Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental method for warm dense matter ionization distribution based on X-ray fluorescence pectroscopy

Zhang Zhi-Yu Zhao Yang Qing Bo Zhang Ji-Yan Lin Cheng-Liang Yang Guo-Hong Wei Min-Xi Xiong Gang Lü Min Huang Cheng-Wu Zhu Tuo Song Tian-Ming Zhao Yan Zhang Yu-Xue Zhang Lu Li Li-Ling Du Hua-Bing Che Xing-Sen Li Yu-Kun Zhan Xia-Yu Yang Jia-Min

Citation:

Experimental method for warm dense matter ionization distribution based on X-ray fluorescence pectroscopy

Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min
PDF
HTML
Get Citation
  • Warm dense matter (WDM), a state of matter that lies at the frontier between condensed matter and plasma, is one of the main research objects of high energy density physics (HEDP). Comparing with the isolated atom, the electron structure of WDM will change because of the influence of density and temperature effect. Both the accurate theoretical representation and the accurate experimental study of WDM electron structure are challenging, as it is strongly coupled and partially degenerated. In this work, an experimental method of studying the ionization distribution of WDM based on X-ray fluorescence spectroscopy is developed. In the experiment, in a specially designed hohlraum, warm and dense titanium with several tens of electron volts and nearly solid density is produced by simultaneous driving of high-energy X-ray heating and shock compression. Then, using the characteristic line spectrum emitted by the laser irradiation on pump material (Vanadium) as a pump source, the titanium emits fluorescence. The X-ray fluorescence spectra of titanium with different states (cold sample, 1.8–4.5 g/cm3 and 1–25 eV) are diagnosed by changing the experimental strategy. The experimental results indicate that the line profiles of Kα and Kβ fluorescence spectrum of the heated sample change obviously compared with those of the cold sample. According to the theoretical calculation of the two-step Hartree-Fock-Slater (TSHFS) method, the main reason for the change of the line profile is the change of ionization distribution caused by temperature rising. The future work will focus on optimizing the experimental method of X-ray fluorescence spectrum, such as improving the spectrum resolution, characterizing the temperature and density experimentally, obtaining a set of ionization distribution data, and then studying the influence of dense environment on electronic structure.
      Corresponding author: Yang Jia-Min, yjm70018@sina.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004351, 11734013).
    [1]

    Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar

    [4]

    Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar

    [5]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar

    [6]

    Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar

    [7]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar

    [8]

    Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar

    [9]

    Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar

    [10]

    DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar

    [11]

    Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar

    [12]

    Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar

    [13]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [14]

    Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lü M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar

    [15]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Phys. 24 39Google Scholar

    [16]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar

    [17]

    Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar

    [18]

    Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar

    [19]

    Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys. Conf. Ser. 112 042024Google Scholar

    [20]

    Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar

    [21]

    Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar

    [22]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lü M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [23]

    Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radiat. Transfer 81 133Google Scholar

    [24]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [25]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar

    [26]

    Lin C L 2019 Phys. Plasmas 26 122707Google Scholar

  • 图 1  温稠密Ti的荧光光谱实验示意图 (a)荧光光谱测量; (b)样品处辐射源测量

    Figure 1.  Schematic of the X-ray fluorescence spectrum experiment of warm dense Ti: (a) Measurement of the X-ray fluorescence spectrum; (b) measurement of the radiation source for sample

    图 2  (a)样品处辐射源; (b) Ti样品的温度密度演化过程模拟结果, 绿色区域对应Shot 2的诊断时间窗口

    Figure 2.  (a) Incident flux for the sample; (b) simulated density and temperature evolution of Ti sample, and the green area corresponds to the diagnostic window for Shot 2

    图 3  不同状态Ti样品的荧光光谱 (a)原始图像; (b) $ {\mathrm{K}}_{\alpha} $解谱结果; (c) $ {\mathrm{K}}_{\beta} $解谱结果

    Figure 3.  X-ray fluorescence spectrum of Ti samples with different state: (a) Original images; (b) spectral results of $ {\mathrm{K}}_{\alpha} $; (c) spectral results of $ {\mathrm{K}}_{\beta} $

    图 4  冷Ti样品$ {\mathrm{K}}_{\alpha} $计算结果与实验结果的比较

    Figure 4.  Comparison between simulated results and experimental results of cold Ti sample $ {\mathrm{K}}_{\alpha}$

    图 5  加载Ti样品$ {\mathrm{K}}_\alpha $荧光光谱计算结果与实验结果的对比

    Figure 5.  Comparison between simulated results and experimental results of warm dense Ti sample $ {\mathrm{K}}_\alpha $

    图 6  Ti样品$ {\mathrm{K}}_{\beta} $计算结果与实验结果的比较, 图中数字代表Ti的价态

    Figure 6.  Comparison between simulated results and experimental results of Ti sample $ {\mathrm{K}}_{\beta}$, the numbers in the figure represent the valence state of Ti

    表 1  密度为2.25 $ {\mathrm{g/cm}}^3 $、不同温度Ti的离化分布的相应荧光谱线能量

    Table 1.  Ionization distribution and spectrum line energy of Ti with 2.25 $ {\mathrm{g/cm}}^3 $ and different temperature

    温度/eV 价态 组态 组态占比率 $ {\mathrm{K}}_{\alpha1} $能量/eV $ {\mathrm{K}}_{\beta} $能量/eV
    10 4 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^6 $ 0.59 4510.78 4930.90
    5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^5 $ 0.31 4511.95 4936.91
    5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^6 $ 0.01 4511.80 4936.99
    6 $ 1 s^22 s^22 p^63 s^23 p^4 $ 0.07 4513.47 4944.08
    20 4 $ 1{\mathrm{ s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23{\mathrm{ p}}^6 $ 0.07 4508.75 4935.17
    5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^5 $ 0.20 4510.24 4942.15
    5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^6 $ 0.02 4510.01 4942.00
    6 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^4 $ 0.25 4512.07 4950.23
    6 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^5 $ 0.06 4511.80 4949.96
    7 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^3 $ 0.16 4514.26 4959.43
    7 $ 1 {\mathrm{s}}^22{\mathrm{ s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^4 $ 0.08 4513.95 4959.03
    8 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23{\mathrm{ p}}^2 $ 0.06 4516.83 4969.80
    8 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^3 $ 0.05 4516.47 4969.27
    9 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23{\mathrm{ p}}^1 $ 0.01 4519.78 4981.40
    9 $ 1 {\mathrm{s}}^22{\mathrm{ s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13{\mathrm{ p}}^2 $ 0.02 4519.38 4980.74
    注: 组态占比率小于0.01的组态已忽略
    DownLoad: CSV
  • [1]

    Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar

    [2]

    Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar

    [3]

    Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar

    [4]

    Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar

    [5]

    金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar

    Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar

    [6]

    Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar

    [7]

    Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar

    [8]

    Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar

    [9]

    Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar

    [10]

    DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar

    [11]

    Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar

    [12]

    Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar

    [13]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [14]

    Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lü M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar

    [15]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Phys. 24 39Google Scholar

    [16]

    Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar

    [17]

    Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar

    [18]

    Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar

    [19]

    Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys. Conf. Ser. 112 042024Google Scholar

    [20]

    Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar

    [21]

    Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar

    [22]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lü M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [23]

    Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radiat. Transfer 81 133Google Scholar

    [24]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [25]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar

    [26]

    Lin C L 2019 Phys. Plasmas 26 122707Google Scholar

  • [1] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Ma Jian-Yi, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min. Density effect on electronic structure of warm dense matter based on X-ray fluorescence spectroscopy. Acta Physica Sinica, 2023, 72(24): 245201. doi: 10.7498/aps.72.20231215
    [2] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lv Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zan Xia-Yu, Yang Jia-Min. Study of experimental method for warm dense matter ionization distribution based on x-ray fluorescence spectroscopy. Acta Physica Sinica, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20231216
    [3] Xing Hai-Ying, Zheng Zhi-Jian, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying. Tunable electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures by strain. Acta Physica Sinica, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [4] Fang Wen-Yu, Chen Yue, Ye Pan, Wei Hao-Ran, Xiao Xing-Lin, Li Ming-Kai, Ahuja Rajeev, He Yun-Bin. Elastic constants, electronic structures and thermal conductivity of monolayer XO2 (X = Ni, Pd, Pt). Acta Physica Sinica, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [5] Jin Yang, Zhang Ping, Li Yong-Jun, Hou Yong, Zeng Jiao-Long, Yuan Jian-Min. Influence of different charge-state ion distribution on elastic X-ray scattering in warm dense matter. Acta Physica Sinica, 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [6] Wang Tian-Hao, Wang Kun, Zhang Yue, Jiang Lin-Cun. Investigation on equation of state and ionization equilibrium for aluminum in warm dense matter regime. Acta Physica Sinica, 2020, 69(9): 099101. doi: 10.7498/aps.69.20191826
    [7] Wang Wen-Jie,  Kang Zhi-Lin,  Song Qian,  Wang Xin,  Deng Jia-Jun,  Ding Xun-Lei,  Che Jian-Tao. Effect of layer variation on the electronic structure of stacked MoS2(1-x) Se2x alloy. Acta Physica Sinica, 2018, 67(24): 240601. doi: 10.7498/aps.67.20181494
    [8] Zhang Yun, Wang Xue-Wei, Bai Hong-Mei. First-principles study on the electronic structures and the absorption spectra of In: Mn: LiNbO3 crystals. Acta Physica Sinica, 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [9] Ma Gui-Cun, Zhang Qi-Li, Song Hong-Zhou, Li Qiong, Zhu Xi-Rui, Meng Xu-Jun. Theoretical study of the equation of state for warm dense matter. Acta Physica Sinica, 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [10] Cao Qing-Song, Deng Kai-Ming. Theoretical studies of geometric and electronic structures of X@C20F20 (X=He, Ne, Ar, Kr). Acta Physica Sinica, 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [11] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study of the electronic structures and absorption spectrum of Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [12] Hou Qing-Yu, Guo Shao-Qiang, Zhao Chun-Wang. First-principle study of the effects of oxygen vacancy on the electronic structure and the absorption spectrum of ZnO. Acta Physica Sinica, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [13] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [14] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [15] Ru Qiang, Hu She-Jun, Zhao Ling-Zhi. First-principles study of the electronic structure and elastic property of Li x FePO4. Acta Physica Sinica, 2011, 60(3): 036301. doi: 10.7498/aps.60.036301
    [16] Yang Li-Jun, Chen Hai-Chuan. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [17] Zhang Xiu-Rong, Wu Li-Qing, Rao Qian. Theoretical study of electronic structure and optical properties of OsnN0,(n=1 6) clusters. Acta Physica Sinica, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [18] Zhang Zheng-Jie, Meng Da-Wei, Wu Xiu-Ling, Zheng Jian-Ping, Fan Xiao-Yu, Liu Wei-Ping, Huang Li-Wu, He Kai-Hua. The electronic structure and infrared spectroscopy of Al-H and Fe-H codoped rutile-type TiO2. Acta Physica Sinica, 2011, 60(3): 037802. doi: 10.7498/aps.60.037802
    [19] Tang Hui-Shuai, Zhang Xiu-Rong, Gao Cong-Hua, Wu Li-Qing. The theory study of electronic structures and spectram properties of WnNim(n+m≤7; m=1, 2) clusters. Acta Physica Sinica, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [20] Huang Dan, Shao Yuan-Zhi, Chen Di-Hu, Guo Jin, Li Guang-Xu. First-principles calculation on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta Physica Sinica, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
Metrics
  • Abstract views:  1804
  • PDF Downloads:  44
  • Cited By: 0
Publishing process
  • Received Date:  26 July 2023
  • Accepted Date:  12 September 2023
  • Available Online:  28 November 2023
  • Published Online:  05 January 2024

/

返回文章
返回