-
In a Λ-type electromagnetically induced transparency system, it shows that on the Doppler-broadened linear absorption background, as the probe intensity increases, the single narrow line-width window gradually evolves into 3 windows and 2 absorption peaks alternately. In this paper, the mechanism of probe intensity is studied in detail by using the dressed-state model. We propose that when the probe field is not so weak, the atomic Raman coherence can be manipulated by its intensity. For a Doppler-broadened system, there will appear the discontinuous energy variation of the dressed-states, and the large Raman loss due to the double resonance for dressed-states, which are the key factors for the evolution of the transparency window.
-
Keywords:
- electromagnetically induced transparency /
- electromagnetically induced absorption /
- atomic coherence /
- polarization interference /
- dressed-state
[1] Harris S E 1997 Phys. Today 50 36
[2] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar
[3] Pei L Y, Lu X, Bai J, Miao X, Wang R, Wu L A, Ren S, Jiao Z, Zhu H, Fu P, Zuo Z 2013 Phys. Rev. A 87 063822Google Scholar
[4] Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar
[5] Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601Google Scholar
[6] Li H C, Ge G Q, Zubairy M S 2019 Opt. Lett. 44 3486Google Scholar
[7] Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490Google Scholar
[8] Camacho R M, Vudyasetu P K, Howell J C 2009 Nat. Photonics 3 103Google Scholar
[9] Wang Z B, Marzlin K P, Sanders B C 2006 Phys. Rev. Lett. 97 063901Google Scholar
[10] Sternfeld Y, Zhou Z, Scheuer J, Shahriar S M 2021 Opt. Express 29 1125Google Scholar
[11] Li Y, Xiao M 1996 Opt. Lett. 21 1064Google Scholar
[12] Jeong T, Chough Y T, Moon H S 2020 Opt. Express 28 36611Google Scholar
[13] Wei Y C, Lin S X, Tsai P J, Chen Y C 2020 Sci. Rep. 10 13990Google Scholar
[14] Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar
[15] Pei L Y, Niu J, Wang R, Qu Y, Wu L A, Fu P, Zuo Z 2015 Chin. Phys. B 24 014205Google Scholar
[16] Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163Google Scholar
[17] Lee Y S, Moon H S 2016 Opt. Express 24 10723Google Scholar
[18] Wielandy S, Gaeta A L 1998 Phys. Rev. A 58 2500Google Scholar
[19] Yang X, Sheng J, Xiao M 2011 Phys. Rev. A 84 043837Google Scholar
[20] Akulshin A M, Barreiro S, Lezama A 1998 Phys. Rev. A 57 2996Google Scholar
[21] Goren C, Wilson-Gordon A D, Rosenbluh M, Friedmann H 2003 Phys. Rev. A 67 033807Google Scholar
[22] dos Santos F C D, Martins W S, Barreiro S, de Oliveira R A 2018 J. Phys. B: At. Mol. Opt. Phys. 51 185002Google Scholar
[23] Niu J, Pei L Y, Lu X, Wang R, Wu L A, Fu P 2011 Phys. Rev. A 84 033853Google Scholar
[24] Pei L Y, Niu J, Wang R, Qu Y, Zuo Z, Wu L A, Fu P 2015 Chin. Phys. B 24 074203Google Scholar
[25] Saglamyurek E, Hrushevskyi T, Rastogi A, Heshami K, LeBlanc L J 2018 Nat. Photonics 12 774Google Scholar
-
图 2 当耦合光共振((a), (b), (c), (d)
${\varDelta_2} = 0$ )和失谐((e), (f), (g), (h)${\varDelta_2} = 180$ MHz)时, 弱探测光场逐渐增强时的探测光吸收谱. 所取探测光的强度分别为(a), (e)$ G_{1} = 0.3 $ MHz; (b), (f)$ G_{1} = 1.5 $ MHz; (c), (g)$ G_{1} = 3.0 $ MHz; (d), (h)$ G_{1} = 3.6 $ MHz. 其他参数取值为$ G_{2} = 12.0 $ MHz,$ \varGamma_{10} = 7.2 $ MHz,$ \varGamma_{20} = 0.72 $ MHzFigure 2. The absorption spectrum of probe field as its intensity increases. Plots are shown for (a), (e)
$ G_{1} = 0.3 $ MHz; (b), (f)$G_{1} = $ $ 1.5$ MHz; (c), (g)$ G_{1} = 3.0 $ MHz; (d), (h)$ G_{1} = 3.6 $ MHz, when the coupling-field frequency is exactly on resonance ((a), (b), (c), (d)${\varDelta_2} = 0$ ) and detuned ((e), (f), (g), (h)${\varDelta_2} = 180$ MHz) respectively, with$ G_{2} = 12.0 $ MHz,$ \varGamma_{10} = 7.2 $ MHz,$ \varGamma_{20} = 0.72 $ MHz图 3 探测光的(a)吸收系数
$ A_{1} $ 和(b)色散系数$ D_{1} $ . 其中, 图(a)中的黑色点线和蓝色实线分别是图2(a)和图2(c)的细节图; 图(b)为其相应的色散. (c) 系统相应的共振速度:$ v_1/u $ (黑色实线),$ v_2/u $ (黑色虚-点线), 和$ v_\pm/u $ (红色短虚线和蓝色点线). 另外, 图(c)中v = 0 (绿色细实线)为参考线Figure 3. Theoretical results for the (a) absorption and (b) dispersion coefficients of the probe field. Here, the black dotted curve and the blue solid curve in panel (a) are the local details of Fig. 2(a) and Fig. 2(c), respectively. Panel (b) shows the corresponding dispersions. (c) Corresponding resonant velocities
$ v_1/u $ (black solid line),$ v_2/u $ (black dash-dot curve), and$ v_\pm/u $ (red short-dash and blue dotted curve). In addition,$ v = 0 $ (thin green solid line) in panel (c) is used for reference -
[1] Harris S E 1997 Phys. Today 50 36
[2] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar
[3] Pei L Y, Lu X, Bai J, Miao X, Wang R, Wu L A, Ren S, Jiao Z, Zhu H, Fu P, Zuo Z 2013 Phys. Rev. A 87 063822Google Scholar
[4] Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar
[5] Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601Google Scholar
[6] Li H C, Ge G Q, Zubairy M S 2019 Opt. Lett. 44 3486Google Scholar
[7] Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490Google Scholar
[8] Camacho R M, Vudyasetu P K, Howell J C 2009 Nat. Photonics 3 103Google Scholar
[9] Wang Z B, Marzlin K P, Sanders B C 2006 Phys. Rev. Lett. 97 063901Google Scholar
[10] Sternfeld Y, Zhou Z, Scheuer J, Shahriar S M 2021 Opt. Express 29 1125Google Scholar
[11] Li Y, Xiao M 1996 Opt. Lett. 21 1064Google Scholar
[12] Jeong T, Chough Y T, Moon H S 2020 Opt. Express 28 36611Google Scholar
[13] Wei Y C, Lin S X, Tsai P J, Chen Y C 2020 Sci. Rep. 10 13990Google Scholar
[14] Xiao M, Li Y, Jin S, Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666Google Scholar
[15] Pei L Y, Niu J, Wang R, Qu Y, Wu L A, Fu P, Zuo Z 2015 Chin. Phys. B 24 014205Google Scholar
[16] Moon H S, Lee L, Kim J B 2008 Opt. Express 16 12163Google Scholar
[17] Lee Y S, Moon H S 2016 Opt. Express 24 10723Google Scholar
[18] Wielandy S, Gaeta A L 1998 Phys. Rev. A 58 2500Google Scholar
[19] Yang X, Sheng J, Xiao M 2011 Phys. Rev. A 84 043837Google Scholar
[20] Akulshin A M, Barreiro S, Lezama A 1998 Phys. Rev. A 57 2996Google Scholar
[21] Goren C, Wilson-Gordon A D, Rosenbluh M, Friedmann H 2003 Phys. Rev. A 67 033807Google Scholar
[22] dos Santos F C D, Martins W S, Barreiro S, de Oliveira R A 2018 J. Phys. B: At. Mol. Opt. Phys. 51 185002Google Scholar
[23] Niu J, Pei L Y, Lu X, Wang R, Wu L A, Fu P 2011 Phys. Rev. A 84 033853Google Scholar
[24] Pei L Y, Niu J, Wang R, Qu Y, Zuo Z, Wu L A, Fu P 2015 Chin. Phys. B 24 074203Google Scholar
[25] Saglamyurek E, Hrushevskyi T, Rastogi A, Heshami K, LeBlanc L J 2018 Nat. Photonics 12 774Google Scholar
Catalog
Metrics
- Abstract views: 3719
- PDF Downloads: 100
- Cited By: 0