Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microwave electromagnetically induced transparency and Aulter-Townes spectrum of cesium Rydberg atom

Fan Jia-Bei Jiao Yue-Chun Hao Li-Ping Xue Yong-Mei Zhao Jian-Ming Jia Suo-Tang

Citation:

Microwave electromagnetically induced transparency and Aulter-Townes spectrum of cesium Rydberg atom

Fan Jia-Bei, Jiao Yue-Chun, Hao Li-Ping, Xue Yong-Mei, Zhao Jian-Ming, Jia Suo-Tang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • We present an electromagnetically induced transparency and Aulter-Townes (EIT-AT) spectrum of a Rydberg three-level atom that is dressed with a microwave field in a room-temperature cesium cell. The EIT is a quantum coherent effect produced by the interaction of atoms with electromagnetic waves, which leads to the decrease of the absorption for a weak resonant probe laser. AT splitting refers to the phenomenon, that the absorption line splits when an electromagnetic field that is in resonance or near resonance acts on the transition of atoms. Rydberg atoms are extremely sensitive to an external electric field due to their large polarizabilities and microwave transition dipole moments, which can be used to measure the external field. In this work, a Rydberg three-level EIT is used to detect Rydberg atom and AT splitting induced by the microwave field. Cesium levels 6S1/2, 6P3/2 and 50S1/2 constitute a Rydberg three-level system, in which a weak probe laser locking to the transition from 6S1/2 to 6P3/2 couples ground-state transition and the strong coupling laser resonates on the Rydberg transition from 6P2/3 to 50S1/2. The two Rydberg levels 50S1/2 and 50P1/2 are coupled with the microwave field at a frequency of 30.852 GHz, leading to the AT splitting of EIT line and forming an EIT-AT spectrum, which is used to measure the electric field amplitude of microwave. In order to further study the EIT-AT splitting characteristics of the Rydberg levels, we carry out a series of measurements by changing the microwave field. The experimental results show a broadened EIT-AT signal for the weak field range and the four-peak spectrum for the strong field, which is attributed to the inhomogeneity of the microwave field. The microwave in cesium cell, emitted by a function generator, shows inhomogeneous behavior such that the atoms interacting with the laser field experience the different fields, leading to the line broadened and multi-peak EIT-AT spectra. For the microwave transition of nS1/2-nP1/2 in this paper, a pair of EIT-AT lines should be obtained for an electric field value. The broadening of the EIT-AT spectrum and the multi-peak structure here are due to the inhomogeneity of the microwave field measurement. We propose a method to increase the spatial resolution by reducing the length of cesium cell. The result in this work provides a method of measuring the field amplitude and monitoring the distribution of microwave electric field, meanwhile the spatial resolution of the measurements can be improved by reducing the size of the cell.
      Corresponding author: Zhao Jian-Ming, zhaojm@sxu.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0304203), the National Nature Science Foundation of China (Grant Nos. 61475090, 61675123, 61775124), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Key Program of the National Natural Science Foundation of China (Grant No. 11434007), and the Fund for Shanxi 1331 Project Key Subjects Construction.
    [1]

    Boyd R W 2008 Nonlinear Optics (Beijing: Academic Press) p55

    [2]

    Harris S E 1997 Phys. Today 50 36

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [4]

    Scully M O, Fleischhauer M 1992 Phys. Rev. Lett. 69 1360

    [5]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [6]

    Picque J L, Pinard J 1976 J. Phys. B 9 L77

    [7]

    Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270

    [8]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [9]

    Scully M O, Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press) p205

    [10]

    Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835

    [11]

    Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) p11

    [12]

    Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208

    [13]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [14]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020

    [15]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [16]

    Gordon J A, Holloway C L, Schwarzkopf A, Ander-son D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [17]

    Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [18]

    Bohlouli-Zanjani P, Petrus J A, Martin J D 2007 Phys. Rev. Lett. 98 203005

    [19]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R, Lukin M D 2000 Phys. Rev. Lett. 85 2208

    [20]

    Lukin M D, Flischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [21]

    Galindo A, Martin-Delgado M A 2002 Rev. Mod. Phys. 74 347

    [22]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [23]

    Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007

    [24]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [25]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [26]

    Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201

    [27]

    Abel R P, Mohapatra A K, Bason M G, Pritchard J D, Weatherill K J, Raitzsch U, Adams C S 2009 Appl. Phys. Lett. 94 071107

    [28]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106

  • [1]

    Boyd R W 2008 Nonlinear Optics (Beijing: Academic Press) p55

    [2]

    Harris S E 1997 Phys. Today 50 36

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [4]

    Scully M O, Fleischhauer M 1992 Phys. Rev. Lett. 69 1360

    [5]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L, Lukin M D 2001 Phys. Rev. Lett. 86 783

    [6]

    Picque J L, Pinard J 1976 J. Phys. B 9 L77

    [7]

    Cahuzac P, Vetter R 1976 Phys. Rev. A 14 270

    [8]

    Autler S H, Townes C H 1955 Phys. Rev. 100 703

    [9]

    Scully M O, Zubairy M S 1997 Quantum Optics (New York: Cambridge University Press) p205

    [10]

    Zhang H, Wang L M, Chen J, Bao S X, Zhang L J, Zhao J M, Jia S T 2013 Phys. Rev. A 87 033835

    [11]

    Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) p11

    [12]

    Comparat D, Pillet P 2010 J. Opt. Soc. Am. B 27 A208

    [13]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [14]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020

    [15]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [16]

    Gordon J A, Holloway C L, Schwarzkopf A, Ander-son D A, Miller S, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [17]

    Barredo D, Kbler H, Daschner R, Lw R, Pfau T 2013 Phys. Rev. Lett. 110 123002

    [18]

    Bohlouli-Zanjani P, Petrus J A, Martin J D 2007 Phys. Rev. Lett. 98 203005

    [19]

    Jaksch D, Cirac J I, Zoller P, Rolston S L, Cote R, Lukin M D 2000 Phys. Rev. Lett. 85 2208

    [20]

    Lukin M D, Flischhauer M, Cote R, Duan L M, Jaksch D, Cirac J I, Zoller P 2001 Phys. Rev. Lett. 87 037901

    [21]

    Galindo A, Martin-Delgado M A 2002 Rev. Mod. Phys. 74 347

    [22]

    Isenhower L, Urban E, Zhang X L, Gill A T, Henage T, Johnson T A, Walker T G, Saffman M 2010 Phys. Rev. Lett. 104 010503

    [23]

    Viscor D, Li W, Lesanovsky I 2015 New J. Phys. 17 033007

    [24]

    Dudin Y O, Kuzmich A 2012 Science 336 887

    [25]

    Pearman C P, Adams C S, Cox S G, Griffin P F, Smith D A, Hughes I G 2002 J. Phys. B 35 5141

    [26]

    Jiao Y C, Li J K, Wang L M, Zhang H, Zhang L J, Zhao J M, Jia S T 2016 Chin. Phys. B 25 053201

    [27]

    Abel R P, Mohapatra A K, Bason M G, Pritchard J D, Weatherill K J, Raitzsch U, Adams C S 2009 Appl. Phys. Lett. 94 071107

    [28]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithel G 2017 J. Appl. Phys. 121 233106

  • [1] Han Yu-Long, Liu Bang, Zhang Kan, Sun Jin-Fang, Sun Hui, Ding Dong-Sheng. Electromagnetically induced transparency spectra of cesium Rydberg atoms decorated by radio-frequency fields. Acta Physica Sinica, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [2] Liu Jian-Ji, Liu Jia-Chen, Zhang Guo-Quan. Optical image addition and subtraction based on electromagnetically induced transparency effect. Acta Physica Sinica, 2023, 72(9): 094201. doi: 10.7498/aps.72.20221560
    [3] Zhou Fei, Jia Feng-Dong, Liu Xiu-Bin, Zhang Jian, Xie Feng, Zhong Zhi-Ping. Measurement of microwave electric field based on electromagnetically induced transparency by using cold Rydberg atoms. Acta Physica Sinica, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [4] Pei Li-Ya, Zheng Shi-Yang, Niu Jin-Yan. Λ-type electromagnetically induced transparency and absorption by controlling atomic coherence. Acta Physica Sinica, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [5] Xue Yong-Mei, Hao Li-Ping, Fan Jia-Bei, Jiao Yue-Chun, Zhao Jian-Ming. nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [6] Wang Dan, Guo Rui-Xiang, Dai Yu-Peng, Zhou Hai-Tao. Degenerate four-wave mixing-based double-channel optical gain spectrum with two frequency bands. Acta Physica Sinica, 2021, 70(10): 104204. doi: 10.7498/aps.70.20201778
    [7] nS1/2→(n+1)S1/2 two-photon excitation EIT-AT spectrum of Rydberg atom. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211458
    [8] Yan Dong, Wang Bin-Bin, Bai Wen-Jie, Liu Bing, Du Xiu-Guo, Ren Chun-Nian. Phase in Rydberg electromagnetically induced transparency. Acta Physica Sinica, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [9] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of a cesium Rydberg atom in weak radio-frequency field. Acta Physica Sinica, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [10] Xue Yong-Mei, Hao Li-Ping, Jiao Yue-Chun, Han Xiao-Xuan, Bai Su-Ying,  Zhao Jian-Ming, Jia Suo-Tang. Autler-Townes splitting of ultracold cesium Rydberg atoms. Acta Physica Sinica, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [11] Yang Zhi-Wei, Jiao Yue-Chun, Han Xiao-Xuan, Zhao Jian-Ming, Jia Suo-Tang. Electromagnetically induced transparency of Rydberg atoms in modulated laser fields. Acta Physica Sinica, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [12] Wang Meng, Bai Jin-Hai, Pei Li-Ya, Lu Xiao-Gang, Gao Yan-Lei, Wang Ru-Quan, Wu Ling-An, Yang Shi-Ping, Pang Zhao-Guang, Fu Pan-Ming, Zuo Zhan-Chun. Electromagnetically induced transparency in a near-resonance coupling field. Acta Physica Sinica, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [13] Yang Li-Jun, Ma Teng, Sun Ke-Jia, Feng Xiao-Min. Amplification without population inversion in tree-level system driven by an additional microwave field. Acta Physica Sinica, 2015, 64(6): 064205. doi: 10.7498/aps.64.064205
    [14] Qiu Tian-Hui, Yang Guo-Jian. Electromagnetically induced grating in a Λ-type three-level atomic system modulated by a microwave field. Acta Physica Sinica, 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [15] Li Xiao-Li, Zhang Lian-Shui, Sun Jiang, Feng Xiao-Min. Electromagnetically induced negative refraction induced by microwave field driving hyperfine levels transition. Acta Physica Sinica, 2012, 61(4): 044202. doi: 10.7498/aps.61.044202
    [16] Zhou Yun-Qing, Kong Ling-Min, Wang Rui, Zhang Cun-Xi. Properties of pumping current under microwave field appliedto a quantum dot with over-dot tunneling. Acta Physica Sinica, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [17] Yang Li-Jun, Ma Li-Jin, Lü Dong-Qi, Zhang Lian-Shui. Phase-dependent electromagnetically induced transparency in a four-level atom system. Acta Physica Sinica, 2011, 60(10): 104205. doi: 10.7498/aps.60.104205
    [18] Yao Ming, Zhu Ka-Di, Yuan Xiao-Zhong, Jiang Yi-Wen, Wu Zhuo-Jie. Phonon mediated electromagnetically induced transparency and ultraslow light in strongly coupled exciton-phonon systems. Acta Physica Sinica, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [19] Liu Zheng-Dong, Wu Qiang. Electromagnetically induced transparency in a four-level atomic system driven by three coupled fields. Acta Physica Sinica, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] YANG SU-HUI, ZHANG HAN-ZHUANG, GUO XIU-ZHEN, WANG DONG, GAO JIN-YUE. EFFECT OF FINITE BANDWIDTHS OF LASER FIELDS ON ELECTROMAGNETICALLY INDUCED TWO-PHOTON TRANSPARENCY AND ABSORPTION ENHANCEMENT. Acta Physica Sinica, 1998, 47(6): 931-937. doi: 10.7498/aps.47.931
Metrics
  • Abstract views:  9455
  • PDF Downloads:  409
  • Cited By: 0
Publishing process
  • Received Date:  13 December 2017
  • Accepted Date:  09 January 2018
  • Published Online:  05 May 2018

/

返回文章
返回