Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics

ZHANG Yichen DING Nannan LI Jialin FU Yuxi

Citation:

Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics

ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi
cstr: 32037.14.aps.74.20250546
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Attosecond transient absorption spectroscopy (ATAS) is an all-optical pump-probe technique that employs attosecond pulses (from the extreme ultraviolet to soft X-ray) to excite or probe a system, enabling real-time tracking of electronic transitions, quantum state evolution, and energy transfer processes. This approach possesses some key advantages: 1) ultrafast temporal resolution (sub-femtosecond) combined with high spectral resolution (millielectronvolt level); 2) broadband excitation of multiple quantum states, allowing simultaneous detection of multiple energy levels; and 3) element- and site-specific insights provided by the measurements of inner-shell to valence transition reveal charge transfer dynamics, spin state changes, and local structural evolution. To date, significant breakthroughs have been achieved in atomic/molecular physics, electronic coherent dynamics, and strong-field physics by using ATAS. This paper systematically reviews the technical principles and theoretical models related to ATAS by using medium intensity near-infrared pulses, analyzes the recent progress of the applications in gas-phase systems and condensed-phase systems, and explores their future prospects in ultrafast physical chemistry and quantum materials. In gas-phase environments, the ATAS has demonstrated significant capabilities in probing energy level shifts and population transfers in atomic systems, as well as capturing nonadiabatic dynamics and charge migration in diatomic and polyatomic molecules. While in condensed-phase systems, this technique has been effectively used to study the ultrafast dynamics of carriers in semiconductors and to examine the interaction dynamics of localized electrons in insulators and transition metals. Given the rapid evolution of attosecond laser technologies and the unique advantages of the ATAS detection method, this paper also outlines potential future directions. These prospects are expected to further expand the frontiers of ultrafast spectroscopy and drive advancements in a range of disciplines in basic research and technological applications.
      Corresponding author: LI Jialin, lijialin@opt.ac.cn ; FU Yuxi, fuyuxi@opt.ac.cn
    • Funds: Project supported by the Young Scientists Group in Basic Research, CAS (Grant No. J23-117-Ⅲ), and the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2024JC-DXWT-03), and the Basic Research Department of XIOPM (Grant No. E25126Z1).
    [1]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803Google Scholar

    [2]

    Li M X, Xie M, Wang H Y, Jia L J, Li J L, Wang W T, Cai J A, Hong X C, Shi X S, Lv Y, Zhao X N, Luo S Z, Jiang W, Peng L, Ding D J 2024 Phys. Rev. Lett. 133 253201Google Scholar

    [3]

    Tao Z S, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [4]

    Sansone G, Kelkensberg F, Pérez-Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario J L, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov M Y, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763Google Scholar

    [5]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733Google Scholar

    [6]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401Google Scholar

    [7]

    Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [8]

    Beck A R, Neumark D M, Leone S R 2015 Chem. Phys. Lett. 624 119Google Scholar

    [9]

    Ramasesha K, Leone S R, Neumark D M 2016 Annu. Rev. Phys. Chem. 67 41Google Scholar

    [10]

    Di Palo N, Inzani G, Dolso G L, Talarico M, Bonetti S, Lucchini M 2024 APL Photonics 9 020901Google Scholar

    [11]

    Kobayashi Y, Leone S R 2022 J. Chem. Phys. 157 180901Google Scholar

    [12]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [13]

    Duris J, Li S Q, Driver T, Champenois E G, MacArthur J P, Lutman A A, Zhang Z, Rosenberger P, Aldrich J W, Coffee R, Coslovich G, Decker F, Glownia J M, Hartmann G, Helml W, Kamalov A, Knurr J, Krzywinski J, Lin M, Marangos J P, Nantel M, Natan A, O’Neal J T, Shivaram N, Walter P, Wang A L, Welch J J, Wolf T J A, Xu J Z, Kling M F, Bucksbaum P H, Zholents A, Huang Z, Cryan J P, Marinelli A 2020 Nat. Photonics 14 30Google Scholar

    [14]

    Alqattan H, Hui D D, Pervak V, Hassan M Th 2022 APL Photonics 7 041301Google Scholar

    [15]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [16]

    Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080Google Scholar

    [17]

    Stooß V, Hartmann M, Birk P, Borisova G D, Ding T, Blättermann A, Ott C, Pfeifer T 2019 Rev. Sci. Instrum. 90 053108Google Scholar

    [18]

    Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419Google Scholar

    [19]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 033409Google Scholar

    [20]

    Santra R, Dunford R W, Young L 2006 Phys. Rev. A 74 043403Google Scholar

    [21]

    Santra R, Yakovlev V S, Pfeifer T, Loh Z 2011 Phys. Rev. A 83 033405Google Scholar

    [22]

    Wu M X, Chen S H, Camp S, Schafer K J, Gaarde M B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062003Google Scholar

    [23]

    Hollstein M, Santra R, Pfannkuche D 2017 Phys. Rev. A 95 053411Google Scholar

    [24]

    Timmers H, Zhu X L, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez T J, Neumark D M, Leone S R 2019 Nat. Commun. 10 3133Google Scholar

    [25]

    Bækhøj J E, Lévêque C, Madsen L B 2018 Phys. Rev. Lett. 121 023203Google Scholar

    [26]

    Mashiko H, Oguri K, Yamaguchi T, Suda A, Gotoh H 2016 Nat. Phys. 12 741Google Scholar

    [27]

    Zürch M, Chang H, Borja L J, Kraus P M, Cushing S K, Gandman A, Kaplan C J, Oh M H, Prell J S, Prendergast D, Pemmaraju C D, Neumark D M, Leone S R 2017 Nat. Commun. 8 15734Google Scholar

    [28]

    Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 75Google Scholar

    [29]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [30]

    Volkov M, Sato S A, Schlaepfer F, Kasmi L, Hartmann N, Lucchini M, Gallmann L, Rubio A, Keller U 2019 Nat. Phys. 15 1145Google Scholar

    [31]

    Jager M F, Ott C, Kraus P M, Kaplan C J, Pouse W, Marvel R E, Haglund R F, Neumark D M, Leone S R 2017 Proc. Natl. Acad. Sci. U. S. A. 114 9558Google Scholar

    [32]

    Bernhardt B, Beck A R, Li X, Warrick E R, Bell M J, Haxton D J, McCurdy C W, Neumark D M, Leone S R 2014 Phys. Rev. A 89 023408Google Scholar

    [33]

    Wang H, Chini M, Chen S Y, Zhang C, He F, Cheng Y, Wu Y, Thumm U, Chang Z H 2010 Phys. Rev. Lett. 105 143002Google Scholar

    [34]

    Wang X W, Chini M, Cheng Y, Wu Y, Tong X, Chang Z H 2013 Phys. Rev. A 87 063413Google Scholar

    [35]

    Cao W, Warrick E R, Neumark D M, Leone S R 2016 New J. Phys. 18 013041Google Scholar

    [36]

    Beck A R, Bernhardt B, Warrick E R, Wu M, Chen S, Gaarde M B, Schafer K J, Neumark D M, Leone S R 2014 New J. Phys. 16 113016Google Scholar

    [37]

    Chini M, Wang X W, Cheng Y, Chang Z H 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124009Google Scholar

    [38]

    Chen S H, Bell M J, Beck A R, Mashiko H, Wu M X, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408Google Scholar

    [39]

    Wu M X, Chen S H, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 043416Google Scholar

    [40]

    Chini M, Wang X W, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z H 2013 Sci. Rep. 3 1105Google Scholar

    [41]

    Chini M, Zhao B Z, Wang H, Cheng Y, Hu S X, Chang Z H 2012 Phys. Rev. Lett. 109 073601Google Scholar

    [42]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716Google Scholar

    [43]

    Drescher L, Reitsma G, Witting T, Patchkovskii S, Mikosch J, Vrakking M J J 2019 J. Phys. Chem. Lett. 10 265Google Scholar

    [44]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 87 033408Google Scholar

    [45]

    Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79Google Scholar

    [46]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489Google Scholar

    [47]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M, Leone S R 2020 Nat. Commun. 11 4042Google Scholar

    [48]

    Kobayashi Y, Chang K F, Poullain S M, Scutelnic V, Zeng T, Neumark D M, Leone S R 2020 Phys. Rev. A 101 063414Google Scholar

    [49]

    Wei Z R, Li J L, Wang L, See S T, Jhon M H, Zhang Y F, Shi F, Yang M H, Loh Z 2017 Nat. Commun. 8 735Google Scholar

    [50]

    Wei Z R, Li J L, Zhang H M, Lu Y P, Yang M H, Loh Z 2019 J. Chem. Phys. 151 214308Google Scholar

    [51]

    Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Y, Villeneuve D M 2019 Nat. Commun. 10 5269Google Scholar

    [52]

    Peng P, Mi Y H, Lytova M, Britton M, Ding X, Naumov A Yu, Corkum P B, Villeneuve D M 2022 Nat. Photonics 16 45Google Scholar

    [53]

    Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601Google Scholar

    [54]

    Sabbar M, Timmers H, Chen Y, Pymer A K, Loh Z, Sayres S G, Pabst S, Santra R, Leone S R 2017 Nat. Phys. 13 472Google Scholar

    [55]

    Golubev N V, Vaníček J, Kuleff A I 2021 Phys. Rev. Lett. 127 123001Google Scholar

    [56]

    Kobayashi Y, Neumark D M, Leone S R 2022 Opt. Express 30 5673Google Scholar

    [57]

    Lucchini M, Sato S A, Lucarelli G D, Moio B, Inzani G, Borrego-Varillas R, Frassetto F, Poletto L, Hübener H, De Giovannini U, Rubio A, Nisoli M 2021 Nat. Commun. 12 1021Google Scholar

    [58]

    Géneaux R, Kaplan C J, Yue L, Ross A D, Bækhøj J E, Kraus P M, Chang H, Guggenmos A, Huang M, Zürch M, Schafer K J, Neumark D M, Gaarde M B, Leone S R 2020 Phys. Rev. Lett. 124 207401Google Scholar

    [59]

    Kaplan C J, Kraus P M, Ross A D, Zürch M, Cushing S K, Jager M F, Chang H, Gullikson E M, Neumark D M, Leone S R 2018 Phys. Rev. B 97 205202Google Scholar

    [60]

    Li S, Lu L X, Bhattacharyya S, Pearce C, Li K, Nienhuis E T, Doumy G, Schaller R D, Moeller S, Lin M, Dakovski G, Hoffman D J, Garratt D, Larsen K A, Koralek J D, Hampton C Y, Cesar D, Duris J, Zhang Z, Sudar N, Cryan J P, Marinelli A, Li X S, Inhester L, Santra R, Young L 2024 Science 383 1118Google Scholar

    [61]

    Gutberlet T, Chang H, Zayko S, Sivis M, Ropers C 2023 Opt. Express 31 39757Google Scholar

    [62]

    Volkov M, Pupeikis J, Phillips C R, Schlaepfer F, Gallmann L, Keller U 2019 Opt. Express 27 7886Google Scholar

    [63]

    Géneaux R, Chang H, Schwartzberg A M, Marroux H J B 2021 Opt. Express 29 951Google Scholar

    [64]

    Faccialà D, Toulson B W, Gessner O 2021 Opt. Express 29 35135Google Scholar

    [65]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [66]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240Google Scholar

    [67]

    Okino T, Furukawa Y, Nabekawa Y, Miyabe S, Amani Eilanlou A, Takahashi E J, Yamanouchi K, Midorikawa K 2015 Sci. Adv. 1 e1500356Google Scholar

    [68]

    Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D, Charalambidis D 2011 Nat. Phys. 7 781Google Scholar

    [69]

    Moulet A, Bertrand J B, Klostermann T, Guggenmos A, Karpowicz N, Goulielmakis E 2017 Science 357 1134Google Scholar

  • 图 1  ATAS实验装置示意图(HHG, 高次谐波产生; MCP, 微通道板). 其中, 金属箔(铝箔、铟箔、锆箔等, 根据探测的光谱范围选择)用于阻挡驱动光; 轮胎镜用于将阿秒脉冲聚焦到样品靶上; 空芯镜用于将飞秒光与阿秒脉冲合束

    Figure 1.  Schematic of the ATAS setup (HHG, high-order harmonic generation; MCP, microchannel plate). Metal foils (e.g., aluminum, indium, or zirconium, chosen by spectral range) block the driving light. A toroidal mirror focuses the attosecond pulses onto the sample, and a hole mirror combines the femtosecond beam with the attosecond pulses.

    图 2  (a) LISs态能级示意图(出自文献[38], 已获得授权). 黑色虚线为LISs, LISs通过吸收一个XUV光子(紫色)和吸收或发射一个NIR光子(红色)将基态耦合到1sns和1snd态; (b) He原子的ATAS图(出自文献[40], 已获得授权). 图中观察到AT分裂和LISs时间延迟依赖的吸收特征(+代表辐射NIR光子, –代表吸收NIR光子)

    Figure 2.  (a) Schematic energy level diagram of light-induced states (LISs). Reproduced with permission from Ref. [38]. The black dashed line indicates the LISs, which couple the ground state to the 1sns and 1snd states via absorption of one XUV photon (purple) and absorption or emission of one NIR photon (red); (b) ATAS spectrum of He, showing AT splitting and time-delay-dependent absorption features of the LISs. Here, “+” denotes NIR photon emission and “–” denotes NIR photon absorption. Reproduced with permission from Ref. [40]

    图 3  (a) CH3I的ATAS图: 顶部标尺中σ*代表价态, 6pe, 6pa1, 7p代表Rydberg态, 53—57 eV处吸收线型变为类Fano线型. 出自文献[43], 已获得授权. Ne原子的(b)原始和(c)间接路径消除后的ATAS. 出自文献[34], 已获得授权

    Figure 3.  (a) ATAS spectrum of CH3I: the top scale marks the valence state (σ*) and Rydberg states (6pe, 6pa1, 7p); the absorption profile between 53–57 eV turns Fano-like. Reproduced with permission from Ref. [43]. (b) The original ATAS and (c) ATAS after indirect path elimination of Ne atom. Reproduced with permission from Ref. [34].

    图 4  (a) R-I势能曲线示意图; (b) i-C3H7I在–4—160 fs延迟处的吸收光谱图. 光谱以灰色颜色绘制, 随着延迟的增加, 光谱向蓝色演化, 虚线表示碘原子跃迁对应的位置; (c) i-C3H7I的ATAS图, 根据图(a)中介绍的Region 1—3标记方案, 对状态特异性分子特征及其向原子跃迁的收敛(箭头所示)进行标记. 出自文献[47], 已获得授权

    Figure 4.  (a) Schematic of the R-I potential energy curve; (b) absorption spectrum of i-C3H7I between –4 and 160 fs delay: gray curves shift toward blue with delay, the dashed line marks the iodine transition; (c) ATAS spectrum of i-C3H7I with state-specific molecular features and their convergence toward atomic transitions (arrows) labeled using the Region 1–3 scheme. Reproduced with permission from Ref. [47].

    图 5  (a)振动相干和(b)电子相干示意图. 出自文献[48], 已获得授权

    Figure 5.  Schematic of (a) vibrational and (b) electronic coherences. Reproduced with permission from Ref. [48].

    图 6  (a) Si带隙动力学的阿秒探测原理(出自文献[29], 已获得授权); (b) 100.35 e V处XUV透射率的时间演化图(出自文献[29], 已获得授权), 内插图显示了对阶跃上升时间的拟合; (c)绝缘相动力学行为的双组分拟合(出自文献[31], 已获得授权); (d)自由载流子屏蔽介导的Mott相变示意图, 库仑力的驱动下载流子在空间上重新分配以屏蔽离子核(t0t0 + τscreening). 出自文献[31], 已获得授权

    Figure 6.  (a) Principle of attosecond probing of band-gap dynamics in Si. Reproduced with permission from Ref. [29]. (b) XUV transmission at 100.35 eV over time; the inset illustrates a fit for the step rise time. Reproduced with permission from Ref. [29]. (c) A two-component fit for the dynamics behavior of insulating phase. Reproduced with permission from Ref.[31]. (d) Schematic of free-carrier screening-mediated Mott transition, Coulomb forces drive the carriers redistribute spatially to screen the ion cores (t0t0 + τscreening). Reproduced with permission from Ref. [31].

    图 7  (a)液态水氧K边的阿秒探测原理; (b) 0.6 fs 延迟处液态水AX-ATAS光谱. 出自文献[60], 已获得授权

    Figure 7.  (a) Principle of attosecond probing of oxygen K-edge electrons in liquid water; (b) AX-ATAS spectrum of liquid water at 0.6 fs delay. Reproduced with permission from Ref.[60].

  • [1]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 803Google Scholar

    [2]

    Li M X, Xie M, Wang H Y, Jia L J, Li J L, Wang W T, Cai J A, Hong X C, Shi X S, Lv Y, Zhao X N, Luo S Z, Jiang W, Peng L, Ding D J 2024 Phys. Rev. Lett. 133 253201Google Scholar

    [3]

    Tao Z S, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62Google Scholar

    [4]

    Sansone G, Kelkensberg F, Pérez-Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario J L, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov M Y, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763Google Scholar

    [5]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733Google Scholar

    [6]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401Google Scholar

    [7]

    Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739Google Scholar

    [8]

    Beck A R, Neumark D M, Leone S R 2015 Chem. Phys. Lett. 624 119Google Scholar

    [9]

    Ramasesha K, Leone S R, Neumark D M 2016 Annu. Rev. Phys. Chem. 67 41Google Scholar

    [10]

    Di Palo N, Inzani G, Dolso G L, Talarico M, Bonetti S, Lucchini M 2024 APL Photonics 9 020901Google Scholar

    [11]

    Kobayashi Y, Leone S R 2022 J. Chem. Phys. 157 180901Google Scholar

    [12]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509Google Scholar

    [13]

    Duris J, Li S Q, Driver T, Champenois E G, MacArthur J P, Lutman A A, Zhang Z, Rosenberger P, Aldrich J W, Coffee R, Coslovich G, Decker F, Glownia J M, Hartmann G, Helml W, Kamalov A, Knurr J, Krzywinski J, Lin M, Marangos J P, Nantel M, Natan A, O’Neal J T, Shivaram N, Walter P, Wang A L, Welch J J, Wolf T J A, Xu J Z, Kling M F, Bucksbaum P H, Zholents A, Huang Z, Cryan J P, Marinelli A 2020 Nat. Photonics 14 30Google Scholar

    [14]

    Alqattan H, Hui D D, Pervak V, Hassan M Th 2022 APL Photonics 7 041301Google Scholar

    [15]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [16]

    Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080Google Scholar

    [17]

    Stooß V, Hartmann M, Birk P, Borisova G D, Ding T, Blättermann A, Ott C, Pfeifer T 2019 Rev. Sci. Instrum. 90 053108Google Scholar

    [18]

    Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419Google Scholar

    [19]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 033409Google Scholar

    [20]

    Santra R, Dunford R W, Young L 2006 Phys. Rev. A 74 043403Google Scholar

    [21]

    Santra R, Yakovlev V S, Pfeifer T, Loh Z 2011 Phys. Rev. A 83 033405Google Scholar

    [22]

    Wu M X, Chen S H, Camp S, Schafer K J, Gaarde M B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062003Google Scholar

    [23]

    Hollstein M, Santra R, Pfannkuche D 2017 Phys. Rev. A 95 053411Google Scholar

    [24]

    Timmers H, Zhu X L, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez T J, Neumark D M, Leone S R 2019 Nat. Commun. 10 3133Google Scholar

    [25]

    Bækhøj J E, Lévêque C, Madsen L B 2018 Phys. Rev. Lett. 121 023203Google Scholar

    [26]

    Mashiko H, Oguri K, Yamaguchi T, Suda A, Gotoh H 2016 Nat. Phys. 12 741Google Scholar

    [27]

    Zürch M, Chang H, Borja L J, Kraus P M, Cushing S K, Gandman A, Kaplan C J, Oh M H, Prell J S, Prendergast D, Pemmaraju C D, Neumark D M, Leone S R 2017 Nat. Commun. 8 15734Google Scholar

    [28]

    Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 75Google Scholar

    [29]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348Google Scholar

    [30]

    Volkov M, Sato S A, Schlaepfer F, Kasmi L, Hartmann N, Lucchini M, Gallmann L, Rubio A, Keller U 2019 Nat. Phys. 15 1145Google Scholar

    [31]

    Jager M F, Ott C, Kraus P M, Kaplan C J, Pouse W, Marvel R E, Haglund R F, Neumark D M, Leone S R 2017 Proc. Natl. Acad. Sci. U. S. A. 114 9558Google Scholar

    [32]

    Bernhardt B, Beck A R, Li X, Warrick E R, Bell M J, Haxton D J, McCurdy C W, Neumark D M, Leone S R 2014 Phys. Rev. A 89 023408Google Scholar

    [33]

    Wang H, Chini M, Chen S Y, Zhang C, He F, Cheng Y, Wu Y, Thumm U, Chang Z H 2010 Phys. Rev. Lett. 105 143002Google Scholar

    [34]

    Wang X W, Chini M, Cheng Y, Wu Y, Tong X, Chang Z H 2013 Phys. Rev. A 87 063413Google Scholar

    [35]

    Cao W, Warrick E R, Neumark D M, Leone S R 2016 New J. Phys. 18 013041Google Scholar

    [36]

    Beck A R, Bernhardt B, Warrick E R, Wu M, Chen S, Gaarde M B, Schafer K J, Neumark D M, Leone S R 2014 New J. Phys. 16 113016Google Scholar

    [37]

    Chini M, Wang X W, Cheng Y, Chang Z H 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124009Google Scholar

    [38]

    Chen S H, Bell M J, Beck A R, Mashiko H, Wu M X, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408Google Scholar

    [39]

    Wu M X, Chen S H, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 043416Google Scholar

    [40]

    Chini M, Wang X W, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z H 2013 Sci. Rep. 3 1105Google Scholar

    [41]

    Chini M, Zhao B Z, Wang H, Cheng Y, Hu S X, Chang Z H 2012 Phys. Rev. Lett. 109 073601Google Scholar

    [42]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716Google Scholar

    [43]

    Drescher L, Reitsma G, Witting T, Patchkovskii S, Mikosch J, Vrakking M J J 2019 J. Phys. Chem. Lett. 10 265Google Scholar

    [44]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 87 033408Google Scholar

    [45]

    Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79Google Scholar

    [46]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489Google Scholar

    [47]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M, Leone S R 2020 Nat. Commun. 11 4042Google Scholar

    [48]

    Kobayashi Y, Chang K F, Poullain S M, Scutelnic V, Zeng T, Neumark D M, Leone S R 2020 Phys. Rev. A 101 063414Google Scholar

    [49]

    Wei Z R, Li J L, Wang L, See S T, Jhon M H, Zhang Y F, Shi F, Yang M H, Loh Z 2017 Nat. Commun. 8 735Google Scholar

    [50]

    Wei Z R, Li J L, Zhang H M, Lu Y P, Yang M H, Loh Z 2019 J. Chem. Phys. 151 214308Google Scholar

    [51]

    Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Y, Villeneuve D M 2019 Nat. Commun. 10 5269Google Scholar

    [52]

    Peng P, Mi Y H, Lytova M, Britton M, Ding X, Naumov A Yu, Corkum P B, Villeneuve D M 2022 Nat. Photonics 16 45Google Scholar

    [53]

    Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601Google Scholar

    [54]

    Sabbar M, Timmers H, Chen Y, Pymer A K, Loh Z, Sayres S G, Pabst S, Santra R, Leone S R 2017 Nat. Phys. 13 472Google Scholar

    [55]

    Golubev N V, Vaníček J, Kuleff A I 2021 Phys. Rev. Lett. 127 123001Google Scholar

    [56]

    Kobayashi Y, Neumark D M, Leone S R 2022 Opt. Express 30 5673Google Scholar

    [57]

    Lucchini M, Sato S A, Lucarelli G D, Moio B, Inzani G, Borrego-Varillas R, Frassetto F, Poletto L, Hübener H, De Giovannini U, Rubio A, Nisoli M 2021 Nat. Commun. 12 1021Google Scholar

    [58]

    Géneaux R, Kaplan C J, Yue L, Ross A D, Bækhøj J E, Kraus P M, Chang H, Guggenmos A, Huang M, Zürch M, Schafer K J, Neumark D M, Gaarde M B, Leone S R 2020 Phys. Rev. Lett. 124 207401Google Scholar

    [59]

    Kaplan C J, Kraus P M, Ross A D, Zürch M, Cushing S K, Jager M F, Chang H, Gullikson E M, Neumark D M, Leone S R 2018 Phys. Rev. B 97 205202Google Scholar

    [60]

    Li S, Lu L X, Bhattacharyya S, Pearce C, Li K, Nienhuis E T, Doumy G, Schaller R D, Moeller S, Lin M, Dakovski G, Hoffman D J, Garratt D, Larsen K A, Koralek J D, Hampton C Y, Cesar D, Duris J, Zhang Z, Sudar N, Cryan J P, Marinelli A, Li X S, Inhester L, Santra R, Young L 2024 Science 383 1118Google Scholar

    [61]

    Gutberlet T, Chang H, Zayko S, Sivis M, Ropers C 2023 Opt. Express 31 39757Google Scholar

    [62]

    Volkov M, Pupeikis J, Phillips C R, Schlaepfer F, Gallmann L, Keller U 2019 Opt. Express 27 7886Google Scholar

    [63]

    Géneaux R, Chang H, Schwartzberg A M, Marroux H J B 2021 Opt. Express 29 951Google Scholar

    [64]

    Faccialà D, Toulson B W, Gessner O 2021 Opt. Express 29 35135Google Scholar

    [65]

    Midorikawa K 2022 Nat. Photonics 16 267Google Scholar

    [66]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240Google Scholar

    [67]

    Okino T, Furukawa Y, Nabekawa Y, Miyabe S, Amani Eilanlou A, Takahashi E J, Yamanouchi K, Midorikawa K 2015 Sci. Adv. 1 e1500356Google Scholar

    [68]

    Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D, Charalambidis D 2011 Nat. Phys. 7 781Google Scholar

    [69]

    Moulet A, Bertrand J B, Klostermann T, Guggenmos A, Karpowicz N, Goulielmakis E 2017 Science 357 1134Google Scholar

  • [1] Yang Xu, Feng Hong-Mei, Liu Jia-Nan, Zhang Xiang-Qun, He Wei, Cheng Zhao-Hua. Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism. Acta Physica Sinica, 2024, 73(15): 157501. doi: 10.7498/aps.73.20240646
    [2] Han Lin, Miao Shu-Li, Li Peng-Cheng. Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field. Acta Physica Sinica, 2022, 71(23): 233204. doi: 10.7498/aps.71.20221298
    [3] Chen Gao. Isolated attosecond pulse generation from helium atom irradiated by a three-color laser pulse. Acta Physica Sinica, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [4] Song Hao, Lü Xiao-Yuan, Zhu Ruo-Bi, Chen Gao. Isolated attosecond pulse generation from polarizationgating pulse with 10 fs duration. Acta Physica Sinica, 2019, 68(18): 184201. doi: 10.7498/aps.68.20190392
    [5] Lü Xiao-Yuan, Zhu Ruo-Bi, Song Hao, Su Ning, Chen Gao. Isolated attosecond pulse generation from a double optical gating scheme based on orthogonal polarization field. Acta Physica Sinica, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [6] Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun, Cheng Chao. Isolated intense sub-30-as pulse generation by quantum path control in the three-color laser pulse. Acta Physica Sinica, 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [7] Lu Ying-Ying, Zeng Zhi-Nan, Zheng Ying-Hui, Zou Pu, Liu Can-Dong, Gong Cheng, Li Ru-Xin, Xu Zhi-Zhan. Macroscopic effects of high-order harmonic and isolated attosecond pulse generation driven by two-color laser field. Acta Physica Sinica, 2011, 60(10): 103202. doi: 10.7498/aps.60.103202
    [8] Pan Hui-Ling, Li Peng-Cheng, Zhou Xiao-Xin. Single attosecond pulse generated by atom exposed to two laser pulses with the same color and half cycle pulses. Acta Physica Sinica, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [9] Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Single attosecond pulse generated by model helium atom exposed to the combined field of an intense few-cycle chirped laser pulse and a half cycle pulse. Acta Physica Sinica, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [10] Chen Yang, Chen Ji-Gen, Yang Yu-Jun. Isolated intense 39 attosecond pulse generatedby adding a harmonic pulse. Acta Physica Sinica, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [11] Luo Mu-Hua, Zhang Qiu-Ju, Yan Chun-Yan. Optimization of attosecond pulses from the interaction of ultrarelativistic laser with overdense plasma. Acta Physica Sinica, 2010, 59(12): 8559-8565. doi: 10.7498/aps.59.8559
    [12] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Zhang Qing-Bin, Li Qian-Guang, Lu Pei-Xiang. Generating isolated broadband attosecond pulses with stable pulse duration in a non-colinear polarized two-color field. Acta Physica Sinica, 2009, 58(7): 4914-4919. doi: 10.7498/aps.58.4914
    [13] Ye Xiao-Liang, Zhou Xiao-Xin, Zhao Song-Feng, Li Peng-Cheng. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [14] Zhang Qing-Bin, Hong Wei-Yi, Lan Peng-Fei, Yang Zhen-Yu, Lu Pei-Xiang. Control of attosecond pulse generation with modulated polarization gating. Acta Physica Sinica, 2008, 57(12): 7848-7854. doi: 10.7498/aps.57.7848
    [15] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Lu Pei-Xiang. Direct generation of isolated sub-50 attosecond pulse via controlling quantum paths by a low frequency field. Acta Physica Sinica, 2008, 57(9): 5853-5858. doi: 10.7498/aps.57.5853
    [16] Zheng Ying-Hui, Zeng Zhi-Nan, Li Ru-Xin, Xu Zhi-Zhan. Nondipole effects in high-order harmonic generation induced by extreme ultraviolet attosecond pulse. Acta Physica Sinica, 2007, 56(4): 2243-2249. doi: 10.7498/aps.56.2243
    [17] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Proposal for single attosecond pulse production with a 43 fs super intense laser pulse. Acta Physica Sinica, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [18] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Single attosecond pulse generation by tightly focused laser beam-electron interaction. Acta Physica Sinica, 2006, 55(5): 2115-2121. doi: 10.7498/aps.55.2115
    [19] Zheng Jun, Sheng Zheng-Ming, Zhang Jie. Attosecond pulses emitted by a single energetic electron traversing an intense laser beam. Acta Physica Sinica, 2005, 54(6): 2638-2644. doi: 10.7498/aps.54.2638
    [20] Zeng Zhi-Nan, Li Ru-Xin, Xie Xin-Hua, Xu Zhi-Zhan. High-order harmonic attosecond pulses driven by a two-pulse laser. Acta Physica Sinica, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
Metrics
  • Abstract views:  858
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  24 April 2025
  • Accepted Date:  13 May 2025
  • Available Online:  20 May 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回