Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation and detection of the topological properties of phonon-photon in frequency-tunable optomechanical lattice

Liu Lang Wang Yi-Ping

Citation:

Simulation and detection of the topological properties of phonon-photon in frequency-tunable optomechanical lattice

Liu Lang, Wang Yi-Ping
PDF
HTML
Get Citation
  • We propose a one-dimensional lattice theory scheme based on a coupled optomechanical system consisting of multiple cavity field modes and mechanical modes, where their frequencies can be tuned. In this system, by manipulating parameters to obtain collective dynamical evolution of the system, we study topological properties and topological quantum channels in the system. Firstly, the topological insulator properties and topological quantum channels of the system are studied by modulating the periodic coupling parameters of the system and analyzing the characteristics of the energy spectrum and edge states of the system. It is found that edge state distributions can exhibit flipping processes, which can be applied to quantum information processing. Secondly, based on the scattering theory of topological insulators and the relationship between input and output, the variation characteristics of the steady-state average photon number of the cavity field and the winding number of the reflection coefficient phase are analyzed. It is found that the dissipation of the cavity field has a certain influence on the locality of the distribution of the average photon number in the lattice, and it also indirectly explains the locality of the edge states of the system, and the topological invariants are detected by the winding number. In addition, considering the effect of disordered defects on topological properties, we further analyze their effects on the energy spectrum of the system, the winding number of the reflection coefficient phase and the average photon number of the cavity field. It is found that two defects in the system cause different physical effects, and when their values are small, the edge states of the system are robust to it, which also shows that the system has the characteristics of topological protection. However, when disorder and perturbation are larger than the energy gap, the topological properties of the system will be annihilated, so that the edge states will be indistinguishable, and the topological invariants will change at the same time. The research results of this system can be generalized to other types of models and can be applied to quantum communication and quantum information processing, which will have certain constructive suggestions for the development of future quantum technology.
      Corresponding author: Wang Yi-Ping, ypwang2019@nwafu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant No. 2021JQ-129), Undergraduate Innovation Program of Northwest A&F University, China (Grant No. X202210712002), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 2452020019, 2452022027)
    [1]

    Braginskii V B and Manukin A B 1967 Sov. Phys. JETP 25 653

    [2]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [3]

    Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204Google Scholar

    [4]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [5]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [6]

    Martin I, Shnirman A, Lin T, Zoller P 2004 Phys. Rev. B 69 125339Google Scholar

    [7]

    Xiao Y, Yu Y F, Zhang Z M 2014 Opt. Express 22 17979Google Scholar

    [8]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Laser Phys. Lett. 16 015205Google Scholar

    [9]

    Wei W Y, Yu Y F, Zhang Z M 2018 Chin. Phys. B 27 034204Google Scholar

    [10]

    Huang S M, Agarwal G S 2010 Phys. Rev. A 81 033830Google Scholar

    [11]

    Zhang Z C, Wang Y P, Yu Y F, Zhang Z M 2019 Ann.Phys. 531 1800461Google Scholar

    [12]

    Wang K, Yu Y F, Zhang Z M 2019 Phys. Rev. A 100 053832Google Scholar

    [13]

    Li J, Yu R, Ding C, Wu Y 2014 Opt. Express 22 15024Google Scholar

    [14]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [15]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175504Google Scholar

    [16]

    Massel F, Heikkil T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [17]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Chin. Phys. B 28 014202Google Scholar

    [18]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [19]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [20]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [21]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [22]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [23]

    Xu Z, Zhang Y, Chen S 2017 Phys. Rev. A 96 013606Google Scholar

    [24]

    Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111Google Scholar

    [25]

    Li L, Chen S 2015 Phys. Rev. B 92 085118Google Scholar

    [26]

    Mei F, Zhu S L, Zhang Z M, Oh C H, Goldman N 2012 Phys. Rev. A 85 013638Google Scholar

    [27]

    Xu Z, Zhang R, Chen S, Fu L, Zhang Y 2020 Phys. Rev. A 101 013635Google Scholar

    [28]

    Wray L A, Xu V, Xia Y, Hsieh D, Fedorov A V, SanHor Y, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys. 7 32Google Scholar

    [29]

    Malki M, Uhrig G S 2017 Phys. Rev. B 95 235118Google Scholar

    [30]

    Berg E, Dalla Torre E G, Giamarchi T, Altman E 2008 Phys. Rev. B 77 245119Google Scholar

    [31]

    Chitov G Y 2018 Phys. Rev. B 97 085131Google Scholar

    [32]

    Agrapidis C E, van den Brink J, Nishimoto S 2019 Phys. Rev. B 99 224418Google Scholar

    [33]

    Feng X Y, Zhang G M, Xiang T 2007 Phys. Rev. Lett 98 087204Google Scholar

    [34]

    Roque T F, Peano V, Yevtushenko O M, Marquardt F 2017 New J. Phys 19 013006Google Scholar

    [35]

    Wan L L, Lü X Y, Gao J H, Wu Y 2017 Opt. Express 25 017364Google Scholar

    [36]

    Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. B 100 062323Google Scholar

    [37]

    Xu X W, Zhao Y J, Wang H, Chen A X, Liu Y X 2022 Front. Phys. 10 3389

    [38]

    Mei F, Xue Z Y, Zhang D W, Tian L, Lee C, Zhu S L 2016 Quantum Sci. Technol. 1 015006Google Scholar

    [39]

    Walls D F, Milburn G J 2008 Quantum Optics (Berlin: Springer) pp127–138

    [40]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155Google Scholar

  • 图 1  一维(1D)腔光力耦合晶格系统模型图, $ a_n $$ b_n $分别表示腔场和机械振子的模式, 其中包含$ N+1 $个腔模式和$ N $个机械模式

    Figure 1.  Schematic of the 1D optomechanical coupling lattice system, $ a_n $ and $ b_n $represent the modes of the cavity field and the mechanical oscillator, respectively, and including $ N+1 $ cavity modes and $ N $mechanical modes.

    图 2  系统能谱E与参数$ \phi $的物理图像 (a) $ M_{1} = M_{2} = 0 $; (b) $ M_{1} = 0, M_{2} = 0.1 $. 参数$ \phi $取值范围为(0, $2\text{π}$), $N = 15$

    Figure 2.  The energy spectrum E of the system vs the parameter $ \phi $: (a) $ M_{1} = M_{2} = 0 $; (b) $ M_{1} = 0, M_{2} = 0.1 $. The range of parameter $ \phi $ is (0, $2\text{π}$), $ N = 15 $

    图 3  系统能谱E与参数$ \phi $的物理图像 (a) $ \psi = 0 $; (b) $ \psi = 0.1\pi $; (c) $ \psi = 0.9\pi $; (d) $ \psi = \pi $. 参数 $ \phi $ 取值范围为($0, 2\pi $), $N = 15$

    Figure 3.  The energy spectrum E of the system vs the parameter $ \phi $: (a) $ \psi=0 $; (b) $ \psi=0.1\pi $; (c) $ \psi=0.9\pi $; (d) $ \psi=\pi $. The range of parameter $ \phi $ is (0, $ 2\pi $), $ N = 15 $

    图 4  边缘态分布与晶格数的物理图像 (a), (c) $ \phi = 2\pi/3 $, $ \psi = 3\pi/2, \pi/2, \pi $; (b), (d) $ \phi = \pi/3 $, $ \psi = 4\pi/3, 2\pi/3, \pi $

    Figure 4.  The state distribution vs the lattice number: (a), (c) $ \phi = 2\pi/3 $, $ \psi = 3\pi/2, \pi/2, \pi $; (b), (d) $ \phi = \pi/3 $, $ \psi = 4\pi/3, 2\pi/3, \pi $

    图 5  沿晶格方向腔场稳态的平均光子数N与晶格数的物理图像 (a)晶格数为10, 驱动频率为$ \varDelta _{a, n} = 0.25 t $, $ \psi = 0.25\pi $; (b)晶格数为4, 驱动频率是$ \varDelta _{a, n} = - 0.01 t $, $ \psi = 0.25\pi $, 黑色虚线$ \kappa = 0.1 $, 红色点线$ \kappa = 0.15 $, 蓝色点虚线$ \kappa = 0.2 $; (c)$ \psi = $$ 0.2\pi, 0.23\pi, 0.26\pi $; (d)在腔的最左边(黑色线圆)、中间(红色虚线正方形)和最右边(蓝色点虚线菱形)驱动晶格.其他参数为$ \varOmega _{1 a} = 0.1 t $, $ \phi = 0.8\pi $

    Figure 5.  The average photon number N vs the lattice number: (a) The lattice size 10, $ \varDelta _{a, n} = 0.25 t $, $ \psi = 0.25\pi $; (b) the lattice size 4, $ \varDelta _{a, n} = - 0.01 t $, $ \psi = 0.25\pi $, black dotted line $ \kappa = 0.1 $, the red dotted line $ \kappa = 0.15 $, the blue dotted line $ \kappa = 0.2 $; (c) $ \psi = 0.2\pi, 0.23\pi, 0.26\pi $; (d) lattice site driven at the far left (black circles), middle (red dashed squares) and rightmost (blue dotted diamonds). Other parameters are Ω1a = 0.1t and ϕ=0.8π

    图 6  反射系数相的环绕数随参数$ \phi $的变化 (a1), (a2), (a3)蓝色线条为$ \psi = \pi/2 $, 红色线条为$ \psi = - \pi/2 $; (b) $\psi = $$ \pi/2$, $ \kappa = 0.1, 0.5, 1.5, 2 $; (c) $ \psi = - \pi/2 $, $ \kappa=0.1, 0.5, 1.5, 2 $. 其他参数为$\varOmega _{1 a} = 0.75 t$, 晶格数为10

    Figure 6.  The winding number of the reflection coefficient phase varies with parameter$ \phi $: (a1), (a2), (a3) The blue line is $ \psi = \pi/2 $, the red line is $ \psi = - \pi/2 $; (b) $ \psi = \pi/2 $, $ \kappa=0.1, 0.5, 1.5, 2 $; (c) $ \psi = - \pi/2 $, $ \kappa = 0.1, 0.5, 1.5, 2 $. Other parameters are $\varOmega _{1 a} = 0.75 t$ and lattice size 10.

    图 7  最近邻相互作用之间的无序与系统能谱的物理图像 (a) $ \upsilon = 0.1 $; (b) $ \upsilon = 0.5 $; (c) $ \upsilon = 1 $; (d) $ \upsilon = 1.5 $; (e) $ \upsilon = 2 $; (f) $ \upsilon = 3 $. 其他参数为$ \psi = \pi/2 $, 晶格数为10

    Figure 7.  The effects of the disorder added into the nearest neighbor interaction on the energy spectra (a) $ \upsilon = 0.1 $; (b) $ \upsilon = 0.5 $; (c) $ \upsilon = 1 $; (d) $ \upsilon = 1.5 $; (e) $ \upsilon = 2 $; (f) $ \upsilon = 3 $. Other parameters are $ \psi = \pi/2 $ and lattice size 10.

    图 8  在位无序与系统能谱的物理图像 (a) $ \mu = 0.1 $; (b) $ \mu = 0.5 $; (c) $ \mu = 1 $; (d) $ \mu = 1.5 $; (e) $ \mu = 2 $; (f) $ \mu = 3 $. 其他参数为$ \psi = \pi/2 $, 晶格数为10

    Figure 8.  The effects of the disorder added into the on-site potential energy on the energy spectra: (a) $ \mu = 0.1 $; (b) $ \mu = 0.5 $, (c) $ \mu = 1 $; (d) $ \mu = 1.5 $; (e) $ \mu = 2 $, (f) $ \mu = 3 $. Other parameters are $ \psi = \pi/2 $ and lattice size 10.

    图 9  左边缘态的分布与缺陷强度$ \mu $, $ \upsilon $和晶格数的物理图像, 其他参数为$ \psi=\pi/2 $, 晶格数为10

    Figure 9.  The distribution of the left edge state is plotted with the defect intensity $ \mu $, $ \upsilon $, and lattice number, respectively, other parameters are $ \psi = \pi/2 $ and lattice size 10.

    图 10  反射系数相的环绕数与无序缺陷的物理图像 (a) $ \upsilon = 0, 0.3, 0.6 $; (b) $ \upsilon = 1, 1.2, 1.4 $; (c) $ \mu = 0, 0.04, 0.08 $; (d) $\mu = 0.1, $$ 0.2, 0.3$. 其他参数为$ \psi = \pi/2 $, $ \kappa = 0.1 $, 晶格数为10

    Figure 10.  The winding number of the reflection coefficient phase varies with the disorder: (a) $ \upsilon = 0, 0.3, 0.6 $; (b) $ \upsilon = 1, 1.2, 1.4 $; (c) $ \mu = 0, 0.04, 0.08 $; (d) $ \mu = 0.1, 0.2, 0.3 $. Other parameters are $ \psi = \pi/2 $, $ \kappa = 0.1 $ and lattice size 10.

    图 11  沿晶格方向腔场稳态的平均光子数与缺陷强度$ \mu $, $ \upsilon $和晶格数的物理图像 (a) $ \upsilon = 0, 1, 2, 3 $; (b) $ \mu = 0, 1, 2, 3 $. 其他参数为$\varOmega _{1 a} = 0.1 t$, $ \phi = 0.8\pi $, $\varDelta _{a, n} = - 0.5 t$, $ \kappa = 0.1 $, 晶格数为10

    Figure 11.  The average photon number $ N $ varies with the defect intensity $ \mu $, $ \upsilon $ and lattice number, respectively: (a) $ \upsilon = $$ 0, 1, 2, 3 $; (b) $ \mu = 0, 1, 2, 3 $. Other parameters are $\varOmega _{1 a} = 0.1 t$, $ \phi = 0.8\pi $, $\varDelta _{a, n} = - 0.5 t$, $ \kappa = 0.1 $ and lattice size 10.

  • [1]

    Braginskii V B and Manukin A B 1967 Sov. Phys. JETP 25 653

    [2]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391Google Scholar

    [3]

    Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204Google Scholar

    [4]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520Google Scholar

    [5]

    You J Q, Nori F 2011 Nature 474 589Google Scholar

    [6]

    Martin I, Shnirman A, Lin T, Zoller P 2004 Phys. Rev. B 69 125339Google Scholar

    [7]

    Xiao Y, Yu Y F, Zhang Z M 2014 Opt. Express 22 17979Google Scholar

    [8]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Laser Phys. Lett. 16 015205Google Scholar

    [9]

    Wei W Y, Yu Y F, Zhang Z M 2018 Chin. Phys. B 27 034204Google Scholar

    [10]

    Huang S M, Agarwal G S 2010 Phys. Rev. A 81 033830Google Scholar

    [11]

    Zhang Z C, Wang Y P, Yu Y F, Zhang Z M 2019 Ann.Phys. 531 1800461Google Scholar

    [12]

    Wang K, Yu Y F, Zhang Z M 2019 Phys. Rev. A 100 053832Google Scholar

    [13]

    Li J, Yu R, Ding C, Wu Y 2014 Opt. Express 22 15024Google Scholar

    [14]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar

    [15]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175504Google Scholar

    [16]

    Massel F, Heikkil T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351Google Scholar

    [17]

    Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Chin. Phys. B 28 014202Google Scholar

    [18]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204Google Scholar

    [19]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [20]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [21]

    Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004Google Scholar

    [22]

    Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005Google Scholar

    [23]

    Xu Z, Zhang Y, Chen S 2017 Phys. Rev. A 96 013606Google Scholar

    [24]

    Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111Google Scholar

    [25]

    Li L, Chen S 2015 Phys. Rev. B 92 085118Google Scholar

    [26]

    Mei F, Zhu S L, Zhang Z M, Oh C H, Goldman N 2012 Phys. Rev. A 85 013638Google Scholar

    [27]

    Xu Z, Zhang R, Chen S, Fu L, Zhang Y 2020 Phys. Rev. A 101 013635Google Scholar

    [28]

    Wray L A, Xu V, Xia Y, Hsieh D, Fedorov A V, SanHor Y, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys. 7 32Google Scholar

    [29]

    Malki M, Uhrig G S 2017 Phys. Rev. B 95 235118Google Scholar

    [30]

    Berg E, Dalla Torre E G, Giamarchi T, Altman E 2008 Phys. Rev. B 77 245119Google Scholar

    [31]

    Chitov G Y 2018 Phys. Rev. B 97 085131Google Scholar

    [32]

    Agrapidis C E, van den Brink J, Nishimoto S 2019 Phys. Rev. B 99 224418Google Scholar

    [33]

    Feng X Y, Zhang G M, Xiang T 2007 Phys. Rev. Lett 98 087204Google Scholar

    [34]

    Roque T F, Peano V, Yevtushenko O M, Marquardt F 2017 New J. Phys 19 013006Google Scholar

    [35]

    Wan L L, Lü X Y, Gao J H, Wu Y 2017 Opt. Express 25 017364Google Scholar

    [36]

    Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. B 100 062323Google Scholar

    [37]

    Xu X W, Zhao Y J, Wang H, Chen A X, Liu Y X 2022 Front. Phys. 10 3389

    [38]

    Mei F, Xue Z Y, Zhang D W, Tian L, Lee C, Zhu S L 2016 Quantum Sci. Technol. 1 015006Google Scholar

    [39]

    Walls D F, Milburn G J 2008 Quantum Optics (Berlin: Springer) pp127–138

    [40]

    Clerk A A, Devoret M H, Girvin S M, Marquardt F, Schoelkopf R J 2010 Rev. Mod. Phys. 82 1155Google Scholar

  • [1] Li Jin-Fang, He Dong-Shan, Wang Yi-Ping. Modulation of topological phase transition and topological quantum state of magnon-photon in one-dimensional coupled cavity lattices. Acta Physica Sinica, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] Zhang Yi-Jun, Mu Xiao-Dong, Guo Le-Meng, Zhang Peng, Zhao Dao, Bai Wen-Hua. A support vector machine training scheme based on quantum circuits. Acta Physica Sinica, 2023, 72(7): 070302. doi: 10.7498/aps.72.20222003
    [3] Zhang Shuai, Song Feng-Qi. Research progress of quantum Hall effect in topological insulator. Acta Physica Sinica, 2023, 72(17): 177302. doi: 10.7498/aps.72.20230698
    [4] Liu Chang, Wang Ya-Yu. Quantum transport phenomena in magnetic topological insulators. Acta Physica Sinica, 2023, 72(17): 177301. doi: 10.7498/aps.72.20230690
    [5] Zheng Zhi-Yong, Chen Li-Jie, Xiang Lü, Wang He, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states by counter-rotating wave effect in one-dimensional superconducting microwave cavity lattice. Acta Physica Sinica, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [6] Yao Jie, Zhao Ai-Di. Advances in detection and regulation of surface-supported molecular quantum states. Acta Physica Sinica, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [7] Jia Liang-Guang, Liu Meng, Chen Yao-Yao, Zhang Yu, Wang Ye-Liang. Research progress of two-dimensional quantum spin Hall insulator in monolayer 1T'-WTe2. Acta Physica Sinica, 2022, 71(12): 127308. doi: 10.7498/aps.71.20220100
    [8] Li Ting, Wang Tao, Wang Ye-Bing, Lu Ben-Quan, Lu Xiao-Tong, Yin Mo-Juan, Chang Hong. Experimental observation of quantum tunneling in shallow optical lattice. Acta Physica Sinica, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [9] Wang Wei, Wang Yi-Ping. Modulation of topological phase transitions and topological quantum states in one-dimensional superconducting transmission line cavities lattice. Acta Physica Sinica, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [10] Wei Rong-Yu, Nie Min, Yang Guang, Zhang Mei-Ling, Sun Ai-Jing, Pei Chang-Xing. Parameters adaptive adjustment strategy of quantum communication channel in free-space based on software-defined quantum communication. Acta Physica Sinica, 2019, 68(14): 140302. doi: 10.7498/aps.68.20190462
    [11] Ma Ya-Yun, Feng Jin-Xia, Wan Zhen-Ju, Gao Ying-Hao, Zhang Kuan-Shou. Continuous variable quantum entanglement at 1.34 m. Acta Physica Sinica, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [12] Wang Qing, Sheng Li. Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field. Acta Physica Sinica, 2015, 64(9): 097302. doi: 10.7498/aps.64.097302
    [13] Lu Dao-Ming. Tripartite entanglement properties of coupled three atoms in cavity quantum electrodynamics. Acta Physica Sinica, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [14] Lu Dao-Ming, Qiu Chang-Dong. Quantum discord in the system of two atoms trapped in weak coherent state cavities connected by an optical fiber. Acta Physica Sinica, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [15] Li Rui-Qi, Lu Dao-Ming. Quantum discord in the system of atoms interacting with coupled cavities. Acta Physica Sinica, 2014, 63(3): 030301. doi: 10.7498/aps.63.030301
    [16] Wang Ju-Xia. Evolution of the quantum fidelity in a system of multimode light field interacting resonantly with a two-level atom through degenerate multi-photon process. Acta Physica Sinica, 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [17] Zhang Ying-Jie, Xia Yun-Jie, Ren Ting-Qi, Du Xiu-Mei, Liu Yu-Ling. Quantum properties of the entangled coherent light field under the anti-Jaynes-Cummings model. Acta Physica Sinica, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [18] Jiang Jin-Huan, Wang Yong-Long, Li Zi-Ping. Quantum theory of steady state photorefractive spatial solitons propagation. Acta Physica Sinica, 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [19] Ji Ying-Hua. Influences of an external pulse on the quantum state of a mesoscopic RLC circuit. Acta Physica Sinica, 2003, 52(3): 692-695. doi: 10.7498/aps.52.692
    [20] JI YING-HUA, LEI MIN-SHENG, XIE FANG-SEN, XIONG XIAO-HUA. QUANTUM EFFECT OF THE MESOSCOPIC LC CIRCUIT WITH PULSE-CODE. Acta Physica Sinica, 2001, 50(6): 1163-1166. doi: 10.7498/aps.50.1163
Metrics
  • Abstract views:  3968
  • PDF Downloads:  81
  • Cited By: 0
Publishing process
  • Received Date:  26 May 2022
  • Accepted Date:  09 August 2022
  • Available Online:  31 October 2022
  • Published Online:  20 November 2022

/

返回文章
返回