Xiu-Mei, Zhang Guo-Ping. Shadow imaging studies on laser-ablated foil target by using an X-ray laser. Acta Physica Sinica, doi: 10.7498/aps.59.4767
    [19] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, doi: 10.7498/aps.54.2034
    [20] Huang Wan-Xia, Yuan Qing-Xi, Tian Yu-Lian, Zhu Pei-Ping, Jiang Xiao-Ming, Wang Jun-Yue. Diffraction-enhanced imaging experiments in BSRF. Acta Physica Sinica, doi: 10.7498/aps.54.677
Metrics
  • Abstract views:  179
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Available Online:  06 May 2024

/

返回文章
返回