Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electromagnetically induced transparency spectra of cesium Rydberg atoms decorated by radio-frequency fields

Han Yu-Long Liu Bang Zhang Kan Sun Jin-Fang Sun Hui Ding Dong-Sheng

Citation:

Electromagnetically induced transparency spectra of cesium Rydberg atoms decorated by radio-frequency fields

Han Yu-Long, Liu Bang, Zhang Kan, Sun Jin-Fang, Sun Hui, Ding Dong-Sheng
PDF
HTML
Get Citation
  • The large electric dipole moment of the Rydberg atom allows for strong coupling with weak electric fields, and is widely used in electric field measurements because of its reproducibility, precision and stability. The combination of Rydberg atoms and electromagnetically induced transparency (EIT) technology has been used for detecting and characterizing radio-frequency (RF) electric fields. In this work, by selecting probe light (852 nm), dressed light (1470 nm), and coupled light (780 nm), the Rydberg state (49P3/2) of Cs atom is prepared by using a three-photon excitation scheme through using all-infrared light excitation of Rydberg atoms. We experimentally observe the EIT spectra of the Rydberg states decorated by radio-frequency electric fields, which optically detects Rydberg atoms. The effect of the amplitude and frequency of the RF electric field on the spectrum is explored in light of changes in the EIT spectrum. The results show that in the region of weak electric field, only the ac Stark energy shift and spectral broadening occur. As the electric field is further enhanced, the sideband phenomenon occurs in both the primary peak and secondary peak of the EIT. In the region of strong field, the Rydberg energy level produces a series of Floquet states with higher-order terms, as well as state shifting and mixing, resulting in asymmetry in the spectra of the EIT sideband peaks. The effect of frequency on the shielding effect of the Cs vapor cell is further discussed based on the shift of the main peak of the EIT.The demodulation of the electric field in a range of 50 Hz–1 kHz with a fidelity of 95% is achieved by modulating the low-frequency electric field to the RF electric field. The results can provide valuable references for spectral detection and traceable measurements of low-frequency electric fields.
      Corresponding author: Liu Bang, lb2016wu@mail.ustc.edu.cn ; Ding Dong-Sheng, dds@ustc.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1404002), the National Natural Science Foundation of China (Grant Nos. U20A20218, 61525504, 61435011), the Major Science and Technology Projects in Anhui Province, China (Grant No. 202203a13010001), and the Natural Science Foundation of the Higher Education Institutions of Anhui Province, China (Grant No. 2022AH051888).
    [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press

    [2]

    Adams C S, Pritchard J D, Shaffer J P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar

    [3]

    Liu B, Zhang L, Liu Z, Deng Z, Ding D, Shi B, Guo G 2023 Electromagn. Sci. 1 1Google Scholar

    [4]

    Yuan J, Yang W, Jing M, Zhang H, Jiao Y, Li W, Zhang L, Xiao L, Jia S 2023 Rep. Prog. Phys. 86 106001Google Scholar

    [5]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [7]

    Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [8]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184020Google Scholar

    [9]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [10]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [11]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [12]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat. Phys. 16 911Google Scholar

    [13]

    Artusio-Glimpse A, Simons M T, Prajapati N, Holloway C L 2022 IEEE Microwave Mag. 23 44Google Scholar

    [14]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [15]

    Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett. 113 094101Google Scholar

    [16]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [17]

    Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033Google Scholar

    [18]

    Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J, Qu J 2019 Opt. Express 27 8848Google Scholar

    [19]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar

    [20]

    Shaffer J, Kübler H 2018 A Read-out Enhancement for Microwave Electric Field Sensing with Rydberg Atoms (Vol. 10674) (SPIE

    [21]

    Ripka F, Amarloo H, Erskine J, Liu C, Ramirez-Serrano J, Keaveney J, Gillet G, Kübler H, Shaffer J 2021 Application-driven Problems in Rydberg Atom Electrometry (Vol. 11700) (SPIE

    [22]

    Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014045Google Scholar

    [23]

    Hu J, Li H, Song R, Bai J, Jiao Y, Zhao J, Jia S 2022 Appl. Phys. Lett. 121 014002Google Scholar

    [24]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858Google Scholar

    [25]

    Xu J H, Gozzini A, Mango F, Alzetta G, Bernheim R A 1996 Phys. Rev. A 54 3146Google Scholar

    [26]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 5141Google Scholar

    [27]

    Robertson E J, Šibalić N, Potvliege R M, Jones M P A 2021 Comput. Phys. Commun. 261 107814Google Scholar

    [28]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A, Holloway C L 2014 Phys. Rev. A 90 043419Google Scholar

    [29]

    Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L, Holloway C L 2016 Phys. Rev. Appl. 5 034003Google Scholar

    [30]

    Daschner R, Ritter R, Kübler H, Frühauf N, Kurz E, Löw R, Pfau T 2012 Opt. Lett. 37 2271Google Scholar

    [31]

    Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415Google Scholar

    [32]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

  • 图 1  (a) Cs原子阶梯型四能级示意图; (b) 实验装置示意图, 其中DM为二向色镜, PD为光电探测器

    Figure 1.  (a) Ladder-type four-level energy diagram of Cs atom; (b) schematic diagram of experimental apparatus, where DM is dichroic mirror, PD is photodiode detector.

    图 2  不同强度的射频电场作用下Rydberg原子的EIT光谱 (a) E = 0 V/cm; (b) E = 25 V/cm; (c) E = 50 V/cm; (d) E = 100 V/cm; (e) E = 200 V/cm

    Figure 2.  EIT spectra of Rydberg atoms under different intensity RF electric fields: (a) E = 0 V/cm; (b) E = 25 V/cm; (c) E = 50 V/cm; (d) E = 100 V/cm; (e) E = 200 V/cm.

    图 3  不同正弦射频电场情况下测量的EIT谱线随电场强度的变化 (a) ωRF = 30 MHz; (b) ωRF = 40 MHz; (c) ωRF = 50 MHz; (d) ωRF = 60 MHz

    Figure 3.  The variation of EIT spectral lines measured with the electric field intensity under different sinusoidal radio-frequency electric fields: (a) ωRF = 30 MHz; (b) ωRF = 40 MHz; (c) ωRF = 50 MHz; (d) ωRF = 60 MHz.

    图 4  EIT主峰的能移与射频电场频率的关系

    Figure 4.  Relationship between frequency shift of EIT main peak and frequency of RF electric field.

    图 5  不同频率电场作用下的EIT透射信号 (a) 50 Hz; (b) 100 Hz; (c) 500 Hz; (d) 1 kHz

    Figure 5.  EIT transmission signals under different frequency electric fields: (a) 50 Hz; (b) 100 Hz; (c) 500 Hz; (d) 1 kHz.

    表 1  ARC软件包计算Cs原子直流极化率

    Table 1.  Theoretical calculation of dc polarizabilities for Cs by Alkali Rydberg Calculator Python package.

    Cs原子直流极化率α/(Hz·V–2·m–2)
    Rydberg 态49P1/2, |mj|=1/249P3/2, |mj|=1/249P3/2, |mj|=3/2
    极化率 α: dc74979.842107095.68789150.196
    DownLoad: CSV

    表 2  拟合正弦函数得到的振幅、频率等参数

    Table 2.  The parameters of amplitude and frequency are obtained by fitting the sinusoidal function.

    拟合参数 频率
    50 Hz 100 Hz 500 Hz 1000 Hz
    振幅/V 0.0153 ± 0.0001 0.0182 ± 0.0001 0.0188 ± 0.0002 0.0173 ± 0.0001
    频率/Hz 49.78 ± 0.09 100.18 ± 0.08 500.01 ± 0.09 1000.02 ± 0.07
    R 2 (COD) 0.94356 0.95435 0.93143 0.9554
    DownLoad: CSV
  • [1]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press

    [2]

    Adams C S, Pritchard J D, Shaffer J P 2020 J. Phys. B: At. Mol. Opt. Phys. 53 012002Google Scholar

    [3]

    Liu B, Zhang L, Liu Z, Deng Z, Ding D, Shi B, Guo G 2023 Electromagn. Sci. 1 1Google Scholar

    [4]

    Yuan J, Yang W, Jing M, Zhang H, Jiao Y, Li W, Zhang L, Xiao L, Jia S 2023 Rep. Prog. Phys. 86 106001Google Scholar

    [5]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003Google Scholar

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [7]

    Kumar S, Fan H, Kübler H, Sheng J, Shaffer J P 2017 Sci. Rep. 7 42981Google Scholar

    [8]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B: At. Mol. Opt. Phys. 44 184020Google Scholar

    [9]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030Google Scholar

    [10]

    Sedlacek J A, Schwettmann A, Kübler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001Google Scholar

    [11]

    Simons M T, Haddab A H, Gordon J A, Novotny D, Holloway C L 2019 IEEE Access 7 164975Google Scholar

    [12]

    Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, Jia S 2020 Nat. Phys. 16 911Google Scholar

    [13]

    Artusio-Glimpse A, Simons M T, Prajapati N, Holloway C L 2022 IEEE Microwave Mag. 23 44Google Scholar

    [14]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104Google Scholar

    [15]

    Holloway C L, Simons M T, Kautz M D, Haddab A H, Gordon J A, Crowley T P 2018 Appl. Phys. Lett. 113 094101Google Scholar

    [16]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [17]

    Zhang L H, Liu Z K, Liu B, Zhang Z Y, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014033Google Scholar

    [18]

    Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J, Qu J 2019 Opt. Express 27 8848Google Scholar

    [19]

    Otto J S, Hunter M K, Kjærgaard N, Deb A B 2021 J. Appl. Phys. 129 154503Google Scholar

    [20]

    Shaffer J, Kübler H 2018 A Read-out Enhancement for Microwave Electric Field Sensing with Rydberg Atoms (Vol. 10674) (SPIE

    [21]

    Ripka F, Amarloo H, Erskine J, Liu C, Ramirez-Serrano J, Keaveney J, Gillet G, Kübler H, Shaffer J 2021 Application-driven Problems in Rydberg Atom Electrometry (Vol. 11700) (SPIE

    [22]

    Liu B, Zhang L H, Liu Z K, Zhang Z Y, Zhu Z H, Gao W, Guo G C, Ding D S, Shi B S 2022 Phys. Rev. Appl. 18 014045Google Scholar

    [23]

    Hu J, Li H, Song R, Bai J, Jiao Y, Zhao J, Jia S 2022 Appl. Phys. Lett. 121 014002Google Scholar

    [24]

    Carr C, Tanasittikosol M, Sargsyan A, Sarkisyan D, Adams C S, Weatherill K J 2012 Opt. Lett. 37 3858Google Scholar

    [25]

    Xu J H, Gozzini A, Mango F, Alzetta G, Bernheim R A 1996 Phys. Rev. A 54 3146Google Scholar

    [26]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B: At. Mol. Opt. Phys. 35 5141Google Scholar

    [27]

    Robertson E J, Šibalić N, Potvliege R M, Jones M P A 2021 Comput. Phys. Commun. 261 107814Google Scholar

    [28]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G, Gordon J A, Holloway C L 2014 Phys. Rev. A 90 043419Google Scholar

    [29]

    Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L, Holloway C L 2016 Phys. Rev. Appl. 5 034003Google Scholar

    [30]

    Daschner R, Ritter R, Kübler H, Frühauf N, Kurz E, Löw R, Pfau T 2012 Opt. Lett. 37 2271Google Scholar

    [31]

    Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415Google Scholar

    [32]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

  • [1] CAI Ting, HE Jun, LIU Zhihui, LIU Yao, SU Nan, SHI Pengfei, JIN Gang, CHENG Yongjie, WANG Junmin. Rydberg atomic spectroscopy based on nanosecond pulsed laser excitation. Acta Physica Sinica, 2025, 74(1): 013201. doi: 10.7498/aps.74.20240900
    [2] Liu Zhi-Hui, Liu Xiao-Na, He Jun, Liu Yao, Su Nan, Cai Ting, Du Yi-Jie, Wang Jie-Ying, Pei Dong-Liang, Wang Jun-Min. Tune-out wavelengths of Rydberg atoms. Acta Physica Sinica, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [3] Zhang Xue-Chao, Qiao Jia-Hui, Liu Yao, Su Nan, Liu Zhi-Hui, Cai Ting, He Jun, Zhao Yan-Ting, Wang Jun-Min. Measurement of low-frequency electric field waveform by Rydberg atom-based sensor. Acta Physica Sinica, 2024, 73(7): 070201. doi: 10.7498/aps.73.20231778
    [4] Wu Bo, Lin Yi, Wu Feng-Chuan, Chen Xiao-Zhang, An Qiang, Liu Yi, Fu Yun-Qi. Quantum microwave electric field measurement technology based on enhancement electric filed resonator. Acta Physica Sinica, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [5] Xue Yong-Mei, Hao Li-Ping, Fan Jia-Bei, Jiao Yue-Chun, Zhao Jian-Ming. nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [6] Fan Jia-Bei, Hao Li-Ping, Bai Jing-Xu, Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang. High-sensitive microwave sensor and communication based on Rydberg atoms. Acta Physica Sinica, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [7] Chen Zhi-Wen, She Zhen-Yue, Liao Kai-Yu, Huang Wei, Yan Hui, Zhu Shi-Liang. Terahertz measurement based on Rydberg atomic antenna. Acta Physica Sinica, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [8] Liu Qiang, He Jun, Wang Jun-Min. Narrow-linewidth coherent population oscillation spectroscopy of room-temperature cesium atomic ensemble. Acta Physica Sinica, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [9] nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211458
    [10] Fan Jia-Bei, Jiao Yue-Chun, Hao Li-Ping, Xue Yong-Mei, Zhao Jian-Ming, Jia Suo-Tang. Microwave electromagnetically induced transparency and Aulter-Townes spectrum of cesium Rydberg atom. Acta Physica Sinica, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [11] Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang. Broadband Rydberg atom-based radio-frequency field sensor. Acta Physica Sinica, 2018, 67(7): 073201. doi: 10.7498/aps.67.20172636
    [12] Xue Yong-Mei, Hao Li-Ping, Jiao Yue-Chun, Han Xiao-Xuan, Bai Su-Ying,  Zhao Jian-Ming, Jia Suo-Tang. Autler-Townes splitting of ultracold cesium Rydberg atoms. Acta Physica Sinica, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [13] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [14] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of Rydberg atoms in modulated laser fields. Acta Physica Sinica, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [15] Wang Yong, Zhang Hao, Chen Jie, Wang Li-Mei, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. State transfer of ultracold nS Rydberg atoms. Acta Physica Sinica, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [16] Wang Li-Mei, Zhang Hao, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Observation of the avoided crossing of Cs Rydberg Stark states. Acta Physica Sinica, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [17] Che Jun-Ling, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Zhao Jian-Ming, Jia Suo-Tang. Evolution of ultracold 70S Cs Rydberg atom. Acta Physica Sinica, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [18] Feng Zhi-Gang, Zhang Hao, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Measurement of lifetime of ultracold cesium Rydberg states. Acta Physica Sinica, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [19] Zhu Xing-Bo, Zhang Hao, Feng Zhi-Gang, Zhang Lin-Jie, Li Chang-Yong, Zhao Jian-Ming, Jia Suo-Tang. Experimental investigation of Stark effect of ultra-cold 39D cesium Rydberg atoms. Acta Physica Sinica, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [20] Meng Hui-Yan, Kang Shuai, Shi Ting-Yun, Zhan Ming-Sheng. Model potential calculations of oscillator strength spectra of lithium atoms in parallel electric and magnetic fields. Acta Physica Sinica, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
Metrics
  • Abstract views:  2515
  • PDF Downloads:  136
  • Cited By: 0
Publishing process
  • Received Date:  13 March 2024
  • Accepted Date:  11 April 2024
  • Available Online:  16 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回