Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electron/ion imaging technology and its applications in cold atoms, molecules, and related fields

LIU Yang SHEN Zhenjie WANG Xincheng JIANG Yuhai

Citation:

Electron/ion imaging technology and its applications in cold atoms, molecules, and related fields

LIU Yang, SHEN Zhenjie, WANG Xincheng, JIANG Yuhai
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the continuous advancement and maturation of laser cooling techniques for atoms and molecules and full-dimensional electron and ion imaging technology, using momentum imaging techniques to investigate the characteristic properties of cold atoms and collision dynamics has emerged as a burgeoning research direction. This progress has driven the development of a series of high-resolution electron and ion detection devices, leading to innovative breakthroughs in fields such as cold molecule reactions, Rydberg atoms, nuclear decay, photoionization of Bose-Einstein condensates (BECs) and cold plasmas, collisions between cold atoms and ions/electrons, coherent control of cold atoms, and strong-field ultrafast physics. This article reviews representative instruments and their corresponding seminal achievements in the following domains: In cold molecular/cold chemical reactions, imaging technology has revealed new insights into reaction mechanisms; For cold Rydberg atom interactions, it demonstrates high-precision quantum state manipulation capabilities, advancing quantum information processing; In nuclear decay research, it provides ultra-sensitive detection methods, deepening understanding of decay processes; For BEC photoionization and cold plasma control, it can precisely monitor and manipulate microscopic processes; In cold atomic collision studies, it reveals new details in collision dynamics, refining collision theories; Regarding coherent control of cold atoms, it achieves accurate quantum state manipulation and interference; In strong-field ultrafast processes, it elucidates complex electron dynamics under intense fields, providing innovative methods for ultrafast laser control. Furthermore, this article summarizes the applications of imaging technologies in the aforementioned research areas involving cold atoms, and provides prospects for future developments in this evolving field.
  • 图 1  (a) 6Li2基态分子的PA方案和多光子电离能级图; (b)扩展了光学偶极阱的MOTREMI装置示意图, 橙色为光学偶极阱的光束与PA光束共束[17]

    Figure 1.  (a) PA scheme and multiphoton ionization energy level diagram for the ground state of 6Li2 molecules; (b) schematic diagram of the MOTREMI apparatus with an expanded optical dipole trap, where the orange represents the optical dipole trap beam coinciding with the PA beam[17].

    图 2  (a) KRb分子的吸收图像, 色标指示了KRb云的光学深度, 其中CCD为电荷耦合器件; (b)冷分子在VMI中被电离, 经过离子透镜聚焦, 最终被成像, 其中B为磁场; (c)记录的飞行时间谱示例; (d)记录的对应不同离子的速度图成像; (e)冷 KRb 分子双分子反应的能级图(出自文献[18], 已获得授权)

    Figure 2.  (a) Absorption image of KRb molecules. The color scale indicates the optical depth of the KRb cloud. CCD, charge-coupled device. (b) Cold molecules are ionized in VMI, focused through ion lenses, and finally imaged. B, magnetic field. (c) An example of a recorded time-of-flight spectrum. (d) Recorded velocity map imaging corresponding to different ions. (e) Energetics of the bimolecular reactions of cold KRb molecules (reproduced with permission from Ref.[18]).

    图 3  可运用于冷里德伯原子的高分辨率离子显微镜示意图[30]

    Figure 3.  Schematic diagram of a high-resolution ion microscope applicable to cold Rydberg atoms[30].

    图 4  上图是Simion 8.1模拟的带电粒子从MOT中出来后, 在电场作用下最终打到探测器上的飞行轨迹;下图是装置的CAD模型, 包括激光束、成像装置电极和探测器(出自文献[34], 已获得授权)

    Figure 4.  The upper image shows the flight trajectory of charged particles coming out of the MOT, which are ultimately detected by the detector under the influence of an electric field, simulated by Simion 8.1; the lower image is the CAD model of the device, including the laser beam, imaging device electrodes, and detector (reproduced with permission from Ref. [34]).

    图 5  (a)装置整体结构; (b)在μm级尺寸的圆柱形区域内电离大量原子, 形成带电粒子群; (c)在511 nm波长下, 87Rb电离能级图; (d)在±Uext = 300 V的情况下, 模拟的电子探测器信号[44]

    Figure 5.  (a) Overall structure of the device; (b) ionization of a large number of atoms within a cylindrical region at the micrometer level, forming a charged particle cloud; (c) ionization energy level diagram of 87Rb at a wavelength of 511 nm; (d) simulated electron detector signal with ±Uext = 300 V[44].

    图 6  依托于TSR的MOTREMI结构图(出自文献[49], 已获得授权)

    Figure 6.  MOTREMI structure diagram based on TSR (reproduced with permission from Ref.[49]).

    图 7  (a) Rb-MOTREMI装置示意图, 红色箭头代表 780 nm 冷却激光, 蓝色箭头代表电离用的飞秒激光; (b) Rb原子电离过程能级图(出自文献[63], 已获得授权)

    Figure 7.  (a) Schematic diagram of the Rb-MOTREMI apparatusred arrow represents the 780 nm cooling laser, and the blue arrow represents the femtosecond laser used for ionization (b) level diagram of the ionization process of Rb atoms (reproduced with permission from Ref.[63]).

    图 8  双光子量子干涉过程示意图(出自文献[66], 已获得授权)

    Figure 8.  Schematic diagram of two-photon quantum interference process (reproduced with permission from Ref.[66]).

    图 9  (a)只保留一束冷却光n1的装置示意图; (b) Rb原子的激发和电离通道; (c)实验测得的光电子动量分布; (d)理论计算的光电子动量分布; (e)实验提取的光电子角分布; (f)理论提取的光电子角分布(出自文献[72], 已获得授权)

    Figure 9.  (a) Schematic diagram of the device retaining only one beam of cooling light n1; (b) excitation and ionization channels of Rb atoms; (c) measured photoelectron momentum distribution; (d) theoretically calculated photoelectron momentum distribution; (e) experimentally extracted photoelectron angular distribution; (f) theoretically extracted photoelectron angular distribution (reproduced with permission from Ref. [72]).

    图 10  (a) Sr-MOTREMI装置示意图; (b)激光冷却途径的相关能级示意图(出自文献[75], 已获得授权)

    Figure 10.  (a) Schematic diagram of the Sr-MOTREMI apparatus; (b) schematic diagram of the relevant energy levels for the laser cooling pathway (reproduced with permission from Ref.[75]).

    图 11  偏振平面内的, 不同椭偏度(ε)下的多重电离反冲离子动量分布(RIMD)[77] (出自文献[77], 已获得授权)

    Figure 11.  Multiple ionization recoil ion momentum distributions (RIMD) within the polarization plane for different ellipticities (ε) (reproduced with permission from Ref.[77]).

    图 12  不同激光强度下获得的铷离子(Rb+)的二维反冲离子动量分布(RIMD)(出自文献[63], 已获得授权) (a) 3×109 W/cm2; (b) 1.5×1011 W/cm2; (c) 3×1011 W/cm2; (d) 1.5×1012 W/cm2; (e) 3×1012 W/cm2; (f) 4.5×1012 W/cm2

    Figure 12.  Two-dimensional recoil ion momentum distribution (RIMD) of rubidium ions (Rb+) obtained at different laser intensities (Reproduced with permission from Ref. [63]): (a) 3×109 W/cm2; (b) 1.5×1011 W/cm2; (c) 3×1011 W/cm2; (d) 1.5×1012 W/cm2; (e) 3×1012 W/cm2; (f) 4.5×1012 W/cm2.

    图 13  (a) 88Sr的相关能级及其部分激光冷却跃迁的示意图; (b)脉冲激光强度为3 TW/cm2时, 冷却激光功率分别为12 mW(黑线)和22 mW(红线)时的光电子能谱; (c)不同脉冲激光强度时的光电子能谱(出自文献[78], 已获得授权)

    Figure 13.  (a) Schematic diagram of The energy levels of 88Sr and some laser cooling transitions; (b) photoelectron energy spectra at a pulse laser intensity of 3 TW/cm2 with cooling laser powers of 12 mW (black line) and 22 mW (red line); (c) photoelectron energy spectra at different pulse laser intensities (reproduced with permission from Ref. [78]).

  • [1]

    Chu S, Hollberg L, Bjorkholm J E, Cable A, Ashkin A 1985 Phys. Rev. Lett. 55 48Google Scholar

    [2]

    Raab E L, Prentiss M, Cable A, Chu S, Pritchard D E 1987 Phys. Rev. Lett. 59 2631Google Scholar

    [3]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar

    [4]

    Vassen W, Cohen-Tannoudji C, Leduc M, Boiron D, Westbrook C I, Truscott A, Baldwin K, Birkl G, Cancio P, Trippenbach M 2012 Rev. Mod. Phys. 84 175Google Scholar

    [5]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477Google Scholar

    [6]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357Google Scholar

    [7]

    Eppink A T J B, Parker D H 1999 J. Chem. Phys. 110 832Google Scholar

    [8]

    Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T, Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003Google Scholar

    [9]

    Dörner R, Mergel V, Bräuning H, Achler M, Weber T, Khayyat K, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Azuma Y, Prior M H, Cocke C L, Schmidt-Böcking H 1998 AIP Conf. Proc. 443 334

    [10]

    Dörner R, Mergel V, Jagutzki O, Spielberger L, Ullrich J, Moshammer R, Schmidt-Böcking H 2000 Phys. Rep. 330 95Google Scholar

    [11]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar

    [12]

    Fang F, Zhou W C, Li Y F, Qian D B, Luo C J, Zhao D M, Ma X W, Yang J 2021 Rev. Sci. Instrum. 92 043103Google Scholar

    [13]

    Gorshkov A V, Manmana S R, Chen G, Ye J, Demler E, Lukin M D, Rey A M 2011 Phys. Rev. Lett. 107 115301Google Scholar

    [14]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [15]

    DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100 023003Google Scholar

    [16]

    Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100 043201Google Scholar

    [17]

    Kurz N, Fischer D, Pfeifer T, Dorn A 2021 Rev. Sci. Instrum. 92 123202Google Scholar

    [18]

    Hu M G, Liu Y, Grimes D D, Lin Y W, Gheorghe A H, Vexiau R, Bouloufa-Maafa N, Dulieu O, Rosenband T, Ni K K 2019 Science 366 1111Google Scholar

    [19]

    Christianen A, Karman T, Groenenboom G C 2019 Phys. Rev. A 100 032708Google Scholar

    [20]

    Gao B 2010 Phys. Rev. Lett. 105 263203Google Scholar

    [21]

    Croft J F E, Makrides C, Li M, Petrov A, Kendrick B K, Balakrishnan N, Kotochigova S 2017 Nat. Commun. 8 15897Google Scholar

    [22]

    Salzmann W, Mullins T, Eng J, Albert M, Wester R, Weidemüller M, Merli A, Weber S M, Sauer F, Plewicki M, Weise F, Wöste L, Lindinger A 2008 Phys. Rev. Lett. 100 233003Google Scholar

    [23]

    Eimer F, Weise F, Merli A, Birkner S, Sauer F, Wöste L, Lindinger A, Aǧanoǧlu R, Koch C P, Salzmann W, Mullins T, Götz S, Wester R, Weidemüller M 2009 Eur. Phys. J. D 54 711Google Scholar

    [24]

    Ghosal S, Doyle R J, Koch C P, Hutson J M 2009 New J. Phys. 11 055011Google Scholar

    [25]

    Hu M G, Liu Y X, Nichols M A, Zhu L, Quéméner G, Dulieu O, Ni K K 2021 Nat. Chem. 13 435Google Scholar

    [26]

    Liu Y X, Zhu L, Luke J, Houwman J J A, Babin M C, Hu M G, Ni K K 2024 Science 384 1117Google Scholar

    [27]

    Saffman M 2016 J. Phys. B: At. Mol. Opt. Phys. 49 202001Google Scholar

    [28]

    Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrì T, Lahaye T, Browaeys A 2016 Nature 534 667Google Scholar

    [29]

    Li W, Mourachko I, Noel M W, Gallagher T F 2003 Phys. Rev. A 67 052502Google Scholar

    [30]

    Stecker M, Schefzyk H, Fortágh J, Günther A 2017 New J. Phys. 19 043020Google Scholar

    [31]

    Stecker M, Nold R, Steinert L-M, Grimmel J, Petrosyan D, Fortágh J, Günther A 2020 Phys. Rev. Lett. 125 103602Google Scholar

    [32]

    Madjarov I S, Covey J P, Shaw A L, Choi J, Kale A, Cooper A, Pichler H, Schkolnik V, Williams J R, Endres M 2020 Nat. Phys. 16 857Google Scholar

    [33]

    Barredo D, Lienhard V, Scholl P, de Léséleuc S, Boulier T, Browaeys A, Lahaye T 2020 Phys. Rev. Lett. 124 023201Google Scholar

    [34]

    Ohayon B, Rahangdale H, Parnes E, Perelman G, Heber O, Ron G 2020 Phys. Rev. C 101 035501Google Scholar

    [35]

    Hong R, Leredde A, Bagdasarova Y, Fléchard X, García A, Knecht A, Müller P, Naviliat-Cuncic O, Pedersen J, Smith E, Sternberg M, Storm D W, Swanson H E, Wauters F, Zumwalt D 2017 Phys. Rev. A 96 053411Google Scholar

    [36]

    Schulhoff E E, Drake G W F 2015 Phys. Rev. A 92 050701Google Scholar

    [37]

    Fenker B, Gorelov A, Melconian D, Behr J A, Anholm M, Ashery D, Behling R S, Cohen I, Craiciu I, Gwinner G, McNeil J, Mehlman M, Olchanski K, Shidling P D, Smale S, Warner C L 2018 Phys. Rev. Lett. 120 062502Google Scholar

    [38]

    Müller P, Bagdasarova Y, Hong R, Leredde A, Bailey K G, Fléchard X, García A, Graner B, Knecht A, Naviliat-Cuncic O, O’Connor T P, Sternberg M G, Storm D W, Swanson H E, Wauters F, Zumwalt D W 2022 Phys. Rev. Lett. 129 182502Google Scholar

    [39]

    Killian T C, Kulin S, Bergeson S D, Orozco L A, Orzel C, Rolston S L 1999 Phys. Rev. Lett. 83 4776Google Scholar

    [40]

    Simien C E, Chen Y C, Gupta P, Laha S, Martinez Y N, Mickelson P G, Nagel S B, Killian T C 2004 Phys. Rev. Lett. 92 143001Google Scholar

    [41]

    Cummings E A, Daily J E, Durfee D S, Bergeson S D 2005 Phys. Rev. Lett. 95 235001Google Scholar

    [42]

    Mazets I E 1998 Quantum Semiclass. Opt. 10 675Google Scholar

    [43]

    Guthrie J M, Jiang P, Roberts J L 2024 J. Plasma Phys. 90 935900104Google Scholar

    [44]

    Kroker T, Großmann M, Sengstock K, Drescher M, Wessels-Staarmann P, Simonet J 2021 Nat. Commun. 12 596Google Scholar

    [45]

    Killian T C, McQuillen P, O’Neil T M, Castro J 2012 Phys. Plasmas 19 055701Google Scholar

    [46]

    Lyon M, Bergeson S D, Diaw A, Murillo M S 2015 Phys. Rev. E 91 033101Google Scholar

    [47]

    Smoll E J, Jana I, Frank J H, Chandler D W 2023 Phys. Rev. A 108 L041301Google Scholar

    [48]

    Schulz M, Moshammer R, Fischer D, Kollmus H, Madison D H, Jones S, Ullrich J 2003 Nature 422 48Google Scholar

    [49]

    Fischer D, Globig D, Goullon J, Grieser M, Hubele R, de Jesus V L B, Kelkar A, LaForge A, Lindenblatt H, Misra D, Najjari B, Schneider K, Schulz M, Sell M, Wang X 2012 Phys. Rev. Lett. 109 113202Google Scholar

    [50]

    van der Poel M, Nielsen C V, Gearba M A, Andersen N 2001 Phys. Rev. Lett. 87 123201Google Scholar

    [51]

    Turkstra J W, Hoekstra R, Knoop S, Meyer D, Morgenstern R, Olson R E 2001 Phys. Rev. Lett. 87 123202Google Scholar

    [52]

    Flechard X, Nguyen H, Wells E, Ben-Itzhak I, DePaola B D 2001 Phys. Rev. Lett. 87 123203Google Scholar

    [53]

    Huang M T, Wong W W, Inokuti M, Southworth S H, Young L 2003 Phys. Rev. Lett. 90 163201Google Scholar

    [54]

    Knoop S, Morgenstern R, Hoekstra R 2004 Phys. Rev. A 70 050702Google Scholar

    [55]

    Knoop S, Hasan V G, Morgenstern R, Hoekstra R 2006 Europhys. Lett. 74 992Google Scholar

    [56]

    Hubele R, LaForge A, Schulz M, Goullon J, Wang X, Najjari B, Ferreira N, Grieser M, de Jesus V L B, Moshammer R, Schneider K, Voitkiv A B, Fischer D 2013 Phys. Rev. Lett. 110 133201Google Scholar

    [57]

    Śpiewanowski M D, Gulyás L, Horbatsch M, Goullon J, Ferreira N, Hubele R, de Jesus V L B, Lindenblatt H, Schneider K, Schulz M, Schuricke M, Song Z, Zhang S, Fischer D, Kirchner T 2015 J. Phys. : Conf. Ser. 601 012010Google Scholar

    [58]

    Ghanbari-Adivi E, Fischer D, Ferreira N, Goullon J, Hubele R, LaForge A, Schulz M, Madison D 2017 J. Phys. B: At. Mol. Opt. Phys. 50 215202Google Scholar

    [59]

    Muller H G 2002 Appl. Phys. B 74 s17Google Scholar

    [60]

    Yin Y Y, Chen C, Elliott D S, Smith A V 1992 Phys. Rev. Lett. 69 2353Google Scholar

    [61]

    He P L, Zhang Z H, He F 2020 Phys. Rev. Lett. 124 163201Google Scholar

    [62]

    Li R Y, Yuan J Y, Wang X C, Hou X Y, Zhang S, Zhu Z Y, Ma Y X, Gao Q, Wang Z Y, Yan T M, Qin C C, Li S, Zhang Y Z, Weidemüller M, Jiang Y H 2019 J. Instrum. 14 P02022Google Scholar

    [63]

    Ma H Y, Wang X C, Zhang L X, Zou Z H, Yuan J Y, Ma Y X, Lv R J, Shen Z J, Yan T M, Weidemüller M, Ye D F, Jiang Y H 2023 Phys. Rev. A 107 033114Google Scholar

    [64]

    Zhu G, Schuricke M, Steinmann J, Albrecht J, Ullrich J, Ben-Itzhak I, Zouros T J M, Colgan J, Pindzola M S, Dorn A 2009 Phys. Rev. Lett. 103 103008Google Scholar

    [65]

    Schuricke M, Bartschat K, Grum-Grzhimailo A N, Zhu G, Steinmann J, Moshammer R, Ullrich J, Dorn A 2013 Phys. Rev. A 88 023427Google Scholar

    [66]

    Pursehouse J, Murray A J, Wätzel J, Berakdar J 2019 Phys. Rev. Lett. 122 053204Google Scholar

    [67]

    Acharya B P, Dubey S, Romans K L, De Silva A H N C, Foster K, Russ O, Bartschat K, Douguet N, Fischer D 2022 Phys. Rev. A 106 023113Google Scholar

    [68]

    Thini F, Romans K L, Acharya B P, de Silva A H N C, Compton K, Foster K, Rischbieter C, Russ O, Sharma S, Dubey S, Fischer D 2020 J. Phys. B: At. Mol. Opt. Phys. 53 095201Google Scholar

    [69]

    Acharya B P, Dodson M, Dubey S, Romans K L, De Silva A H N C, Foster K, Russ O, Bartschat K, Douguet N, Fischer D 2021 Phys. Rev. A 104 053103Google Scholar

    [70]

    De Silva A H N C, Atri-Schuller D, Dubey S, Acharya B P, Romans K L, Foster K, Russ O, Compton K, Rischbieter C, Douguet N, Bartschat K, Fischer D 2021 Phys. Rev. Lett. 126 023201Google Scholar

    [71]

    Mežinska S, Dorn A, Pfeifer T, Bartschat K 2024 Phys. Rev. A 110 013116Google Scholar

    [72]

    Ma H Y, Zhang L X, Wang X C, Zou Z H, Lv R J, Shen Z J, Chen A H, Weidemüller M, Ueda K, Ye D F, Jiang Y H 2025 Phys. Rev. Lett. 134 123204Google Scholar

    [73]

    Zhang Y, Wei Q 2020 J. Chem. Phys. 152 204302Google Scholar

    [74]

    Wessels P, Ruff B, Kroker T, Kazansky A K, Kabachnik N M, Sengstock K, Drescher M, Simonet J 2018 Commun. Phys. 1 32Google Scholar

    [75]

    Ruan S S, Yu X L, Shen Z J, Wang X C, Liu J, Wu Z X, Tan C Z, Chen P, Yan T M, Ren X G, Weidemüller M, Zhu B, Jiang Y H 2024 Phys. Rev. A 109 023118Google Scholar

    [76]

    Schuricke M, Zhu G, Steinmann J, Simeonidis K, Ivanov I, Kheifets A, Grum-Grzhimailo A N, Bartschat K, Dorn A, Ullrich J 2011 Phys. Rev. A 83 023413Google Scholar

    [77]

    Yuan J Y, Liu S W, Wang X C, Shen Z J, Ma Y X, Ma H Y, Meng Q X, Yan T M, Zhang Y Z, Dorn A, Weidemüller M, Ye D F, Jiang Y H 2020 Phys. Rev. A 102 043112Google Scholar

    [78]

    Ruan S S, Han Y Y, Shen Z J, Yu X L, Fang Y K, Wang X C, Chen A, Liu J, Wu Z X, Ueda K, Weidemüller M, Zhu B, Peng L Y, Jiang Y H 2024 Phys. Rev. A 110 033114Google Scholar

  • [1] ZHAI Chenjie, WANG Jing, ZHOU Junjie, WANG Yu, TANG Xiaoming, ZHOU Yin, ZHANG Can, LI Rui, SHU Qing, WANG Kainan, WANG Shuangquan, JIN Zixing, HUA Shan, SUN Yiren, WANG Zhenghao, MA Zhixiang, CAI Minghao, WANG Xiaolong, WU Bin, LIN Qiang. Airborne absolute gravity measurements based on quantum gravimeter. Acta Physica Sinica, doi: 10.7498/aps.74.20241621
    [2] Cheng Yong-Jun, Dong Meng, Sun Wen-Jun, Wu Xiang-Min, Zhang Ya-Fei, Jia Wen-Jie, Feng Cun, Zhang Rui-Fang. Ultra-high vacuum measurement based on 7Li cold atoms manipulation. Acta Physica Sinica, doi: 10.7498/aps.73.20241215
    [3] Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process. Acta Physica Sinica, doi: 10.7498/aps.73.20240182
    [4] Zhai Hui. Non-equilibrium quantum many-body physics with ultracold atoms. Acta Physica Sinica, doi: 10.7498/aps.72.20231375
    [5] Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Physica Sinica, doi: 10.7498/aps.71.20212204
    [6] Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Phase locking technology for Raman laser system based on 1560 nm external cavity lasers. Acta Physica Sinica, doi: 10.7498/aps.70.20210432
    [7] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, doi: 10.7498/aps.70.20201522
    [8] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, doi: 10.7498/aps.69.20191765
    [9] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, doi: 10.7498/aps.68.20190749
    [10] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, doi: 10.7498/aps.67.20181121
    [11] Wei Chun-Hua, Yan Shu-Hua, Yang Jun, Wang Guo-Chao, Jia Ai-Ai, Luo Yu-Kun, Hu Qing-Qing. Design and control of large-detuned optical lattice based on 87Rb atoms. Acta Physica Sinica, doi: 10.7498/aps.66.010701
    [12] Yuan Yuan, Lu Xiao-Gang, Bai Jin-Hai, Li Jian-Jun, Wu Ling-An, Fu Pan-Ming, Wang Ru-Quan, Zuo Zhan-Chun. One-dimensional far-detuned optical lattice realized with a multimode 1064 nm laser. Acta Physica Sinica, doi: 10.7498/aps.65.043701
    [13] Tian Xiao, Wang Ye-Bing, Lu Ben-Quan, Liu Hui, Xu Qin-Fang, Ren Jie, Yin Mo-Juan, Kong De-Huan, Chang Hong, Zhang Shou-Gang. Experimental research on loading strontium bosons into the optical lattice operating at the “magic” wavelength. Acta Physica Sinica, doi: 10.7498/aps.64.130601
    [14] Wang Qiang, Ye Chong. Dynamics of Bose-Einstein condensate trapped in a triple-well with synthetic gauge field. Acta Physica Sinica, doi: 10.7498/aps.61.230304
    [15] Xiong Zong-Yuan, Yao Zhan-Wei, Wang Ling, Li Run-Bin, Wang Jin, Zhan Ming-Sheng. Control of atomic path in projectile cold atom gyroscope. Acta Physica Sinica, doi: 10.7498/aps.60.113201
    [16] Qiu Ying, He Jun, Wang Yan-Hua, Wang Jing, Zhang Tian-Cai, Wang Jun-Min. Loading and cooling of cesium atoms in 3D optical lattice. Acta Physica Sinica, doi: 10.7498/aps.57.6227
    [17] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, doi: 10.7498/aps.55.6606
    [18] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, doi: 10.7498/aps.55.125
    [19] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, doi: 10.7498/aps.54.5104
    [20] Luo You-Hua, Huang Zheng, Wang Yu-Zhu. . Acta Physica Sinica, doi: 10.7498/aps.51.1706
Metrics
  • Abstract views:  321
  • PDF Downloads:  12
  • Cited By: 0
Publishing process
  • Received Date:  31 March 2025
  • Accepted Date:  31 May 2025
  • Available Online:  06 June 2025
  • /

    返回文章
    返回