-
Warm dense matter (WDM), a state of matter that lies at the frontier between condensed matter and plasma, is one of the main research objects of high energy density physics (HEDP). Comparing with the isolated atom, the electron structure of WDM will change because of the influence of density and temperature effect. Both the accurate theoretical representation and the accurate experimental study of WDM electron structure are challenging, as it is strongly coupled and partially degenerated. In this work, an experimental method of studying the ionization distribution of WDM based on X-ray fluorescence spectroscopy is developed. In the experiment, in a specially designed hohlraum, warm and dense titanium with several tens of electron volts and nearly solid density is produced by simultaneous driving of high-energy X-ray heating and shock compression. Then, using the characteristic line spectrum emitted by the laser irradiation on pump material (Vanadium) as a pump source, the titanium emits fluorescence. The X-ray fluorescence spectra of titanium with different states (cold sample, 1.8–4.5 g/cm3 and 1–25 eV) are diagnosed by changing the experimental strategy. The experimental results indicate that the line profiles of Kα and Kβ fluorescence spectrum of the heated sample change obviously compared with those of the cold sample. According to the theoretical calculation of the two-step Hartree-Fock-Slater (TSHFS) method, the main reason for the change of the line profile is the change of ionization distribution caused by temperature rising. The future work will focus on optimizing the experimental method of X-ray fluorescence spectrum, such as improving the spectrum resolution, characterizing the temperature and density experimentally, obtaining a set of ionization distribution data, and then studying the influence of dense environment on electronic structure.
-
Keywords:
- warm dense matter /
- electron structure /
- ionization distribution /
- X-ray fluorescence spectrum
[1] Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar
[2] Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar
[3] Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar
[4] Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar
[5] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar
Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar
[6] Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar
[7] Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar
[8] Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar
[9] Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar
[10] DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar
[11] Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar
[12] Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar
[13] Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar
[14] Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lü M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar
[15] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Phys. 24 39Google Scholar
[16] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar
[17] Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar
[18] Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar
[19] Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys. Conf. Ser. 112 042024Google Scholar
[20] Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar
[21] Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar
[22] Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lü M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar
[23] Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radiat. Transfer 81 133Google Scholar
[24] Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar
[25] Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar
[26] Lin C L 2019 Phys. Plasmas 26 122707Google Scholar
-
表 1 密度为2.25 $ {\mathrm{g/cm}}^3 $、不同温度Ti的离化分布的相应荧光谱线能量
Table 1. Ionization distribution and spectrum line energy of Ti with 2.25 $ {\mathrm{g/cm}}^3 $ and different temperature
温度/eV 价态 组态 组态占比率 $ {\mathrm{K}}_{\alpha1} $能量/eV $ {\mathrm{K}}_{\beta} $能量/eV 10 4 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^6 $ 0.59 4510.78 4930.90 5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^5 $ 0.31 4511.95 4936.91 5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^6 $ 0.01 4511.80 4936.99 6 $ 1 s^22 s^22 p^63 s^23 p^4 $ 0.07 4513.47 4944.08 20 4 $ 1{\mathrm{ s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23{\mathrm{ p}}^6 $ 0.07 4508.75 4935.17 5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^5 $ 0.20 4510.24 4942.15 5 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^6 $ 0.02 4510.01 4942.00 6 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^4 $ 0.25 4512.07 4950.23 6 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^5 $ 0.06 4511.80 4949.96 7 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23 {\mathrm{p}}^3 $ 0.16 4514.26 4959.43 7 $ 1 {\mathrm{s}}^22{\mathrm{ s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^4 $ 0.08 4513.95 4959.03 8 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23{\mathrm{ p}}^2 $ 0.06 4516.83 4969.80 8 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13 {\mathrm{p}}^3 $ 0.05 4516.47 4969.27 9 $ 1 {\mathrm{s}}^22 {\mathrm{s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^23{\mathrm{ p}}^1 $ 0.01 4519.78 4981.40 9 $ 1 {\mathrm{s}}^22{\mathrm{ s}}^22 {\mathrm{p}}^63 {\mathrm{s}}^13{\mathrm{ p}}^2 $ 0.02 4519.38 4980.74 注: 组态占比率小于0.01的组态已忽略 -
[1] Saumon D, Chabrier G 1991 Phys. Rev. A 44 5122Google Scholar
[2] Lindl J D 1995 Phys. Plasmas 2 3933Google Scholar
[3] Surh M P, Barbee T W, Yang L H 2001 Phys. Rev. Lett. 86 5958Google Scholar
[4] Mazevet S, Zérah G 2008 Phys. Rev. Lett. 101 155001Google Scholar
[5] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民 2021 物理学报 70 073102Google Scholar
Jin Y, Zhang P, Li Y J, Hou Y, Zeng J L, Yuan J M 2021 Acta Phys. Sin. 70 073102Google Scholar
[6] Zhang S, Zhao S J, Kang W, Zhang P, He X T 2016 Phys. Rev. B 93 115114Google Scholar
[7] Dai J Y, Hou Y, Yuan J M 2010 Phys. Rev. Lett. 104 245001Google Scholar
[8] Wang C, He X T, Zhang P 2011 Phys. Rev. Lett. 106 145002Google Scholar
[9] Bradley D K, Kilkenny J, Rose S J, Hares J D 1987 Phys. Rev. Lett. 59 2995Google Scholar
[10] DaSilva L, Ng A, Godwal B K, Chiu G, Cottet F, Richardson M C, Jaanimagi P A, Lee Y T 1989 Phys. Rev. Lett. 62 1623Google Scholar
[11] Yaakobi B, Boehly T R, Sangster T C, Meyerhofer D D, Remington B A, Allen P G, Pollaine S M, Lorenzana H E, Lorenz K T, Hawreliak J A 2008 Phys. Plasmas 15 062703Google Scholar
[12] Benuzzi-Mounaix A, Dorchies F, Recoules V, Festa F, Peyrusse O, Levy A, Ravasio A, Hall T, Koenig M, Amadou N, Brambrink E, Mazevet S 2011 Phys. Rev. Lett. 107 165006Google Scholar
[13] Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K, Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar
[14] Zhao Y, Zhang Z Y, Qing B, Yang J M, Zhang J Y, Wei M X, Yang G H, Song T M, Xiong G, Lü M, Hu Z M, Deng B, Hu X, Zhang W H, Shang W L, Hou L F, Du H B, Zhan X Y, Yu R Z 2017 EPL 117 65001Google Scholar
[15] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2017 High Energy Density Phys. 24 39Google Scholar
[16] Hansen S B, Harding E C, Knapp P F, Gomez M R, Nagayama T, Bailey J E 2018 Phys. Plasmas 25 056301Google Scholar
[17] Jiang S, Lazicki A E, Hansen S B, Sterne P A, Grabowski P, Shepherd R, Scott H A 2020 Phys. Rev. E 101 023204Google Scholar
[18] Mančić A, Lévy A, Harmand M, Nakatsutsumi M, Antici P, Audebert P, Combis P, Fourmaux S, Mazevet S, Peyrusse O, Recoules V, Renaudin P, Robiche J, Dorchies F, Fuchs J 2010 Phys. Rev. Lett. 104 035002Google Scholar
[19] Park H, Remington B A, Braun D, Celliers P, Collins G W, Eggert J, Giraldez E, Pape S L, Lorenz T, Maddox B, Hamza A, Ho D, Hicks D, Patel P, Pollaine S, Prisbrey S, Smith R, Swift D, Wallace R 2008 J. Phys. Conf. Ser. 112 042024Google Scholar
[20] Lee H J, Neumayer P, Castor J, Döppner T, Falcone R W, Fortmann C, Hammel B A, Kritcher A L, Landen O L, Lee R W, Meyerhofer D D, Munro D H, Redmer R, Regan S P, Weber S, Glenzer S H 2009 Phys. Rev. Lett. 102 115001Google Scholar
[21] Benuzzi-Mounaix A, Mazevet S, Ravasio A, Vinci T, Denoeud A, Koenig M, Amadou N, Brambrink E, Festa F, Levy A, Harmand M, Brygoo S, Huser G, Recoules V, Bouchet J, Morard G, Guyot F, Resseguier T, Myanishi K, Ozaki N, Dorchies F, Gaudin J, Leguay P M, Peyrusse O, Henry O, Raffestin D, Pape S, Smith R, Musella R 2014 Phys. Scr. T161 014060Google Scholar
[22] Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lü M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar
[23] Eidmann K, Andiel U, Pisani F, Hakel P, Mancini R C, Junkel-Vives G C, Abdallah J, Witte K 2003 J. Quant. Spectrosc. Radiat. Transfer 81 133Google Scholar
[24] Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar
[25] Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004Google Scholar
[26] Lin C L 2019 Phys. Plasmas 26 122707Google Scholar
Catalog
Metrics
- Abstract views: 1804
- PDF Downloads: 44
- Cited By: 0