Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Neural network prediction of cooling heat transfer characteristics of supercritical R1234ze(E) in horizontal tube

Zhou Wen-Li Zhuo Wei-Wei Jiang Yi-Ran Ma Wen-Jie Dong Bao-Jun

Citation:

Neural network prediction of cooling heat transfer characteristics of supercritical R1234ze(E) in horizontal tube

Zhou Wen-Li, Zhuo Wei-Wei, Jiang Yi-Ran, Ma Wen-Jie, Dong Bao-Jun
PDF
HTML
Get Citation
  • The prediction of heat transfer coefficients or wall temperatures of heat exchanger tubes is an important research topic in supercritical heat transfer, which is extremely significant for the application of supercritical fluids in industrial production and the design of the entire thermal system. At present, the empirical correlation method is the most widely adopted prediction method, but its predicted heat transfer coefficient still has significant difference from the actual data near the pseudo-critical temperature. Therefore, some scholars proposed using artificial neural networks to predict the heat transfer performance of supercritical fluids in tubes. On the basis of previous researches, this work further explores the effectiveness of artificial neural network in predicting supercritical heat transfer, focusing on the influence of input parameters on neural network prediction results and the influence of genetic algorithm optimization on the prediction results.In this research, a neural network prediction model for supercritical R1234ze(E) cooled in horizontal straight tubes is established and compared with the modified D-B heat transfer correlation. The result shows that the input parameter has great influence on the prediction accuracy of BPNN, and not all BPNN input parameter combinations can bring better prediction results than heat transfer correlation. The combination of $ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $ features the best prediction performance. The AAD and Errormax of the prediction result for the trial set are only 2.02% and 9.34%, which are far lower than the prediction deviation of the heat transfer correlation, and the predictions of the trend of h in the high temperature region, the maximum value of h and the position of the peak value of h are more precise than heat transfer correlation. Moreover, this research compares GA-BP model with BP model under two different fitness value calculation methods to reveal the effectiveness of GA-BP in enhancing the prediction accuracy of supercritical heat transfer, concluding that when the same dataset is adopted for network training and fitness value calculation, over-fitting will occur and the GA-BP cannot further improve the prediction accuracy; when different datasets are used to train the network and calculate the fitness value, the generalization ability of the network will be strengthened, and the root mean square deviation and the maximum deviation of the prediction result can be further reduced.This work will provide a practical tool for predicting the cooling convection heat transfer of supercritical R1234ze(E) in horizontal tubes, laying the foundation for its application in trans-critical heat pump systems, and providing inspiration for potential research directions of ANN in supercritical heat transfer prediction.
      Corresponding author: Jiang Yi-Ran, jiangyr@cdut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52176171).
    [1]

    Dittus F W, Boelter L M K 1930 Univ. California Publicat. Eng. 2 443

    [2]

    Gnielinski V 1976 Int. J. Chem. Eng. 16 359

    [3]

    Bae Y Y, Kim H Y 2009 Exp. Therm. Fluid Sci. 33 329Google Scholar

    [4]

    Saltanov E 2015 Ph. D. Dissertation (University of Ontario Institute of Technology

    [5]

    Kim J K, Jeon H K, Lee J S 2007 Nucl. Eng. Des. 237 1795Google Scholar

    [6]

    Kuang G, Ohadi M, Dessiatoun S 2008 HVACR Res. 14 861Google Scholar

    [7]

    Zhang S J, Xu X X, Liu C, Liu X X, Ru Z P, Dang C B 2020 Int. J. Heat Mass Transfer 149 119074Google Scholar

    [8]

    Wang L, Pan Y C, Lee J D, Wang Y, Fu B R, Pan C 2020 Int. J. Heat Mass Transfer 159 120136Google Scholar

    [9]

    Liu S H, Huang Y P, Liu G X, Wang J F, Leung L K H 2017 Int. J. Heat Mass Transfer 106 1144Google Scholar

    [10]

    Kim D E, Kim M H 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [11]

    Kumar R, Nikam K, Jilte R 2020 Applied Computer Vision and Image Processing Advances in Intelligent Systems and Computing (Singapore: Springer

    [12]

    Ahmadi M H, Ghazvini M, Maddah H, Kahani M, Pourfarhang S, Pourfarhang A, Heris S Z 2020 Physica A 546 124008Google Scholar

    [13]

    Aghayari R, Maddah H, Ahmadi M H, Yan W M, Ghasemi N 2018 Energies 11 1190Google Scholar

    [14]

    Mensah R A, Jiang L, Asante-Okyere S, Xu Q, Jin C 2019 J. Therm. Anal. Calorim. 138 3055Google Scholar

    [15]

    Ye K, Zhang Y L, Yang L L, Zhao Y R, Li N, Xi C K 2019 Appl. Therm. Eng. 150 686Google Scholar

    [16]

    Zhu B, Zhu X, Xie J, Xu J L, Liu H 2021 J. Therm. Sci. 30 1751Google Scholar

    [17]

    Prasad K S R, Krishna V, Bharadwaj M S, Ponangi B R 2022 J. Heat Transfer 144 011802Google Scholar

    [18]

    Ma D, Zhou T, Chen J, Qi S, Shahzad M A, Xiao Z J 2017 Nucl. Eng. Des. 320 400Google Scholar

    [19]

    Chang W, Chu X, Fareed A F B S, Pandey S, Luo J Y, Weigand B, Laurien E 2018 Appl. Therm. Eng. 131 815Google Scholar

    [20]

    Sun F, Xie G, Li S 2021 Appl. Soft Comput. 102 107110Google Scholar

    [21]

    Sun F, Xie G, Song J, Li S L, Markides C N 2021 Appl. Therm. Eng. 194 117067Google Scholar

    [22]

    Jiang Y R, Hu P, Ibrahim A 2020 Int. J. Heat Fluid Flow 85 108650Google Scholar

    [23]

    Dang C B, Hihara E 2012 Int. J. Refrigeration 35 1130Google Scholar

  • 图 1  传热数据集的全部数据点分布 (a)不同管径下的传热系数; (b) 不同质量通量下的传热系数; (c) 不同热流密度下的传热系数; (d) 不同压力下的传热系数

    Figure 1.  Distributions of all data points for the heat transfer dataset: (a) Heat transfer coefficients under different tube diameters; (b) heat transfer coefficients under different mass fluxes; (c) heat transfer coefficients under different heat fluxes; (d) heat transfer coefficients under different pressures.

    图 2  具有一层隐藏层的BPNN结构

    Figure 2.  BPNN structure with one hidden layer.

    图 3  BPNN训练流程

    Figure 3.  BPNN training process.

    图 4  关联式和神经网络对试验集预测结果的对比 (a)工况1; (b)工况2; (c) 工况3; (d)工况4

    Figure 4.  Comparison of prediction results of correlation and neural network on the trial set: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4.

    图 5  关联式和神经网络对试验集努塞尔数预测结果的对比

    Figure 5.  Comparison of Nusselt prediction results of correlation and neural network on the trial set.

    图 6  GA-BP神经网络流程图

    Figure 6.  GA-BP neural network flowchart.

    图 7  (a) BP网络与(b) GA-BP网络对试验集预测结果的对比

    Figure 7.  Comparison of prediction results of (a) BP network and (b) GA-BP network on the trial set.

    图 8  (a) BP网络与(b) GA-BP-I网络对试验集预测结果的对比

    Figure 8.  Comparison of prediction results of (a) BP network and (b) GA-BP-I network on the trial set.

    图 9  BP网络与GA-BP-I网络对试验集177个数据点的预测偏差分布图

    Figure 9.  Distributions of prediction bias of BP network and GA-BP-I network for 177 data points of the trial set.

    表 1  CFD模拟数据集全部工况

    Table 1.  CFD simulation dataset for all operating conditions.

    Case d/mm G/(kg·m–2·s–1) q /(kW·m–2) P/MPa Tb /K
    1—12 3, 4, 5, 6, 7, 8, 9, 10,
    11, 12, 13, 14
    320 –40 4.0 370—420
    13—24 6 160, 200, 240, 280, 320, 360,
    400, 440, 480, 520, 560, 600
    –40 4.0 370—420
    25—34 6 320 –10, –20, –30, –40, –50, –60,
    –70, –80, –90, –100
    4.0 370—420
    35—44 6 320 –40 3.8, 4.0, 4.2, 4.4,
    4.6, 4.8, 5.0, 5.2,
    370—420
    DownLoad: CSV

    表 2  BPNN模型参数的设置

    Table 2.  Parameters of the BPNN model.

    序号项目值或选择
    1隐藏层神经元数目由测试集的预测结果确定
    2隐藏层传递函数tansig
    3输出层传递函数purelin
    4训练函数类型由测试集的预测结果确定
    5学习函数类型learngdm
    6最大迭代次数20000
    7训练目标误差10–10
    8网络学习速率0.1
    9验证集最大确认失败数6
    DownLoad: CSV

    表 3  4种工况参数设置

    Table 3.  Parameters of four cases.

    d/mm G/(kg·m–2·s–1) q/(kW·m–2) P/MPa
    Case 1 8 250 –75 3.9
    Case 2 5 460 –55 3.9
    Case 3 8 220 –65 4.5
    Case 4 7 300 –25 4.5
    DownLoad: CSV

    表 4  输入参数对试验集预测结果的影响

    Table 4.  Impacts of input parameters on the prediction results of the trial set

    输入参数试验集预测结果
    AAD/%RMSE/%Errormax/%
    传热关联式5.587.7229.40
    BP神经网络1)$ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{Gr} \mathord{\left/ {\vphantom {{Gr} {{Re} _{\text{b}}^{2}}}} \right. } {{Re} _{\text{b}}^{2}}} $8.2412.4043.98
    2)$ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $3.515.0715.19
    3)$ {{Re} _{\text{b}}} $, $ {Pr _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $2.023.019.34
    4)G, q, d, Tb, $ {\rho _{\text{b}}} $9.8915.5273.24
    5)G, q, d, Tb, $ {\rho _{\text{b}}} $, $ {C_{{\text{pb}}}} $, $ {\lambda _{\text{b}}} $, $ {\mu _{\text{b}}} $, 4.585.3511.35
    6)G, q, d, Tb, $ {\rho _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $47.2463.17224.89
    7)G, q, d, Tb, $ {\rho _{\text{b}}} $, $ {C_{{\text{pb}}}} $, $ {\lambda _{\text{b}}} $, $ {\mu _{\text{b}}} $, $ {{{\rho _{\text{b}}}} \mathord{\left/ {\vphantom {{{\rho _{\text{b}}}} {{\rho _{\text{w}}}}}} \right. } {{\rho _{\text{w}}}}} $, $ {{{{\overline C }_{\text{p}}}} \mathord{\left/ {\vphantom {{{{\overline C }_{\text{p}}}} {{C_{{\text{pw}}}}}}} \right. } {{C_{{\text{pw}}}}}} $, $ {{{\lambda _{\text{b}}}} \mathord{\left/ {\vphantom {{{\lambda _{\text{b}}}} {{\lambda _{\text{w}}}}}} \right. } {{\lambda _{\text{w}}}}} $, $ {{{\mu _{\text{b}}}} \mathord{\left/ {\vphantom {{{\mu _{\text{b}}}} {{\mu _{\text{w}}}}}} \right. } {{\mu _{\text{w}}}}} $52.5263.15151.79
    DownLoad: CSV
  • [1]

    Dittus F W, Boelter L M K 1930 Univ. California Publicat. Eng. 2 443

    [2]

    Gnielinski V 1976 Int. J. Chem. Eng. 16 359

    [3]

    Bae Y Y, Kim H Y 2009 Exp. Therm. Fluid Sci. 33 329Google Scholar

    [4]

    Saltanov E 2015 Ph. D. Dissertation (University of Ontario Institute of Technology

    [5]

    Kim J K, Jeon H K, Lee J S 2007 Nucl. Eng. Des. 237 1795Google Scholar

    [6]

    Kuang G, Ohadi M, Dessiatoun S 2008 HVACR Res. 14 861Google Scholar

    [7]

    Zhang S J, Xu X X, Liu C, Liu X X, Ru Z P, Dang C B 2020 Int. J. Heat Mass Transfer 149 119074Google Scholar

    [8]

    Wang L, Pan Y C, Lee J D, Wang Y, Fu B R, Pan C 2020 Int. J. Heat Mass Transfer 159 120136Google Scholar

    [9]

    Liu S H, Huang Y P, Liu G X, Wang J F, Leung L K H 2017 Int. J. Heat Mass Transfer 106 1144Google Scholar

    [10]

    Kim D E, Kim M H 2010 Nucl. Eng. Des. 240 3336Google Scholar

    [11]

    Kumar R, Nikam K, Jilte R 2020 Applied Computer Vision and Image Processing Advances in Intelligent Systems and Computing (Singapore: Springer

    [12]

    Ahmadi M H, Ghazvini M, Maddah H, Kahani M, Pourfarhang S, Pourfarhang A, Heris S Z 2020 Physica A 546 124008Google Scholar

    [13]

    Aghayari R, Maddah H, Ahmadi M H, Yan W M, Ghasemi N 2018 Energies 11 1190Google Scholar

    [14]

    Mensah R A, Jiang L, Asante-Okyere S, Xu Q, Jin C 2019 J. Therm. Anal. Calorim. 138 3055Google Scholar

    [15]

    Ye K, Zhang Y L, Yang L L, Zhao Y R, Li N, Xi C K 2019 Appl. Therm. Eng. 150 686Google Scholar

    [16]

    Zhu B, Zhu X, Xie J, Xu J L, Liu H 2021 J. Therm. Sci. 30 1751Google Scholar

    [17]

    Prasad K S R, Krishna V, Bharadwaj M S, Ponangi B R 2022 J. Heat Transfer 144 011802Google Scholar

    [18]

    Ma D, Zhou T, Chen J, Qi S, Shahzad M A, Xiao Z J 2017 Nucl. Eng. Des. 320 400Google Scholar

    [19]

    Chang W, Chu X, Fareed A F B S, Pandey S, Luo J Y, Weigand B, Laurien E 2018 Appl. Therm. Eng. 131 815Google Scholar

    [20]

    Sun F, Xie G, Li S 2021 Appl. Soft Comput. 102 107110Google Scholar

    [21]

    Sun F, Xie G, Song J, Li S L, Markides C N 2021 Appl. Therm. Eng. 194 117067Google Scholar

    [22]

    Jiang Y R, Hu P, Ibrahim A 2020 Int. J. Heat Fluid Flow 85 108650Google Scholar

    [23]

    Dang C B, Hihara E 2012 Int. J. Refrigeration 35 1130Google Scholar

  • [1] Song Tian-Shu, Xia Hui. Study on dynamic scaling behavior of Villain-Lai-Das Sarma equation based on numerically stable nueral networks. Acta Physica Sinica, 2024, 73(16): 160501. doi: 10.7498/aps.73.20240852
    [2] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [3] Ma Rui-Yao, Wang Xin, Li Shu, Yong Heng, Shangguan Dan-Hua. An efficient calculation method for particle transport problems based on neural network. Acta Physica Sinica, 2024, 73(7): 072802. doi: 10.7498/aps.73.20231661
    [4] Yang Ying, Cao Huai-Xin. Two types of neural network representations of quantum mixed states. Acta Physica Sinica, 2023, 72(11): 110301. doi: 10.7498/aps.72.20221905
    [5] Fang Bo-Lang, Wang Jian-Guo, Feng Guo-Bin. Calculation of spot entroid based on physical informed neural networks. Acta Physica Sinica, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [6] Li Jing, Sun Hao. Tag Z boson jets via convolutional neural networks. Acta Physica Sinica, 2021, 70(6): 061301. doi: 10.7498/aps.70.20201557
    [7] Sun Li-Wang, Li Hong, Wang Peng-Jun, Gao He-Bei, Luo Meng-Bo. Recognition of adsorption phase transition of polymer on surface by neural network. Acta Physica Sinica, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [8] Wei De-Zhi, Chen Fu-Ji, Zheng Xiao-Xue. Internet public opinion chaotic prediction based on chaos theory and the improved radial basis function in neural networks. Acta Physica Sinica, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [9] Li Huan, Wang You-Guo. Noise-enhanced information transmission of a non-linear multilevel threshold neural networks system. Acta Physica Sinica, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [10] Chen Tie-Ming, Jiang Rong-Rong. New hybrid stream cipher based on chaos and neural networks. Acta Physica Sinica, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [11] Li Hua-Qing, Liao Xiao-Feng, Huang Hong-Yu. Synchronization of uncertain chaotic systems based on neural network and sliding mode control. Acta Physica Sinica, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [12] Zhao Hai-Quan, Zhang Jia-Shu. Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems. Acta Physica Sinica, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [13] Wang Yong-Sheng, Sun Jin, Wang Chang-Jin, Fan Hong-Da. Prediction of the chaotic time series from parameter-varying systems using artificial neural networks. Acta Physica Sinica, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [14] Niu Pei_Feng, Zhang Jun, Guan Xin_Ping. Research on a proportional-integral-derivative neural network decoupling control based on genetic algorithm optimization for unified chaotic system. Acta Physica Sinica, 2007, 56(5): 2493-2497. doi: 10.7498/aps.56.2493
    [15] Xing Hong-Yan, Xu Wei. The neural networks method for detecting weak signals under chaotic background. Acta Physica Sinica, 2007, 56(7): 3771-3776. doi: 10.7498/aps.56.3771
    [16] Wang Rui-Min, Zhao Hong. The role of neuron transfer function in artificial neural networks. Acta Physica Sinica, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [17] Xiong Tao, Chang Sheng-Jiang, Shen Jin-Yuan, Zhang Yan-Xin. Adaptive training and pruning algorithm for variable bit rate video traffic pre diction. Acta Physica Sinica, 2005, 54(4): 1931-1936. doi: 10.7498/aps.54.1931
    [18] Wang Yao-Nan, Tan Wen. Genetic-based neural network control for chaotic system. Acta Physica Sinica, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [19] Tan Wen, Wang Yao-Nan, Liu Zhu-Run, Zhou Shao-Wu. . Acta Physica Sinica, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [20] CHEN SHU, CHANG SHENG-JIANG, YUAN JING-HE, ZHANG YAN-XIN, K.W.WONG. ADAPTIVE TRAINING AND PRUNING FOR NEURAL NETWORKS:ALGORITHMS AND APPLICATION. Acta Physica Sinica, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
Metrics
  • Abstract views:  1606
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  21 February 2024
  • Accepted Date:  30 April 2024
  • Available Online:  10 May 2024
  • Published Online:  20 June 2024

/

返回文章
返回