Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics

ZHANG Yichen DING Nannan LI Jialin FU Yuxi

Citation:

Attosecond transient absorption spectroscopy: an ultrafast optical probe for revealing electron dynamics

ZHANG Yichen, DING Nannan, LI Jialin, FU Yuxi
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Attosecond transient absorption spectroscopy (ATAS) is an all-optical pump-probe technique that employs attosecond pulses (from the extreme ultraviolet to soft X-ray) to excite or probe a system, enabling real-time tracking of electronic transitions, quantum state evolution, and energy transfer processes. This approach offers key advantages: (1) ultrafast temporal resolution (sub-femtosecond) combined with high spectral resolution (millielectronvolt level); (2) broadband excitation of multiple quantum states, allowing simultaneous detection across multiple energy levels; and (3) element- and site-specific insights afforded by inner-shell to valence transition measurements that reveal charge transfer dynamics, spin state changes, and local structural evolution. To date, significant breakthroughs have been achieved in atomic/molecular physics, electronic coherent dynamics, and strong-field physics using ATAS. This paper systematically reviews the technical principles and theoretical models associated with ATAS employing moderately strong near-infrared pulses, analyzes recent progress in applications to both gas-phase and condensed-phase systems, and explores its future prospects in ultrafast physical chemistry and quantum materials. In gas-phase environments, ATAS has demonstrated significant capabilities in probing energy level shifts and population transfers in atomic systems, as well as capturing nonadiabatic dynamics and charge migration in diatomic and polyatomic molecules. In contrast, within condensed-phase systems, the technique has been effectively used to study the ultrafast dynamics of carriers in semiconductors and to examine the interaction dynamics of localized electrons in insulators and transition metals. Given the rapid evolution of attosecond laser technologies and the distinct advantages of the ATAS detection approach, the paper also outlines potential future directions. These prospects promise to further extend the frontiers of ultrafast spectroscopy and to drive advances across a range of disciplines in both fundamental research and technological applications.
  • [1]

    Drescher M, Hentschel M, Kienberger R, Uiberacker M, Yakovlev V, Scrinzi A, Westerwalbesloh T, Kleineberg U, Heinzmann U, Krausz F 2002 Nature 419 6909

    [2]

    Li M X, Xie M, Wang H Y, Jia L J, Li J L, Wang W T, Cai J A, Hong X C, Shi X S, Lv Y, Zhao X N, Luo S Z, Jiang W, Peng L, Ding D J 2024 Phys. Rev. Lett. 133 253201

    [3]

    Tao Z S, Chen C, Szilvási T, Keller M, Mavrikakis M, Kapteyn H, Murnane M 2016 Science 353 62

    [4]

    Sansone G, Kelkensberg F, Pérez-Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lépine F, Sanz-Vicario J L, Zherebtsov S, Znakovskaya I, L’Huillier A, Ivanov M Y, Nisoli M, Martín F, Vrakking M J J 2010 Nature 465 763

    [5]

    Cattaneo L, Vos J, Bello R Y, Palacios A, Heuser S, Pedrelli L, Lucchini M, Cirelli C, Martín F, Keller U 2018 Nat. Phys. 14 733

    [6]

    Borrego-Varillas R, Lucchini M, Nisoli M 2022 Rep. Prog. Phys. 85 066401

    [7]

    Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R, Krausz F 2010 Nature 466 739

    [8]

    Beck A R, Neumark D M, Leone S R 2015 Chem. Phys. Lett. 624 119

    [9]

    Ramasesha K, Leone S R, Neumark D M 2016 Annu. Rev. Phys. Chem. 67 41

    [10]

    Di Palo N, Inzani G, Dolso G L, Talarico M, Bonetti S, Lucchini M 2024 APL Photonics 9 020901

    [11]

    Kobayashi Y, Leone S R 2022 J. Chem. Phys. 157 180901

    [12]

    Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M, Krausz F 2001 Nature 414 509

    [13]

    Duris J, Li S Q, Driver T, Champenois E G, MacArthur J P, Lutman A A, Zhang Z, Rosenberger P, Aldrich J W, Coffee R, Coslovich G, Decker F, Glownia J M, Hartmann G, Helml W, Kamalov A, Knurr J, Krzywinski J, Lin M, Marangos J P, Nantel M, Natan A, O’Neal J T, Shivaram N, Walter P, Wang A L, Welch J J, Wolf T J A, Xu J Z, Kling M F, Bucksbaum P H, Zholents A, Huang Z, Cryan J P, Marinelli A 2020 Nat. Photonics 14 30

    [14]

    Alqattan H, Hui D D, Pervak V, Hassan M Th 2022 APL Photonics 7 041301

    [15]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163

    [16]

    Wang X W, Xiao F, Wang J C, Wang L, Zhang B, Liu J L, Zhao J, Zhao Z X 2024 Ultrafast Sci. 4 0080

    [17]

    Stooß V, Hartmann M, Birk P, Borisova G D, Ding T, Blättermann A, Ott C, Pfeifer T 2019 Rev. Sci. Instrum. 90 053108

    [18]

    Gaarde M B, Buth C, Tate J L, Schafer K J 2011 Phys. Rev. A 83 013419

    [19]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 033409

    [20]

    Santra R, Dunford R W, Young L 2006 Phys. Rev. A 74 043403

    [21]

    Santra R, Yakovlev V S, Pfeifer T, Loh Z 2011 Phys. Rev. A 83 033405

    [22]

    Wu M X, Chen S H, Camp S, Schafer K J, Gaarde M B 2016 J. Phys. B: At. Mol. Opt. Phys. 49 062003

    [23]

    Hollstein M, Santra R, Pfannkuche D 2017 Phys. Rev. A 95 053411

    [24]

    Timmers H, Zhu X L, Li Z, Kobayashi Y, Sabbar M, Hollstein M, Reduzzi M, Martínez T J, Neumark D M, Leone S R 2019 Nat. Commun. 10 3133

    [25]

    Bækhøj J E, Lévêque C, Madsen L B 2018 Phys. Rev. Lett. 121 023203

    [26]

    Mashiko H, Oguri K, Yamaguchi T, Suda A, Gotoh H 2016 Nat. Phys. 12 741

    [27]

    Zürch M, Chang H, Borja L J, Kraus P M, Cushing S K, Gandman A, Kaplan C J, Oh M H, Prell J S, Prendergast D, Pemmaraju C D, Neumark D M, Leone S R 2017 Nat. Commun. 8 15734

    [28]

    Schultze M, Bothschafter E M, Sommer A, Holzner S, Schweinberger W, Fiess M, Hofstetter M, Kienberger R, Apalkov V, Yakovlev V S, Stockman M I, Krausz F 2013 Nature 493 75

    [29]

    Schultze M, Ramasesha K, Pemmaraju C D, Sato S A, Whitmore D, Gandman A, Prell J S, Borja L J, Prendergast D, Yabana K, Neumark D M, Leone S R 2014 Science 346 1348

    [30]

    Volkov M, Sato S A, Schlaepfer F, Kasmi L, Hartmann N, Lucchini M, Gallmann L, Rubio A, Keller U 2019 Nat. Phys. 15 1145

    [31]

    Jager M F, Ott C, Kraus P M, Kaplan C J, Pouse W, Marvel R E, Haglund R F, Neumark D M, Leone S R 2017 Proc. Natl. Acad. Sci. U. S. A. 114 9558

    [32]

    Bernhardt B, Beck A R, Li X, Warrick E R, Bell M J, Haxton D J, McCurdy C W, Neumark D M, Leone S R 2014 Phys. Rev. A 89 023408

    [33]

    Wang H, Chini M, Chen S Y, Zhang C, He F, Cheng Y, Wu Y, Thumm U, Chang Z H 2010 Phys. Rev. Lett. 105 143002

    [34]

    Wang X W, Chini M, Cheng Y, Wu Y, Tong X, Chang Z H 2013 Phys. Rev. A 87 063413

    [35]

    Cao W, Warrick E R, Neumark D M, Leone S R 2016 New J. Phys. 18 013041

    [36]

    Beck A R, Bernhardt B, Warrick E R, Wu M, Chen S, Gaarde M B, Schafer K J, Neumark D M, Leone S R 2014 New J. Phys. 16 113016

    [37]

    Chini M, Wang X W, Cheng Y, Chang Z H 2014 J. Phys. B: At. Mol. Opt. Phys. 47 124009

    [38]

    Chen S H, Bell M J, Beck A R, Mashiko H, Wu M X, Pfeiffer A N, Gaarde M B, Neumark D M, Leone S R, Schafer K J 2012 Phys. Rev. A 86 063408

    [39]

    Wu M X, Chen S H, Gaarde M B, Schafer K J 2013 Phys. Rev. A 88 043416

    [40]

    Chini M, Wang X W, Cheng Y, Wu Y, Zhao D, Telnov D A, Chu S, Chang Z H 2013 Sci. Rep. 3 1105

    [41]

    Chini M, Zhao B Z, Wang H, Cheng Y, Hu S X, Chang Z H 2012 Phys. Rev. Lett. 109 073601

    [42]

    Ott C, Kaldun A, Raith P, Meyer K, Laux M, Evers J, Keitel C H, Greene C H, Pfeifer T 2013 Science 340 716

    [43]

    Drescher L, Reitsma G, Witting T, Patchkovskii S, Mikosch J, Vrakking M J J 2019 J. Phys. Chem. Lett. 10 265

    [44]

    Chen S H, Wu M X, Gaarde M B, Schafer K J 2013 Phys. Rev. A 87 033408

    [45]

    Kobayashi Y, Chang K F, Zeng T, Neumark D M, Leone S R 2019 Science 365 79

    [46]

    Zinchenko K S, Ardana-Lamas F, Seidu I, Neville S P, van der Veen J, Lanfaloni V U, Schuurman M S, Wörner H J 2021 Science 371 489

    [47]

    Chang K F, Reduzzi M, Wang H, Poullain S M, Kobayashi Y, Barreau L, Prendergast D, Neumark D M, Leone S R 2020 Nat. Commun. 11 4042

    [48]

    Kobayashi Y, Chang K F, Poullain S M, Scutelnic V, Zeng T, Neumark D M, Leone S R 2020 Phys. Rev. A 101 063414

    [49]

    Wei Z R, Li J L, Wang L, See S T, Jhon M H, Zhang Y F, Shi F, Yang M H, Loh Z 2017 Nat. Commun. 8 735

    [50]

    Wei Z R, Li J L, Zhang H M, Lu Y P, Yang M H, Loh Z 2019 J. Chem. Phys. 151 214308

    [51]

    Peng P, Marceau C, Hervé M, Corkum P B, Naumov A Y, Villeneuve D M 2019 Nat. Commun. 10 5269

    [52]

    Peng P, Mi Y H, Lytova M, Britton M, Ding X, Naumov A Yu, Corkum P B, Villeneuve D M 2022 Nat. Photonics 16 45

    [53]

    Holler M, Schapper F, Gallmann L, Keller U 2011 Phys. Rev. Lett. 106 123601

    [54]

    Sabbar M, Timmers H, Chen Y, Pymer A K, Loh Z, Sayres S G, Pabst S, Santra R, Leone S R 2017 Nat. Phys. 13 472

    [55]

    Golubev N V, Vaníček J, Kuleff A I 2021 Phys. Rev. Lett. 127 123001

    [56]

    Kobayashi Y, Neumark D M, Leone S R 2022 Opt. Express 30 5673

    [57]

    Lucchini M, Sato S A, Lucarelli G D, Moio B, Inzani G, Borrego-Varillas R, Frassetto F, Poletto L, Hübener H, De Giovannini U, Rubio A, Nisoli M 2021 Nat. Commun. 12 1021

    [58]

    Géneaux R, Kaplan C J, Yue L, Ross A D, Bækhøj J E, Kraus P M, Chang H, Guggenmos A, Huang M, Zürch M, Schafer K J, Neumark D M, Gaarde M B, Leone S R 2020 Phys. Rev. Lett. 124 207401

    [59]

    Kaplan C J, Kraus P M, Ross A D, Zürch M, Cushing S K, Jager M F, Chang H, Gullikson E M, Neumark D M, Leone S R 2018 Phys. Rev. B 97 205202

    [60]

    Li S, Lu L X, Bhattacharyya S, Pearce C, Li K, Nienhuis E T, Doumy G, Schaller R D, Moeller S, Lin M, Dakovski G, Hoffman D J, Garratt D, Larsen K A, Koralek J D, Hampton C Y, Cesar D, Duris J, Zhang Z, Sudar N, Cryan J P, Marinelli A, Li X S, Inhester L, Santra R, Young L 2024 Science 383 1118

    [61]

    Gutberlet T, Chang H, Zayko S, Sivis M, Ropers C 2023 Opt. Express 31 39757

    [62]

    Volkov M, Pupeikis J, Phillips C R, Schlaepfer F, Gallmann L, Keller U 2019 Opt. Express 27 7886

    [63]

    Géneaux R, Chang H, Schwartzberg A M, Marroux H J B 2021 Opt. Express 29 951

    [64]

    Faccialà D, Toulson B W, Gessner O 2021 Opt. Express 29 35135

    [65]

    Midorikawa K 2022 Nat. Photonics 16 267

    [66]

    Siegrist F, Gessner J A, Ossiander M, Denker C, Chang Y, Schröder M C, Guggenmos A, Cui Y, Walowski J, Martens U, Dewhurst J K, Kleineberg U, Münzenberg M, Sharma S, Schultze M 2019 Nature 571 240

    [67]

    Okino T, Furukawa Y, Nabekawa Y, Miyabe S, Amani Eilanlou A, Takahashi E J, Yamanouchi K, Midorikawa K 2015 Sci. Adv. 1 e1500356

    [68]

    Tzallas P, Skantzakis E, Nikolopoulos L A A, Tsakiris G D, Charalambidis D 2011 Nat. Phys. 7 781

    [69]

    Moulet A, Bertrand J B, Klostermann T, Guggenmos A, Karpowicz N, Goulielmakis E 2017 Science 357 1134

  • [1] Yang Xu, Feng Hong-Mei, Liu Jia-Nan, Zhang Xiang-Qun, He Wei, Cheng Zhao-Hua. Ultrafast spin dynamics: From femtosecond magnetism to attosecond magnetism. Acta Physica Sinica, doi: 10.7498/aps.73.20240646
    [2] Han Lin, Miao Shu-Li, Li Peng-Cheng. Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field. Acta Physica Sinica, doi: 10.7498/aps.71.20221298
    [3] Chen Gao. Isolated attosecond pulse generation from helium atom irradiated by a three-color laser pulse. Acta Physica Sinica, doi: 10.7498/aps.71.20211502
    [4] Song Hao, Lü Xiao-Yuan, Zhu Ruo-Bi, Chen Gao. Isolated attosecond pulse generation from polarizationgating pulse with 10 fs duration. Acta Physica Sinica, doi: 10.7498/aps.68.20190392
    [5] Lü Xiao-Yuan, Zhu Ruo-Bi, Song Hao, Su Ning, Chen Gao. Isolated attosecond pulse generation from a double optical gating scheme based on orthogonal polarization field. Acta Physica Sinica, doi: 10.7498/aps.68.20190847
    [6] Chen Ji-Gen, Zeng Si-Liang, Yang Yu-Jun, Cheng Chao. Isolated intense sub-30-as pulse generation by quantum path control in the three-color laser pulse. Acta Physica Sinica, doi: 10.7498/aps.61.123201
    [7] Lu Ying-Ying, Zeng Zhi-Nan, Zheng Ying-Hui, Zou Pu, Liu Can-Dong, Gong Cheng, Li Ru-Xin, Xu Zhi-Zhan. Macroscopic effects of high-order harmonic and isolated attosecond pulse generation driven by two-color laser field. Acta Physica Sinica, doi: 10.7498/aps.60.103202
    [8] Li Wei, Wang Guo-Li, Zhou Xiao-Xin. Single attosecond pulse generated by model helium atom exposed to the combined field of an intense few-cycle chirped laser pulse and a half cycle pulse. Acta Physica Sinica, doi: 10.7498/aps.60.123201
    [9] Pan Hui-Ling, Li Peng-Cheng, Zhou Xiao-Xin. Single attosecond pulse generated by atom exposed to two laser pulses with the same color and half cycle pulses. Acta Physica Sinica, doi: 10.7498/aps.60.043203
    [10] Chen Yang, Chen Ji-Gen, Yang Yu-Jun. Isolated intense 39 attosecond pulse generatedby adding a harmonic pulse. Acta Physica Sinica, doi: 10.7498/aps.60.033202
    [11] Luo Mu-Hua, Zhang Qiu-Ju, Yan Chun-Yan. Optimization of attosecond pulses from the interaction of ultrarelativistic laser with overdense plasma. Acta Physica Sinica, doi: 10.7498/aps.59.8559
    [12] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Zhang Qing-Bin, Li Qian-Guang, Lu Pei-Xiang. Generating isolated broadband attosecond pulses with stable pulse duration in a non-colinear polarized two-color field. Acta Physica Sinica, doi: 10.7498/aps.58.4914
    [13] Ye Xiao-Liang, Zhou Xiao-Xin, Zhao Song-Feng, Li Peng-Cheng. The single attosecond pulse generated by atom exposed to two-color combined laser field. Acta Physica Sinica, doi: 10.7498/aps.58.1579
    [14] Zhang Qing-Bin, Hong Wei-Yi, Lan Peng-Fei, Yang Zhen-Yu, Lu Pei-Xiang. Control of attosecond pulse generation with modulated polarization gating. Acta Physica Sinica, doi: 10.7498/aps.57.7848
    [15] Hong Wei-Yi, Yang Zhen-Yu, Lan Peng-Fei, Lu Pei-Xiang. Direct generation of isolated sub-50 attosecond pulse via controlling quantum paths by a low frequency field. Acta Physica Sinica, doi: 10.7498/aps.57.5853
    [16] Zheng Ying-Hui, Zeng Zhi-Nan, Li Ru-Xin, Xu Zhi-Zhan. Nondipole effects in high-order harmonic generation induced by extreme ultraviolet attosecond pulse. Acta Physica Sinica, doi: 10.7498/aps.56.2243
    [17] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Proposal for single attosecond pulse production with a 43 fs super intense laser pulse. Acta Physica Sinica, doi: 10.7498/aps.56.1608
    [18] Cao Wei, Lan Peng-Fei, Lu Pei-Xiang. Single attosecond pulse generation by tightly focused laser beam-electron interaction. Acta Physica Sinica, doi: 10.7498/aps.55.2115
    [19] Zheng Jun, Sheng Zheng-Ming, Zhang Jie. Attosecond pulses emitted by a single energetic electron traversing an intense laser beam. Acta Physica Sinica, doi: 10.7498/aps.54.2638
    [20] Zeng Zhi-Nan, Li Ru-Xin, Xie Xin-Hua, Xu Zhi-Zhan. High-order harmonic attosecond pulses driven by a two-pulse laser. Acta Physica Sinica, doi: 10.7498/aps.53.2316
Metrics
  • Abstract views:  44
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Available Online:  20 May 2025

/

返回文章
返回