- 
				In this work, a one-dimensional lattice theory scheme is proposed based on superconducting microwave cavity, which includes two different types of microwave cavity unit cells. The coupling between the unit cells is controlled by flux qubits to simulate and study their topological insulator characteristics. Specifically, by mapping the counter-rotating wave terms into the p-wave superconducting pairing term, a one-dimensional superconducting microwave cavity lattice scheme with a p-wave superconducting pairing term is obtained. It is found that the p-wave superconducting pairing term can modulate the topological quantum state of the system, allowing the topological quantum information transmission channels with four edge states to be created. In addition, when the p-wave superconducting pairing term interacts with the nearest-neighbor, the energy band undergoes fluctuations, thus inducing new energy bands to be generated, but the degeneracy of the edge states remains stable, which can realize the multiple topological quantum state transmission paths. However, when its regulation exceeds the threshold, the energy gap of the system will close, causing the edge states to annihilate in a new energy band. Furthermore, with defects considered to exist in the system, when the strength of the defect is small, the edge state produces small fluctuations, but it can be clearly distinguished, showing its robustness. When the strength of the defect exceeds the threshold, the edge state and energy band will cause irregular fluctuations, allowing the edge state to integrate into an energy band. Our research results have important theoretical value and practical significance, and can be applied to quantum optics and quantum information processing in the future.- 
										Keywords:
										
- quantum optics /
- superconducting quantum circuits /
- topological insulators /
- quantum states
 [1] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057  Google Scholar Google Scholar[2] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045  Google Scholar Google Scholar[3] Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004  Google Scholar Google Scholar[4] Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005  Google Scholar Google Scholar[5] Xu Z, Zhang Y, Chen S 2017 Phys. Rev. A 96 013606  Google Scholar Google Scholar[6] Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111  Google Scholar Google Scholar[7] Li L, Chen S 2015 Phys. Rev. B 92 085118  Google Scholar Google Scholar[8] Mei F, Zhu S L, Zhang Z M, Oh C H, Goldman N 2012 Phys. Rev. A 85 013638  Google Scholar Google Scholar[9] Wray L A, Xu V, Xia Y, Hsieh D, Fedorov A V, SanHor Y, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys. 7 32  Google Scholar Google Scholar[10] Malki M, Uhrig G S 2017 Phys. Rev. B 95 235118  Google Scholar Google Scholar[11] Chitov G Y 2018 Phys. Rev. B 97 085131  Google Scholar Google Scholar[12] Agrapidis C E, van den Brink J, Nishimoto S 2019 Phys. Rev. B 99 224418  Google Scholar Google Scholar[13] Braginskii V B, Manukin A B 1967 Sov. Phys. JETP 25 653 [14] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys 86 1391  Google Scholar Google Scholar[15] Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204  Google Scholar Google Scholar[16] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520  Google Scholar Google Scholar[17] Martin I, Shnirman A, Lin T, Zoller P 2004 Phys. Rev. B 69 125339  Google Scholar Google Scholar[18] Huang S M, Agarwal G S 2010 Phys. Rev. A 81 033830  Google Scholar Google Scholar[19] Wang K, Yu Y F, Zhang Z M 2019 Phys. Rev. A 100 053832  Google Scholar Google Scholar[20] Wei W Y, Yu Y F, Zhang Z M 2018 Chin. Phys. B 27 034204  Google Scholar Google Scholar[21] Xiao Y, Yu Y F, Zhang Z M 2014 Opt. Express 22 17979  Google Scholar Google Scholar[22] Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Chin. Phys. B 28 014202  Google Scholar Google Scholar[23] You J Q, Nori F 2011 Nature 474 589  Google Scholar Google Scholar[24] Massel F, Heikkil T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351  Google Scholar Google Scholar[25] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204  Google Scholar Google Scholar[26] Zhang Z C, Wang Y P, Yu Y F, Zhang Z M 2019 Ann. Phys. 531 1800461  Google Scholar Google Scholar[27] Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Laser Phys. Lett. 16 015205  Google Scholar Google Scholar[28] Devoret M H, Schoelkopf R J 2013 Science 339 1169  Google Scholar Google Scholar[29] Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175504  Google Scholar Google Scholar[30] Roque T F, Peano V, Yevtushenko O M, Marquardt F 2017 New J. Phys. 19 013006  Google Scholar Google Scholar[31] Wan L L, Lü X Y, Gao J H, Wu Y 2017 Opt. Express 25 017364  Google Scholar Google Scholar[32] Wang W, Wang Y P 2022 Acta Phys. Sin. 71 194203  Google Scholar Google Scholar[33] Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. B 100 062323  Google Scholar Google Scholar[34] Xu X W, Zhao Y J, Wang H, Chen A X, Liu Y X 2022 Front. Phys. 9 813801  Google Scholar Google Scholar[35] 刘浪, 王一平 2022 物理学报 71 224202  Google Scholar Google ScholarLiu L, Wang Y P 2022 Acta Phys. Sin. 71 224202  Google Scholar Google Scholar[36] Mei F, Xue Z Y, Zhang D W, Tian L, Lee C, Zhu S L 2016 Quantum Sci. Technol. 1 015006  Google Scholar Google Scholar[37] Koch J, Houck A A, Le Hur K, Girvin S M 2010 Phys. Rev. A 82 043811  Google Scholar Google Scholar[38] Mei F, You J B, Nie W, Fazio R, Zhu S L, Kwek L C 2015 Phys. Rev. A 92 041805  Google Scholar Google Scholar[39] Cao J, Yi X X, Wang H F 2020 Phys. Rev. A 102 032619  Google Scholar Google Scholar[40] Cai W, Han J, Mei F, Yuan X Z, Sun L Y 2019 Phys. Rev. Lett. 123 080501  Google Scholar Google Scholar[41] Chatterjee P, Pradhan S, Nandy A K, Saha A 2023 Phys. Rev. B 107 085423  Google Scholar Google Scholar[42] Tong X, Meng Y M, Jiang X, Lee C, de Moraes Neto G D, Gao X L 2021 Phys. Rev. B 103 104202  Google Scholar Google Scholar
- 
				
    
    
图 1 (a)基于超导微波腔组成的一维晶格系统, $Q_{1}$($Q_{2}$)是晶胞之间的耦合磁通量子比特, $g_{1}$($g_{2}$)表示$a_{n}$($b_{n}$)和$b_{n}$($a_{n+1}$)的耦合参数, T表示$a_{n}$和$a_{n+1}$($b_{n}$和$b_{n+1}$)的耦合参数; (b) $a_{n}$和$b_{n}$耦合在一个频率可调的控制场上, $g_{1}$($g_{2}$) 可以通过磁通量子比特外部磁通调控, T通过电容C耦合调制 Figure 1. (a) Schematic of the 1D superconducting microwave cavity lattice system, $Q_{1}$($Q_{2}$) is the coupling flux qubit between the unit cell, $a_n$ and $b_n$ ($b_n $ and $a_{n+1}$) coupling coefficient is $g_{1}$($g_{2}$), $a_n$ and $a_{n+1}$ ($b_n$ and $b_{n+1}$) coupling coefficient is T; (b) $a_{n}$ and $b_{n}$ are connected in a tunable frequency field, $g_{1}$($g_{2}$) can be modulated by the external flux of qubits, T is modulated by the capacitance C coupling. 图 2 (a)系统能谱与晶格数目的关系; (b)蓝色和(c)红色边缘态的概率分布图; 其中$\widetilde{G}_{12}=0.15, \widetilde{G}_{24}=0.3$和晶格数$N=100$ Figure 2. (a) Energy spectrum of the system via the lattice numbers; (b), (c) probability distributions of (b) blue and (c) red edge states. $\widetilde{G}_{12}=0.15, \widetilde{G}_{24}=0.3$ and lattice size $N=100$. 图 3 系统能谱与晶格数目的关系 (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.003$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.03$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.06$; (d) $2\widetilde{G}_{11}=$ $ \widetilde{G}_{23}=0.15 $; (e) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.165$; (f) $2\widetilde{G}_{11}=\widetilde{G}_{23}=2.1$; 其他参数为$\widetilde{G}_{12}=0.15, \widetilde{G}_{24}=0.3$和晶格数$N=200$ Figure 3. Energy spectrum of the system via the lattice numbers: (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.003$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.03$; (c) $2\widetilde{G}_{11}= $$\widetilde{G}_{23}=0.06 $; (d) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.15$; (e) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.165$; (f) $2\widetilde{G}_{11}=\widetilde{G}_{23}=2.1$. Other parameters are $ \widetilde{G}_{12}=0.15,$ $ \widetilde{G}_{24}=0.3$ and lattice size $N=200$. 图 4 4个不同边缘态的概率分布图 (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.003$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.006$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.009$; (d) $2\widetilde{G}_{11}= $ $ \widetilde{G}_{23}=0.015$; (e) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.021$; (f) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.027$; 其他参数为$\widetilde{G}_{12}=0.15$, $\widetilde{G}_{24}=0.3$和晶格数$N=200$ Figure 4. State distributions of four different edge states: (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.003$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.006$; (c) $2\widetilde{G}_{11}= $ $ \widetilde{G}_{23}=0.009$; (d) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.015$; (e) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.021$; (f) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.027$. Other parameters are $\widetilde{G}_{12}=0.15$, $\widetilde{G}_{24}=0.3$ and lattice size $N=200$. 图 5 系统能谱与相位的关系 (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1,\; T=0$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1,\; T=0.05$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08(1+ $$ \cos\theta),\; T=0$; 其他参数为$\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$和晶格数$N=200$ Figure 5. Energy spectrum of the system via the phase: (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1,\; T=0$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}= 0.1,\; T=0.05$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08(1+\cos\theta),\; T=0$. Other parameters are $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$ and lattice size $N=200$. 图 6 系统能谱与相位的关系 (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.16$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.24$; (d) $2\widetilde{G}_{11}= $ $\widetilde{G}_{23}=0.32$; 其他参数为$\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $T=0.1$和晶格数$N=200$ Figure 6. Energy spectrum of the system via the phase: (a) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (b) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.16$; (c) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.24$; (d) $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.32$. Other parameters are $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $T=0.1$ and lattice size $N=200$. 图 7 系统能谱与相位的关系 (a) $T=0.1$; (b) $T=0.2$; (c) $T=0.3$; (d) $T=3$; 其他参数为$\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $2\widetilde{G}_{11}= \widetilde{G}_{23}=0.04$和晶格数$N=200$ Figure 7. Energy spectrum of the system via the phase: (a) $T=0.1$; (b) $T=0.2$; (c) $T=0.3$; (d) $T=3$. Other parameters are $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.04$ and lattice size $N=200$. 图 8 4个不同边缘态的分布图 (a) $\theta=\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (b) $\theta=\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1$; (c) $\theta=3\pi/2$, $2\widetilde{G}_{11}= $ $ \widetilde{G}_{23}=0.08$; (d) $\theta=3\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1$. 其他参数为$T=0.1$, $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$和晶格数$N=200$ Figure 8. State distributions of four different edge states: (a) $\theta=\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (b) $\theta=\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}= $$ 0.1$; (c) $\theta=3\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.08$; (d) $\theta=3\pi/2$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.1$. Other parameters are $T=0.1$, $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$ and lattice size $N=200$. 图 9 系统能谱与随机缺陷的关系图 (a) $\omega=0.1$, $\nu=\tau=0$; (b) $\omega=0.3$, $\nu=\tau=0$; (c) $\omega=0.5$, $\nu=\tau=0$; (d) $\omega=0.7$, $\nu=\tau=0$; (e) $\nu=0.1$, $\omega=\tau=0$; (f) $\nu=0.2$, $\omega=\tau=0$; (g) $\nu=0.3$, $\omega=\tau=0$; (h) $\nu=0.4$, $\omega=\tau=0$; (i) $\tau=0.1$, $\omega=\nu=0$; (j) $\tau=0.2$, $\omega=\nu=0$; (k) $\tau=0.3$, $\omega=\nu=0$; (l) $\tau=0.4$, $\omega=\nu=0$; 其他参数为$\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.04$, $T=0.1$和晶格数$N=200$ Figure 9. Energy spectrum of the system via the random defects: (a) $\omega=0.1$, $\nu=\tau=0$; (b) $\omega=0.3$, $\nu=\tau=0$; (c) $\omega=0.5$, $\nu=\tau=0$; (d) $\omega=0.7$, $\nu=\tau=0$; (e) $\nu=0.1$, $\omega=\tau=0$; (f) $\nu=0.2$, $\omega=\tau=0$; (g) $\nu=0.3$, $\omega=\tau=0$; (h) $\nu=0.4$, $\omega=\tau=0$; (i) $\tau=0.1$, $\omega=\nu=0$; (j) $\tau=0.2$, $\omega=\nu=0$; (k) $\tau=0.3$, $\omega=\nu=0$; (l) $\tau=0.4$, $\omega=\nu=0$. Other parameters are $\widetilde{G}_{12}=0.2$, $\widetilde{G}_{24}=0.4$, $2\widetilde{G}_{11}=\widetilde{G}_{23}=0.04$, $T=0.1$ and lattice size $N=200$. 
- 
				
[1] Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057  Google Scholar Google Scholar[2] Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045  Google Scholar Google Scholar[3] Bansil A, Lin H, Das T 2016 Rev. Mod. Phys. 88 021004  Google Scholar Google Scholar[4] Chiu C K, Teo J C Y, Schnyder A P, Ryu S 2016 Rev. Mod. Phys. 88 035005  Google Scholar Google Scholar[5] Xu Z, Zhang Y, Chen S 2017 Phys. Rev. A 96 013606  Google Scholar Google Scholar[6] Li L, Xu Z, Chen S 2014 Phys. Rev. B 89 085111  Google Scholar Google Scholar[7] Li L, Chen S 2015 Phys. Rev. B 92 085118  Google Scholar Google Scholar[8] Mei F, Zhu S L, Zhang Z M, Oh C H, Goldman N 2012 Phys. Rev. A 85 013638  Google Scholar Google Scholar[9] Wray L A, Xu V, Xia Y, Hsieh D, Fedorov A V, SanHor Y, Cava R J, Bansil A, Lin H, Hasan M Z 2011 Nat. Phys. 7 32  Google Scholar Google Scholar[10] Malki M, Uhrig G S 2017 Phys. Rev. B 95 235118  Google Scholar Google Scholar[11] Chitov G Y 2018 Phys. Rev. B 97 085131  Google Scholar Google Scholar[12] Agrapidis C E, van den Brink J, Nishimoto S 2019 Phys. Rev. B 99 224418  Google Scholar Google Scholar[13] Braginskii V B, Manukin A B 1967 Sov. Phys. JETP 25 653 [14] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys 86 1391  Google Scholar Google Scholar[15] Liu Y L, Wang C, Zhang J, Liu Y X 2018 Chin. Phys. B 27 024204  Google Scholar Google Scholar[16] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520  Google Scholar Google Scholar[17] Martin I, Shnirman A, Lin T, Zoller P 2004 Phys. Rev. B 69 125339  Google Scholar Google Scholar[18] Huang S M, Agarwal G S 2010 Phys. Rev. A 81 033830  Google Scholar Google Scholar[19] Wang K, Yu Y F, Zhang Z M 2019 Phys. Rev. A 100 053832  Google Scholar Google Scholar[20] Wei W Y, Yu Y F, Zhang Z M 2018 Chin. Phys. B 27 034204  Google Scholar Google Scholar[21] Xiao Y, Yu Y F, Zhang Z M 2014 Opt. Express 22 17979  Google Scholar Google Scholar[22] Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Chin. Phys. B 28 014202  Google Scholar Google Scholar[23] You J Q, Nori F 2011 Nature 474 589  Google Scholar Google Scholar[24] Massel F, Heikkil T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpää M A 2011 Nature 480 351  Google Scholar Google Scholar[25] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204  Google Scholar Google Scholar[26] Zhang Z C, Wang Y P, Yu Y F, Zhang Z M 2019 Ann. Phys. 531 1800461  Google Scholar Google Scholar[27] Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2019 Laser Phys. Lett. 16 015205  Google Scholar Google Scholar[28] Devoret M H, Schoelkopf R J 2013 Science 339 1169  Google Scholar Google Scholar[29] Wang Y P, Zhang Z C, Yu Y F, Zhang Z M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 175504  Google Scholar Google Scholar[30] Roque T F, Peano V, Yevtushenko O M, Marquardt F 2017 New J. Phys. 19 013006  Google Scholar Google Scholar[31] Wan L L, Lü X Y, Gao J H, Wu Y 2017 Opt. Express 25 017364  Google Scholar Google Scholar[32] Wang W, Wang Y P 2022 Acta Phys. Sin. 71 194203  Google Scholar Google Scholar[33] Qi L, Yan Y, Wang G L, Zhang S, Wang H F 2019 Phys. Rev. B 100 062323  Google Scholar Google Scholar[34] Xu X W, Zhao Y J, Wang H, Chen A X, Liu Y X 2022 Front. Phys. 9 813801  Google Scholar Google Scholar[35] 刘浪, 王一平 2022 物理学报 71 224202  Google Scholar Google ScholarLiu L, Wang Y P 2022 Acta Phys. Sin. 71 224202  Google Scholar Google Scholar[36] Mei F, Xue Z Y, Zhang D W, Tian L, Lee C, Zhu S L 2016 Quantum Sci. Technol. 1 015006  Google Scholar Google Scholar[37] Koch J, Houck A A, Le Hur K, Girvin S M 2010 Phys. Rev. A 82 043811  Google Scholar Google Scholar[38] Mei F, You J B, Nie W, Fazio R, Zhu S L, Kwek L C 2015 Phys. Rev. A 92 041805  Google Scholar Google Scholar[39] Cao J, Yi X X, Wang H F 2020 Phys. Rev. A 102 032619  Google Scholar Google Scholar[40] Cai W, Han J, Mei F, Yuan X Z, Sun L Y 2019 Phys. Rev. Lett. 123 080501  Google Scholar Google Scholar[41] Chatterjee P, Pradhan S, Nandy A K, Saha A 2023 Phys. Rev. B 107 085423  Google Scholar Google Scholar[42] Tong X, Meng Y M, Jiang X, Lee C, de Moraes Neto G D, Gao X L 2021 Phys. Rev. B 103 104202  Google Scholar Google Scholar
Catalog
Metrics
- Abstract views: 3625
- PDF Downloads: 161
- Cited By: 0


 
					 
		         
	         
  
					 
												






 
							 DownLoad:
DownLoad: 
				 
							 
							 
							 
							 
							 
							 
							 
							