Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process

Liu Yan-Xin Wang Zhi-Hui Guan Shi-Jun Wang Qin-Xia Zhang Peng-Fei Li Gang Zhang Tian-Cai

Citation:

Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process

Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai
PDF
HTML
Get Citation
  • Λ-enhanced gray molasses cooling (Λ-GMC) technique has been widely used in experiments to prepare cold atomic samples below the sub-Doppler temperature limit. To meet the experimental requirements of cavity quantum electrodynamics systems, we design and construct a wide-range, fast-tuning laser system by integrating tapered amplifiers, fiber phase modulators, etalon, injection locking amplification techniques etc. This laser system achieves a maximum tuning range of 600 MHz and a frequency tuning speed of 5 ns. Based on this laser system, loading atom in a crossed dipole trap assisted by cesium D2 line Λ-GMC cooling in the center of the optical microcavity is studied, and various factors affecting the atom loading are mainly as follows: laser duration $\tau $, three-dimensional magnetic field $ \left( {{B_x}, {B_y}, {B_z}} \right) $, single-photon detuning $\varDelta $, two-photon detuning $\delta $, ratio of cooling beam power to repumping beam power ${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$, and cooling beam power ${I_{{\text{cooling}}}}$. The optimal parameters in this system are follows: $ \tau = 7{\text{ ms}},\; \delta = 0.2{\text{ MHz}},\; \varDelta = 5\varGamma, \;{I_{{\text{cool}}}}/{I_{{\text{rep}}}} = 3, {\text{ and }} {I_{{\text{cool}}}} = 1.2{I_{{\text{sat}}}}. $ Comparing with traditional PGC-assisted loading, the number of atoms is increased about 4 times, and the atomic temperature decreases from $ 25{\text{ μK}} $ to $ 8{\text{ μK}} $. This experiment provides important insights for preparing ultracold atomic samples and capturing single atom arrays.
      Corresponding author: Li Gang, gangli@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U21A6006, U21A20433, 11974223, 11974225, 12104277, 12104278) and the Fund for “1331 Project” Key Subjects Construction of Shanxi Province, China.
    [1]

    Dalibard J, Cohen-Tannoudji C 1989 J. Opt. Soc. Am. 6 2023Google Scholar

    [2]

    Ungar P J, Weiss D S, Riis E, Chu S 1989 J. Opt. Soc. Am. 6 2058Google Scholar

    [3]

    Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N, Westbrook C I 1989 J. Opt. Soc. Am. 6 2084Google Scholar

    [4]

    Grynberg G, Courtois J Y 1994 EPL 27 41Google Scholar

    [5]

    Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L, Clairon A 1996 Phys. Rev. A 53 R3734Google Scholar

    [6]

    Esslinger T, Sander F, Hemmerich A, Hänsch T W, Ritsch H, Weidemüller M 1996 Opt. Lett. 21 991Google Scholar

    [7]

    Triché C, Verkerk P, Grynberg G 1999 Eur. Phys. J. D 5 225Google Scholar

    [8]

    Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411Google Scholar

    [9]

    Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408Google Scholar

    [10]

    Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C, Chevy F 2015 Phys. Rev. A 91 023426Google Scholar

    [11]

    Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G, Ferrari G 2016 Phy. Rev. A 93 023421Google Scholar

    [12]

    Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H, Zhang J 2018 Chin. Phys. Lett. 35 123701Google Scholar

    [13]

    Nath D, Easwaran R K, Rajalakshmi G, Unnikrishnan C S 2013 Phys. Rev. A 88 053407Google Scholar

    [14]

    Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W, Kuhr S 2017 J. Phys. B: At. Mol. Opt. Phys. 50 095002Google Scholar

    [15]

    Chen H Z, Yao, X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Pan J W 2016 Phys. Rev. A 94 033408Google Scholar

    [16]

    Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C, Minardi F 2018 Sci. Rep. 8 1301Google Scholar

    [17]

    Hsiao Y F, Lin Y J, Chen Y C 2018 Phys. Rev. A 98 033419Google Scholar

    [18]

    Naik D S, Eneriz-Imaz H, Carey M, Freegarde T, Minardi F, Battelier B, Bouyer P, Bertoldi A 2020 Phys. Rev. Res. 2 013212Google Scholar

    [19]

    Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T 2023 Phys. Rev. Lett. 130 173601Google Scholar

    [20]

    Reiserer A, Nölleke C, Ritter S, Rempe G 2013 Phys. Rev. Lett. 110 223003Google Scholar

    [21]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y, Chen Y, Yu I, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [22]

    Lounis B, Cohen-Tannoudji C 1992 J. Phys. II France 2 579Google Scholar

    [23]

    Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2008 Phys. Rev. A 78 033425Google Scholar

    [24]

    Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057Google Scholar

    [25]

    Huang C, Covey J P, Gadway B 2022 Phys. Rev. Res. 4 013240Google Scholar

    [26]

    Albrecht B, Meng Y, Clausen C, Dareau A, Schneeweiss P, Rauschenbeutel A 2016 Phys. Rev. A 94 061401Google Scholar

    [27]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar

    [28]

    Grünzweig T, Hilliard A, McGovern M, Andersen M F 2010 Nat. Phys. 6 951Google Scholar

  • 图 1  (a)铯原子 D2 线能级图; (b)快速、宽范围调谐激光系统产生过程, TA为锥型放大器, Laser为激光器, FPM为光纤位相调制器, Etalon为标准具, ILM为注入锁定放大, D-AOM为双通声光调制器; (c)时序图

    Figure 1.  (a) Cesium atom D2 line energy level diagram; (b) process of generating a fast and wide-range tunable laser system, TA reprsents tapered amplifier, Laser reprsents laser source; FPM reprsents fiber phase modulator, Etalon reprsents reference cavity, ILM reprsents injection-locked amplifier, D-AOM reprsents double-acousto-optic modulators; (c) time sequence for the experiment.

    图 2  (a)原子数随激光作用时间$\tau $的变化关系; (b)原子数随磁场大小的变化关系

    Figure 2.  (a) The relationship between the atom number and the laser duration; (b) the relationship between the atom number and the magnitude of the magnetic field.

    图 3  单光子失谐$ \varDelta $和双光子失谐$ \delta $实验优化 (a)原子数随$ \varDelta $的变化关系; (b)原子数随$ \delta $的变化关系

    Figure 3.  Experimental optimization of single-photon detuning and two-photon detuning: (a) The relationship between the atom number and $ \varDelta $; (b) the relationship between the atom number and $ \delta $.

    图 4  激光强度优化 (a)原子数随${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$的变化关系; (b)原子数随${I_{{\text{cool}}}}$的变化关系

    Figure 4.  Experimental optimization of the laser intensity: (a) The relationship between the atom number and ${I_{{\text{cool}}}}/{I_{{\text{rep}}}}$; (b) the relationship between the atom number and ${I_{{\text{cool}}}}$.

    图 5  原子温度测量与评估 (a) PGC 冷却后原子温度评估; (b) PGC+Λ-GMC 组合冷却后原子温度评估

    Figure 5.  Atomic temperature measurement and evaluation: (a) Evaluation of atomic temperature after PGC cooling; (b) evaluation of atomic temperature after combined cooling with PGC+Λ-GMC.

    图 A1  聚焦偶极阱阱深最大(Z = 0)处横截面的虚磁场梯度图. 偶极阱激光传播方向为 Z, 偏振方向为 X

    Figure A1.  The fictitious magnetic field gradient of the transverse cuts at Z = 0 inside the focused dipole trap. The propagation direction of the dipole trap laser is into the plane (along Z), and the laser is polarized along X.

    图 B1  小角度 3D-MOT 装置示意图

    Figure B1.  The schematic diagram of the small angle 3D-MOT set-up.

  • [1]

    Dalibard J, Cohen-Tannoudji C 1989 J. Opt. Soc. Am. 6 2023Google Scholar

    [2]

    Ungar P J, Weiss D S, Riis E, Chu S 1989 J. Opt. Soc. Am. 6 2058Google Scholar

    [3]

    Lett P D, Phillips W D, Rolston S L, Tanner C E, Watts R N, Westbrook C I 1989 J. Opt. Soc. Am. 6 2084Google Scholar

    [4]

    Grynberg G, Courtois J Y 1994 EPL 27 41Google Scholar

    [5]

    Boiron D, Michaud A, Lemonde P, Castin Y, Salomon C, Weyers S, Szymaniec K, Cognet L, Clairon A 1996 Phys. Rev. A 53 R3734Google Scholar

    [6]

    Esslinger T, Sander F, Hemmerich A, Hänsch T W, Ritsch H, Weidemüller M 1996 Opt. Lett. 21 991Google Scholar

    [7]

    Triché C, Verkerk P, Grynberg G 1999 Eur. Phys. J. D 5 225Google Scholar

    [8]

    Grier A T, Ferrier-Barbut I, Rem B S, Delehaye M, Khaykovich L, Chevy F, Salomon C 2013 Phys. Rev. A 87 063411Google Scholar

    [9]

    Burchianti A, Valtolina G, Seman J A, Pace E, De Pas M, Inguscio M, Zaccanti M, Roati G 2014 Phys. Rev. A 90 043408Google Scholar

    [10]

    Sievers F, Kretzschmar N, Fernandes D R, Suchet D, Rabinovic M, Wu S, Parker C V, Khaykovich L, Salomon C, Chevy F 2015 Phys. Rev. A 91 023426Google Scholar

    [11]

    Colzi G, Durastante G, Fava E, Serafini S, Lamporesi G, Ferrari G 2016 Phy. Rev. A 93 023421Google Scholar

    [12]

    Shi Z L, Li Z L, Wang P J, Meng Z M, Huang L H, Zhang J 2018 Chin. Phys. Lett. 35 123701Google Scholar

    [13]

    Nath D, Easwaran R K, Rajalakshmi G, Unnikrishnan C S 2013 Phys. Rev. A 88 053407Google Scholar

    [14]

    Bruce G D, Haller E, Peaudecerf B, Cotta D A, Andia M, Wu S, Johnson M Y H, Lovett B W, Kuhr S 2017 J. Phys. B: At. Mol. Opt. Phys. 50 095002Google Scholar

    [15]

    Chen H Z, Yao, X C, Wu Y P, Liu X P, Wang X Q, Wang Y X, Pan J W 2016 Phys. Rev. A 94 033408Google Scholar

    [16]

    Rosi S, Burchianti A, Conclave S, Naik D S, Roati G, Fort C, Minardi F 2018 Sci. Rep. 8 1301Google Scholar

    [17]

    Hsiao Y F, Lin Y J, Chen Y C 2018 Phys. Rev. A 98 033419Google Scholar

    [18]

    Naik D S, Eneriz-Imaz H, Carey M, Freegarde T, Minardi F, Battelier B, Bouyer P, Bertoldi A 2020 Phys. Rev. Res. 2 013212Google Scholar

    [19]

    Liu Y X, Wang Z H, Yang P F, Wang Q X, Fan Q, Guan S J, Li G, Zhang P F, Zhang T 2023 Phys. Rev. Lett. 130 173601Google Scholar

    [20]

    Reiserer A, Nölleke C, Ritter S, Rempe G 2013 Phys. Rev. Lett. 110 223003Google Scholar

    [21]

    Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y, Chen Y, Yu I, Chen Y C 2018 Phys. Rev. Lett. 120 183602Google Scholar

    [22]

    Lounis B, Cohen-Tannoudji C 1992 J. Phys. II France 2 579Google Scholar

    [23]

    Tuchendler C, Lance A M, Browaeys A, Sortais Y R P, Grangier P 2008 Phys. Rev. A 78 033425Google Scholar

    [24]

    Brown M O, Thiele T, Kiehl C, Hsu T W, Regal C A 2019 Phys. Rev. X 9 011057Google Scholar

    [25]

    Huang C, Covey J P, Gadway B 2022 Phys. Rev. Res. 4 013240Google Scholar

    [26]

    Albrecht B, Meng Y, Clausen C, Dareau A, Schneeweiss P, Rauschenbeutel A 2016 Phys. Rev. A 94 061401Google Scholar

    [27]

    Schlosser N, Reymond G, Grangier P 2002 Phys. Rev. Lett. 89 023005Google Scholar

    [28]

    Grünzweig T, Hilliard A, McGovern M, Andersen M F 2010 Nat. Phys. 6 951Google Scholar

  • [1] Cheng Yong-Jun, Dong Meng, Sun Wen-Jun, Wu Xiang-Min, Zhang Ya-Fei, Jia Wen-Jie, Feng Cun, Zhang Rui-Fang. 7Li cold atoms manipulation based ultra-high vacuum measurement. Acta Physica Sinica, 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [2] Wang Yun-Fei, Zhou Ying, Wang Ying, Yan Hui, Zhu Shi-Liang. Performance and application analysis of quantum memory. Acta Physica Sinica, 2023, 72(20): 206701. doi: 10.7498/aps.72.20231203
    [3] Zhai Hui. Non-equilibrium quantum many-body physics with ultracold atoms. Acta Physica Sinica, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [4] Luo Yu-Chen, Li Xiao-Peng. Quantum simulation of interacting fermions. Acta Physica Sinica, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [5] Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Physica Sinica, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [6] Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Phase locking technology for Raman laser system based on 1560 nm external cavity lasers. Acta Physica Sinica, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [7] Li Mo, Chen Fei-Liang, Luo Xiao-Jia, Yang Li-Jun, Zhang Jian. Fundamental principles, key enabling technologies, and research progress of atom chips. Acta Physica Sinica, 2021, 70(2): 023701. doi: 10.7498/aps.70.20201561
    [8] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [9] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [10] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [11] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [12] Wei Chun-Hua, Yan Shu-Hua, Yang Jun, Wang Guo-Chao, Jia Ai-Ai, Luo Yu-Kun, Hu Qing-Qing. Design and control of large-detuned optical lattice based on 87Rb atoms. Acta Physica Sinica, 2017, 66(1): 010701. doi: 10.7498/aps.66.010701
    [13] Yuan Yuan, Lu Xiao-Gang, Bai Jin-Hai, Li Jian-Jun, Wu Ling-An, Fu Pan-Ming, Wang Ru-Quan, Zuo Zhan-Chun. One-dimensional far-detuned optical lattice realized with a multimode 1064 nm laser. Acta Physica Sinica, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [14] Tian Xiao, Wang Ye-Bing, Lu Ben-Quan, Liu Hui, Xu Qin-Fang, Ren Jie, Yin Mo-Juan, Kong De-Huan, Chang Hong, Zhang Shou-Gang. Experimental research on loading strontium bosons into the optical lattice operating at the “magic” wavelength. Acta Physica Sinica, 2015, 64(13): 130601. doi: 10.7498/aps.64.130601
    [15] Xiong Zong-Yuan, Yao Zhan-Wei, Wang Ling, Li Run-Bin, Wang Jin, Zhan Ming-Sheng. Control of atomic path in projectile cold atom gyroscope. Acta Physica Sinica, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [16] Qiu Ying, He Jun, Wang Yan-Hua, Wang Jing, Zhang Tian-Cai, Wang Jun-Min. Loading and cooling of cesium atoms in 3D optical lattice. Acta Physica Sinica, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [17] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] Tang Lin, Huang Jian-Hua, Duan Zheng-Lu, Zhang Wei-Ping, Zhou Zhao-Ying, Feng Yan-Ying, Zhu Rong. Quantum tunnelling time of cold atom passing through a laser beam. Acta Physica Sinica, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] Luo You-Hua, Huang Zheng, Wang Yu-Zhu. . Acta Physica Sinica, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
Metrics
  • Abstract views:  1885
  • PDF Downloads:  93
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2024
  • Accepted Date:  13 March 2024
  • Available Online:  07 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回