Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Density effect on electronic structure of warm dense matter based on X-ray fluorescence spectroscopy

Zhang Zhi-Yu Zhao Yang Qing Bo Zhang Ji-Yan Ma Jian-Yi Lin Cheng-Liang Yang Guo-Hong Wei Min-Xi Xiong Gang Lü Min Huang Cheng-Wu Zhu Tuo Song Tian-Ming Zhao Yan Zhang Yu-Xue Zhang Lu Li Li-Ling Du Hua-Bing Che Xing-Sen Li Yu-Kun Zhan Xia-Yu Yang Jia-Min

Citation:

Density effect on electronic structure of warm dense matter based on X-ray fluorescence spectroscopy

Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Ma Jian-Yi, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min
PDF
HTML
Get Citation
  • Warm dense matter (WDM), a kind of transition state of matter between cold condensed matter and high temperature plasma, is one of the main research objects of high energy density physics (HEDP). Compared with the structure of isolated atom, the electron structure of WDM will change significantly because of the influences of density and temperature effect. As WDM is always strongly coupled and partly degenerate, accurate theoretical description is very complicated and the accurate experimental research is also very challenging. In this paper, the density effect on the warm dense matter electron structure based on the X-ray fluorescence spectroscopy is studied. The warm dense titanium with density larger than solid density is produced experimentally based on a specially designed hohlraum. Then, the titanium is pumped to emit fluorescence by using the characteristic line spectrum emitted by the laser irradiating the pump material (Vanadium). The X-ray fluorescence spectra of titanium with different states are diagnosed by changing the delay time between the pump laser and drive laser. The experimental fluorescence spectrum indicates that the difference in energy between ${\mathrm{K}}_{\text{β}} $ and $ {\mathrm{K}}_{\text{α}} $ ($\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}}$) of the compressed titanium (7.2–9.2 g/cm3, 1.6–2.4 eV) is about 2 eV smaller than that of cold titanium. Two theoretical methods, i.e. finite-temperature relativistic density functional theory (FTRDFT) and two-step Hartree-Fock-Slater (TSHFS), are used to calculate the fluorescence spectrum of warm dense titanium. The calculated results indicate that the energy difference ($\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}} $) decreases with the increase of density but changes slowly with the increase of temperature during the calculated state (4.5–13.5 g/cm3, 0.03–5 eV). The FTRDFT overestimates the density effect on the line shift, while TSHFS underestimates the density effect. The future work will focus on optimizing the experimental method of X-ray fluorescence spectroscopy, obtaining X-ray fluorescence spectrum of titanium with more states, and then testing the theoretical method for warm dense matter.
      Corresponding author: Yang Jia-Min, yjm70018@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004351, 11734013).
    [1]

    Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 340Google Scholar

    [4]

    Hu S X, Militzer B, Goncharov V N, Skupsky S 2010 Phys. Rev. Lett. 104 235003Google Scholar

    [5]

    Hu S X, Collins L A, Goncharov V N, Boehly T R, Epstein R, McCrory R L, Skupsky S 2014 Phys. Rev. E 90 033111Google Scholar

    [6]

    Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2015 Phys. Rev. E 92 043104Google Scholar

    [7]

    Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2016 Phys. Plasmas 23 042704Google Scholar

    [8]

    Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar

    [9]

    Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar

    [10]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar

    [11]

    Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar

    [12]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar

    [13]

    Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar

    [14]

    Ciricosta O, Vinko S M, Chung H K, Cho B I, Brown C R, Burian T, Chalupsky J, Engelhorn K, Falcone R W, Graves C, Hajkova V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Rackstraw D S, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P, Nagler B, Wark J S 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [15]

    Hoarty D J, Allan P, James S F, Brown C R D, Hobbs L M R, Hill M P, Harris J W O, Morton J, Brookes M G, Shepherd R, Dunn J, Chen H, Marley E V, Beiersdorfer P, Chung H K, Lee R W, Brown G, Emig J 2013 Phys. Rev. Lett. 110 265003Google Scholar

    [16]

    Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar

    [17]

    Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys.: Conf. Ser. 112 042024Google Scholar

    [18]

    Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar

    [19]

    Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar

    [20]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [21]

    Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar

    [22]

    DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar

    [23]

    Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar

    [24]

    Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar

    [25]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [26]

    Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lv M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar

    [27]

    Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radial. Transfer 81 133Google Scholar

    [28]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Physics 24 39Google Scholar

    [29]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar

    [30]

    Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar

    [31]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Comm. 49 475Google Scholar

    [32]

    Liu W J, Wang F, Li L M 2003 J. Theor. Comput. Chem. 2 257Google Scholar

    [33]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar

    [34]

    Lin C L 2019 Phys. Plasmas 26 122707Google Scholar

  • 图 1  温稠密Ti的荧光光谱实验示意图 (a)荧光光谱测量; (b)样品处辐射源测量

    Figure 1.  Schematic of the X-ray fluorescence spectrum experiment of warm dense Ti: (a) Measurement of the fluorescence spectrum; (b) measurement of the incident flux of the sample

    图 2  (a)样品处再发射流及入流; (b) Ti样品的密度温度演化过程模拟结果

    Figure 2.  (a) Reemission flux and incident flux of gold at the hohlraum center; (b) the simulated density and temperature evolution of Ti sample

    图 3  不同状态Ti样品的荧光光谱 (a)原始图像; (b)解谱结果

    Figure 3.  The X-ray fluorescence spectrum of Ti samples with different state: (a) Original images; (b) spectral results

    图 4  不同状态Ti样品$\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}}$相对于冷样品的变化

    Figure 4.  Changes of $\Delta E_{{\mathrm{K}}_{\text{β}}\text{-}{\mathrm{K}}_{\text{α}}}$ of Ti with different density and temperature relative to cold samples

  • [1]

    Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 340Google Scholar

    [4]

    Hu S X, Militzer B, Goncharov V N, Skupsky S 2010 Phys. Rev. Lett. 104 235003Google Scholar

    [5]

    Hu S X, Collins L A, Goncharov V N, Boehly T R, Epstein R, McCrory R L, Skupsky S 2014 Phys. Rev. E 90 033111Google Scholar

    [6]

    Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2015 Phys. Rev. E 92 043104Google Scholar

    [7]

    Hu S X, Collins L A, Goncharov V N, Kress J D, McCrory R L, Skupsky S 2016 Phys. Plasmas 23 042704Google Scholar

    [8]

    Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar

    [9]

    Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar

    [10]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar

    [11]

    Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar

    [12]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar

    [13]

    Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar

    [14]

    Ciricosta O, Vinko S M, Chung H K, Cho B I, Brown C R, Burian T, Chalupsky J, Engelhorn K, Falcone R W, Graves C, Hajkova V, Higginbotham A, Juha L, Krzywinski J, Lee H J, Messerschmidt M, Murphy C D, Ping Y, Rackstraw D S, Scherz A, Schlotter W, Toleikis S, Turner J J, Vysin L, Wang T, Wu B, Zastrau U, Zhu D, Lee R W, Heimann P, Nagler B, Wark J S 2012 Phys. Rev. Lett. 109 065002Google Scholar

    [15]

    Hoarty D J, Allan P, James S F, Brown C R D, Hobbs L M R, Hill M P, Harris J W O, Morton J, Brookes M G, Shepherd R, Dunn J, Chen H, Marley E V, Beiersdorfer P, Chung H K, Lee R W, Brown G, Emig J 2013 Phys. Rev. Lett. 110 265003Google Scholar

    [16]

    Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar

    [17]

    Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys.: Conf. Ser. 112 042024Google Scholar

    [18]

    Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar

    [19]

    Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar

    [20]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [21]

    Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar

    [22]

    DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar

    [23]

    Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar

    [24]

    Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar

    [25]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [26]

    Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lv M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar

    [27]

    Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radial. Transfer 81 133Google Scholar

    [28]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Physics 24 39Google Scholar

    [29]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar

    [30]

    Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar

    [31]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Comm. 49 475Google Scholar

    [32]

    Liu W J, Wang F, Li L M 2003 J. Theor. Comput. Chem. 2 257Google Scholar

    [33]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar

    [34]

    Lin C L 2019 Phys. Plasmas 26 122707Google Scholar

  • [1] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min. Experimental method for warm dense matter ionization distribution based on X-ray fluorescence pectroscopy. Acta Physica Sinica, 2024, 73(1): 015201. doi: 10.7498/aps.73.20231216
    [2] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lv Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zan Xia-Yu, Yang Jia-Min. Study of experimental method for warm dense matter ionization distribution based on x-ray fluorescence spectroscopy. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20231216
    [3] Cui Yang, Li Jing, Zhang Lin. Electronic structure of graphene nanoribbons under external electric field by density functional tight binding. Acta Physica Sinica, 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [4] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [5] Jin Yang, Zhang Ping, Li Yong-Jun, Hou Yong, Zeng Jiao-Long, Yuan Jian-Min. Influence of different charge-state ion distribution on elastic X-ray scattering in warm dense matter. Acta Physica Sinica, 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [6] Wang Tian-Hao, Wang Kun, Zhang Yue, Jiang Lin-Cun. Investigation on equation of state and ionization equilibrium for aluminum in warm dense matter regime. Acta Physica Sinica, 2020, 69(9): 099101. doi: 10.7498/aps.69.20191826
    [7] Jiang Yuan-Qi, Peng Ping. Electronic structures of stable Cu-centered Cu-Zr icosahedral clusters studied by density functional theory. Acta Physica Sinica, 2018, 67(13): 132101. doi: 10.7498/aps.67.20180296
    [8] Ma Gui-Cun, Zhang Qi-Li, Song Hong-Zhou, Li Qiong, Zhu Xi-Rui, Meng Xu-Jun. Theoretical study of the equation of state for warm dense matter. Acta Physica Sinica, 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [9] Cao Qing-Song, Deng Kai-Ming. Theoretical studies of geometric and electronic structures of X@C20F20 (X=He, Ne, Ar, Kr). Acta Physica Sinica, 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [10] Hou Qing-Yu, Guo Shao-Qiang, Zhao Chun-Wang. First-principle study of the effects of oxygen vacancy on the electronic structure and the absorption spectrum of ZnO. Acta Physica Sinica, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [11] Wu Qiong, Liu Jun, Dong Qian-Min, Liu Yang, Liang Pei, Shu Hai-Bo. Quantum confinement effect on electronic and optical properties of SnS. Acta Physica Sinica, 2014, 63(6): 067101. doi: 10.7498/aps.63.067101
    [12] Pan Min, Huang Zheng, Zhao Yong. Study on the electronic structures of Iridium-doped SmOFeAs under the strongly correlated electrons effects. Acta Physica Sinica, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [13] Song Jian, Li Feng, Deng Kai-Ming, Xiao Chuan-Yun, Kan Er-Jun, Lu Rui-Feng, Wu Hai-Ping. Density functional study on the stability and electronic structure of single layer Si6H4Ph2. Acta Physica Sinica, 2012, 61(24): 246801. doi: 10.7498/aps.61.246801
    [14] Zhang Xiu-Rong, Wu Li-Qing, Rao Qian. Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters. Acta Physica Sinica, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [15] Zhang Zheng-Jie, Meng Da-Wei, Wu Xiu-Ling, Zheng Jian-Ping, Fan Xiao-Yu, Liu Wei-Ping, Huang Li-Wu, He Kai-Hua. The electronic structure and infrared spectroscopy of Al-H and Fe-H codoped rutile-type TiO2. Acta Physica Sinica, 2011, 60(3): 037802. doi: 10.7498/aps.60.037802
    [16] Jiao Zhao-Yong, Yang Ji-Fei, Zhang Xian-Zhou, Ma Shu-Hong, Guo Yong-Liang. Theoretical investigation of elastic, electronic, and optical properties of zinc-blende structure GaN under high pressure. Acta Physica Sinica, 2011, 60(11): 117103. doi: 10.7498/aps.60.117103
    [17] Cao Qing-Song, Deng Kai-Ming, Chen Xuan, Tang Chun-Mei, Huang De-Cai. Density functional study on the geometric and electronic properties of MC20F20 (M=Li, Na, Be, Mg). Acta Physica Sinica, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [18] Chen Liang, Xu Can, Zhang Xiao-Fang. Electronic properties of MgO nanotube clusters studied with density functional theory. Acta Physica Sinica, 2009, 58(3): 1603-1607. doi: 10.7498/aps.58.1603
    [19] Huang Dan, Shao Yuan-Zhi, Chen Di-Hu, Guo Jin, Li Guang-Xu. First-principles calculation on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta Physica Sinica, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [20] Song Zhao-Quan, Xu Hui, Li Yan-Feng, Liu Xiao-Liang. The effects of non-diagonal disorder and dimensions in low-dimensional disordered electronic system. Acta Physica Sinica, 2005, 54(5): 2198-2201. doi: 10.7498/aps.54.2198
Metrics
  • Abstract views:  2020
  • PDF Downloads:  83
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2023
  • Accepted Date:  23 August 2023
  • Available Online:  12 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回