搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数值稳定型神经网络的Villain-Lai-Das Sarma方程的动力学标度行为研究

宋天舒 夏辉

引用本文:
Citation:

基于数值稳定型神经网络的Villain-Lai-Das Sarma方程的动力学标度行为研究

宋天舒, 夏辉

Study on dynamic scaling behavior of Villain-Lai-Das Sarma equation based on numerically stable nueral networks

Song Tian-Shu, Xia Hui
PDF
HTML
导出引用
  • Villain-Lai-Das Sarma (VLDS)方程因其能够有效描述分子束外延生长过程而在表面生长动力学等领域中备受关注. 然而, 长程关联噪声驱动下的VLDS方程的标度结果尚不明确, 不同解析近似方法所得的标度结果仍不自洽. 在数值模拟方面, 由于非线性项的存在, VLDS方程一直存在数值发散的问题. 当前主要引入指数衰减技术替换非线性项以缓解数值发散的问题, 但是最近研究表明, 这种方法会导致所获得的标度指数发生歧变. 因此本文基于深度神经网络来表征VLDS方程中的各个确定项, 并基于数值稳定型神经网络分别对含长程时间和空间关联噪声的VLDS系统进行有效的数值模拟. 结果表明, 我们所构建的深度神经网络具有良好的数值计算稳定性和泛化性, 可以获得不同关联噪声驱动下的VLDS方程的可靠标度指数. 同时, 本文还发现长程时间关联噪声驱动的VLDS系统在时间关联指数较大时呈现谷堆状的表面形貌, 而空间关联噪声驱动下的表面形貌则仍然呈现自仿射分形结构.
    The Villain-Lai-Das Sarma (VLDS) equation has received much attention in surface growth dynamics due to its effective description of molecular beam epitaxy (MBE) growth process. However, the scaling exponent of the VLDS equation driven by long-range correlated noise is still unclear, because different analytical approximation methods yield inconsistent results. The nonlinear term in the VLDS equation challenges the numerical simulation methods, which often leads to the problem of numerical divergence. In the existing numerical approaches, the exponential decay techniques are mainly used to replace nonlinear terms to alleviate the numerical divergence. However, recent studies have shown that these methods may change the scaling exponent and universality class of the growth system. Therefore, we propose a novel deep neural network-based method to address this problem in this work. First, we construct a fully convolutional neural network to characterize the deterministic terms in the VLDS equation. To train the neural network, we generate training data by using the traditional finite-difference method before numerical divergence occurs. Then, we train the neural network to represent the deterministic terms, and perform simulations of VLDS driven by long-range temporally and spatially correlated noises based on the neural networks. The simulation results demonstrate that the deep neural networks constructed here possess good numerical stability. It can obtain reliable scaling exponents of the VLDS equation driven by different uncorrelated noise and correlated noise. Furthermore, in this work, it is also found that the VLDS system driven by long-range correlated noise exhibits a mound-like morphology when the temporal correlation exponent is large enough, while the growing surface morphology driven by spatially correlated noise still presents a self-affine fractal structure, independent of the spatial correlation exponent.
      通信作者: 夏辉, hxia@cumt.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: 2024QN11021)资助的课题.
      Corresponding author: Xia Hui, hxia@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2024QN11021).
    [1]

    Cho A Y, Arthur J R 1975 Prog. Solid State Ch. 10 157Google Scholar

    [2]

    Panish M B 1980 Science 208 916Google Scholar

    [3]

    Arthur J R 2002 Surf. Sci. 500 189Google Scholar

    [4]

    Wolf D E, Villain J 1990 EPL 13 389Google Scholar

    [5]

    Das Sarma S, Tamborenea P 1991 Phys. Rev. Lett. 66 325Google Scholar

    [6]

    Villain J 1991 J. Phys. I 1 19

    [7]

    Lai Z W, Das Sarma S 1991 Phys. Rev. Lett. 66 2348Google Scholar

    [8]

    Family F, Vicsek T S 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific) pp73–132

    [9]

    Katzav E 2002 Phys. Rev. E 65 032103Google Scholar

    [10]

    Tang G, Ma B 2001 Int. J. Mod. Phys. B 15 2275Google Scholar

    [11]

    Song T S, Xia H 2021 Phys. Rev. E 103 012121Google Scholar

    [12]

    Li B, Tan Z H, Jiao Y, Xia H 2021 J. Stat. Mech. Theory E 2021 023210Google Scholar

    [13]

    Song T S, Xia H 2021 J. Stat. Mech. Theory. E 2021 073203Google Scholar

    [14]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [15]

    方波浪, 王建国, 冯国斌 2022 物理学报 71 200601Google Scholar

    Fang B L, Wang J G, Feng G B 2022 Acta Phys. Sin. 71 200601Google Scholar

    [16]

    田十方, 李彪 2023 物理学报 72 100202Google Scholar

    Tian S F, Li B 2023 Acta Phys. Sin. 72 100202Google Scholar

    [17]

    方波浪, 武俊杰, 王晟, 吴振杰, 李天植, 张洋, 杨鹏翎, 王建国 2024 物理学报 73 094301Google Scholar

    Fang B L, Wu J J, Wang S, Wu Z J, Li T Z, Zhang Y, Yang P L, Wang J G 2024 Acta Phys. Sin. 73 094301Google Scholar

    [18]

    Vinuesa R, Brunton S L 2022 Nat. Comput. Sci. 2 358Google Scholar

    [19]

    Kochkov D, Smith J A, Alieva A, Wang Q, Brenner M P, Hoyer S 2021 PNAS 118 e2101784118Google Scholar

    [20]

    Obiols-Sales O, Vishnu A, Malaya N, Chandramowliswharan A 2020 Proceedings of the 34th ACM International Conference on Supercomputing Barcelona Spain, June 29– July 2, 2020

    [21]

    Ling J, Kurzawski A, Templeton J 2016 J. Fluid Mech. 807 155Google Scholar

    [22]

    Beck A, Flad D, Munz C D 2019 J. Comput. Phys. 398 108910Google Scholar

    [23]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [24]

    Kingma D P, Ba J 2017 arXiv: 1412.6980 [cs. LG]

    [25]

    Dasgupta C, Kim J M, Dutta M, Das Sarma S 1997 Phys. Rev. E 55 2235Google Scholar

    [26]

    Mandelbrot B B 1971 Water Resour. Res. 7 543Google Scholar

    [27]

    Lam C H, Sander L M 1992 Phys. Rev. A 46 R6128Google Scholar

  • 图 1  基于深度神经网络的VLDS方程数值模拟算法框图

    Fig. 1.  Framework of deep neural network-based VLDS simulation algorithm.

    图 2  VLDSNet训练阶段的损失值

    Fig. 2.  Loss values of VLDSNet at the training stage.

    图 3  VLDSNet在不同无关联噪声驱动的模拟结果 (a)均匀分布噪声; (b)高斯白噪声

    Fig. 3.  Simulation results of VLDSNet driven by uncorrelated noise: (a) Uniformly distributed noise; (b) Gaussian white noise.

    图 4  VLDSNet在长程关联噪声驱动的模拟结果 (a)长程时间关联噪声; (b)长程空间关联噪声

    Fig. 4.  Simulation results of VLDSNet driven by long-range correlated noises: (a) Long-range temporally correlated noise; (b) long-range spatially correlated noise.

    图 5  长程时间和空间关联噪声驱动的VLDS系统在稳态生长阶段的表面形貌 (a) $ \theta = 0.05 $; (b) $ \theta = 0.25 $; (c) $ \theta = 0.45 $; (d) $ \rho = $$ 0.05 $; (e) $ \rho = 0.25 $; (f) $ \rho = 0.45 $

    Fig. 5.  Surface morphologies of VLDS system driven by long range temporally and spatially correlated noises in the steady growth regions: (a) $ \theta = 0.05 $; (b) $ \theta = 0.25 $; (c) $ \theta = 0.45 $; (d) $ \rho = 0.05 $; (e) $ \rho = 0.25 $; (f) $ \rho = 0.45 $.

    表 1  VLDSNet网络结构

    Table 1.  Network structure of the VLDSNet.

    网络层 卷积核(通道、大小、填充) 尺寸(通道×尺寸)
    输入 1 × L
    卷积层1 (9, 5, 2) 9 × L
    卷积层2 (16, 3, 1) 16 × L
    卷积层3 (64, 1, 0) 64 × L
    卷积层4 (9, 1, 0) 9 × L
    卷积层5 (1, 3, 1) 1 × L
    输出 1 × L
    下载: 导出CSV

    表 2  VLDSNet和有限差分方法数值发散比较

    Table 2.  Comparison of numerical divergence between VLDSNet and FD.

    噪声缩放比例 离散时间步长 FD
    发散时间
    (高斯噪声)
    VLDSNet发散时间
    (高斯噪声)
    FD
    发散时间
    (均匀噪声)
    VLDSNet发散时间
    (均匀噪声)
    0.1 0.05 未发散 未发散 未发散 未发散
    1 0.05 17.4 未发散 1728.5 未发散
    10 0.05 7.0 未发散 9.9 未发散
    100 0.05 5.0 未发散 6.0 未发散
    0.1 0.1 2284.4 未发散 未发散 未发散
    1 0.1 8.6 未发散 31.9 未发散
    10 0.1 6.0 未发散 7.0 未发散
    100 0.1 5.0 未发散 5.0 未发散
    下载: 导出CSV
  • [1]

    Cho A Y, Arthur J R 1975 Prog. Solid State Ch. 10 157Google Scholar

    [2]

    Panish M B 1980 Science 208 916Google Scholar

    [3]

    Arthur J R 2002 Surf. Sci. 500 189Google Scholar

    [4]

    Wolf D E, Villain J 1990 EPL 13 389Google Scholar

    [5]

    Das Sarma S, Tamborenea P 1991 Phys. Rev. Lett. 66 325Google Scholar

    [6]

    Villain J 1991 J. Phys. I 1 19

    [7]

    Lai Z W, Das Sarma S 1991 Phys. Rev. Lett. 66 2348Google Scholar

    [8]

    Family F, Vicsek T S 1991 Dynamics of Fractal Surfaces (Singapore: World Scientific) pp73–132

    [9]

    Katzav E 2002 Phys. Rev. E 65 032103Google Scholar

    [10]

    Tang G, Ma B 2001 Int. J. Mod. Phys. B 15 2275Google Scholar

    [11]

    Song T S, Xia H 2021 Phys. Rev. E 103 012121Google Scholar

    [12]

    Li B, Tan Z H, Jiao Y, Xia H 2021 J. Stat. Mech. Theory E 2021 023210Google Scholar

    [13]

    Song T S, Xia H 2021 J. Stat. Mech. Theory. E 2021 073203Google Scholar

    [14]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [15]

    方波浪, 王建国, 冯国斌 2022 物理学报 71 200601Google Scholar

    Fang B L, Wang J G, Feng G B 2022 Acta Phys. Sin. 71 200601Google Scholar

    [16]

    田十方, 李彪 2023 物理学报 72 100202Google Scholar

    Tian S F, Li B 2023 Acta Phys. Sin. 72 100202Google Scholar

    [17]

    方波浪, 武俊杰, 王晟, 吴振杰, 李天植, 张洋, 杨鹏翎, 王建国 2024 物理学报 73 094301Google Scholar

    Fang B L, Wu J J, Wang S, Wu Z J, Li T Z, Zhang Y, Yang P L, Wang J G 2024 Acta Phys. Sin. 73 094301Google Scholar

    [18]

    Vinuesa R, Brunton S L 2022 Nat. Comput. Sci. 2 358Google Scholar

    [19]

    Kochkov D, Smith J A, Alieva A, Wang Q, Brenner M P, Hoyer S 2021 PNAS 118 e2101784118Google Scholar

    [20]

    Obiols-Sales O, Vishnu A, Malaya N, Chandramowliswharan A 2020 Proceedings of the 34th ACM International Conference on Supercomputing Barcelona Spain, June 29– July 2, 2020

    [21]

    Ling J, Kurzawski A, Templeton J 2016 J. Fluid Mech. 807 155Google Scholar

    [22]

    Beck A, Flad D, Munz C D 2019 J. Comput. Phys. 398 108910Google Scholar

    [23]

    Rumelhart D E, Hinton G E, Williams R J 1986 Nature 323 533Google Scholar

    [24]

    Kingma D P, Ba J 2017 arXiv: 1412.6980 [cs. LG]

    [25]

    Dasgupta C, Kim J M, Dutta M, Das Sarma S 1997 Phys. Rev. E 55 2235Google Scholar

    [26]

    Mandelbrot B B 1971 Water Resour. Res. 7 543Google Scholar

    [27]

    Lam C H, Sander L M 1992 Phys. Rev. A 46 R6128Google Scholar

  • [1] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变. 物理学报, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [2] 曾启昱, 陈博, 康冬冬, 戴佳钰. 大规模、量子精度的分子动力学模拟: 以极端条件液态铁为例. 物理学报, 2023, 72(18): 187102. doi: 10.7498/aps.72.20231258
    [3] 方波浪, 王建国, 冯国斌. 基于物理信息神经网络的光斑质心计算. 物理学报, 2022, 71(20): 200601. doi: 10.7498/aps.71.20220670
    [4] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波. 利用神经网络识别高分子链在表面的吸附相变. 物理学报, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [5] 魏德志, 陈福集, 郑小雪. 基于混沌理论和改进径向基函数神经网络的网络舆情预测方法. 物理学报, 2015, 64(11): 110503. doi: 10.7498/aps.64.110503
    [6] 李文涛, 梁艳, 王炜华, 杨芳, 郭建东. LaTiO3(110)薄膜分子束外延生长的精确控制和表面截止层的研究. 物理学报, 2015, 64(7): 078103. doi: 10.7498/aps.64.078103
    [7] 李欢, 王友国. 一类非线性神经网络中噪声改善信息传输. 物理学报, 2014, 63(12): 120506. doi: 10.7498/aps.63.120506
    [8] 陈铁明, 蒋融融. 混沌映射和神经网络互扰的新型复合流密码. 物理学报, 2013, 62(4): 040301. doi: 10.7498/aps.62.040301
    [9] 王荣, 吴莹, 刘少宝. 随机中毒对神经元网络时空动力学行为的影响. 物理学报, 2013, 62(22): 220504. doi: 10.7498/aps.62.220504
    [10] 谢裕颖, 唐刚, 寻之朋, 韩奎, 夏辉, 郝大鹏, 张永伟, 李炎. 随机稀释基底上刻蚀模型动力学标度行为的数值模拟研究. 物理学报, 2012, 61(7): 070506. doi: 10.7498/aps.61.070506
    [11] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步. 物理学报, 2011, 60(2): 020512. doi: 10.7498/aps.60.020512
    [12] 赵海全, 张家树. 混沌通信系统中非线性信道的自适应组合神经网络均衡. 物理学报, 2008, 57(7): 3996-4006. doi: 10.7498/aps.57.3996
    [13] 王永生, 孙 瑾, 王昌金, 范洪达. 变参数混沌时间序列的神经网络预测研究. 物理学报, 2008, 57(10): 6120-6131. doi: 10.7498/aps.57.6120
    [14] 郝大鹏, 唐 刚, 夏 辉, 陈 华, 张雷明, 寻之朋. 非局域Sun-Guo-Grant方程的自洽模耦合理论. 物理学报, 2007, 56(4): 2018-2023. doi: 10.7498/aps.56.2018
    [15] 杨吉军, 徐可为. 生长初期Ta膜的表面动态演化行为. 物理学报, 2007, 56(10): 6023-6027. doi: 10.7498/aps.56.6023
    [16] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [17] 王耀南, 谭 文. 混沌系统的遗传神经网络控制. 物理学报, 2003, 52(11): 2723-2728. doi: 10.7498/aps.52.2723
    [18] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制. 物理学报, 2002, 51(11): 2463-2466. doi: 10.7498/aps.51.2463
    [19] 卢励吾, 张砚华, J.Wang, WeikunGe. 分子束外延生长赝配高电子迁移率超高速微结构功能材料里深中心识别. 物理学报, 2002, 51(2): 372-376. doi: 10.7498/aps.51.372
    [20] 神经网络的自适应删剪学习算法及其应用. 物理学报, 2001, 50(4): 674-681. doi: 10.7498/aps.50.674
计量
  • 文章访问数:  1287
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 修回日期:  2024-07-12
  • 上网日期:  2024-07-18
  • 刊出日期:  2024-08-20

/

返回文章
返回