-
The spatial chirp based single-shot pump-probe technique represents a pivotal technology for studying electron non-equilibrium dynamics in ward dense matter created with intense laser pulses. Notably, its time resolution is capable of reaching tens of femtosecond. In this paper, we introduce the single-shot measurement technique of ac conductivity of warm dense matter, along with a detailed account of the experimental setup. In addition, we conduct an in-depth exploration of the principal factors constraining the system's time resolution. We show the system can achieve a resolution of 13.8 femtoseconds. Nevertheless, during practical application, several aspects, namely the calibration of the zero-delay, the depth of field of the imaging system, and the low-pass filtering effect inherent in the imaging system, will exert a substantial influence on the time-resolution. This research holds great significance as a reference for enhancing the time accuracy in single-shot measurements of ac conductivity of warm dense matter. Moreover, it serves as a potent tool for the in-depth study of the ultrafast dynamic processes of materials under strong-field conditions.
-
[1] Chen Q, Gu Y, Zheng J, Li J, Li Z, Quan W, Fu Z, Li C 2017Chin. Sci. Bull. 62 812
[2] Kang D, Dai J 2018J. Phys. Condens. Matter 30 073002
[3] Ichimaru S 1982Rev. Mod. Phys. 54 1017
[4] Koenig M, Benuzzi-Mounaix A, Ravasio A, Vinci T, Ozaki N, Lepape S, Batani D, Huser G, Hall T, Hicks D, MacKinnon A, Patel P, Park H S, Boehly T, Borghesi M, Kar S, Romagnani L 2005Plasma Phys. Control. Fusion 47 B441
[5] Falk K 2018High Power Laser Sci. Eng. 6 e59
[6] Kang D, Zeng Q, Zhang S, Wang X, Dai J 2020High Power Laser Part. Beams 32 092006
[7] Lee R W, Moon S J, Chung H K, Rozmus W, Baldis H A, Gregori G, Cauble R C, Landen O L, Wark J S, Ng A, Rose S J, Lewis C L, Riley D, Gauthier J C, Audebert P 2003J. Opt. Soc. Am. B 20 770
[8] Wu D, Yu W, Sheng Z M, Fritzsche S, He X T 2020Phys. Rev. E 101 051202
[9] Fletcher L B, Lee H J, Döppner T, Galtier E, Nagler B, Heimann P, Fortmann C, LePape S, Ma T, Millot M, Pak A, Turnbull D, Chapman D A, Gericke D O, Vorberger J, White T, Gregori G, Wei M, Barbrel B, Falcone R W, Kao C C, Nuhn H, Welch J, Zastrau U, Neumayer P, Hastings J B, Glenzer S H 2015Nat. Photonics 9 274
[10] Graziani F, Moldabekov Z, Olson B, Bonitz M 2022Contrib. Plasma Phys. 62 e202100170
[11] Dornheim T, Böhme M, Kraus D, Döppner T, Preston T R, Moldabekov Z A, Vorberger J 2022Nat. Commun. 13 7911
[12] Mercadier L, Benediktovitch A, Krušič Š, Kas J J, Schlappa J, Agåker M, Carley R, Fazio G, Gerasimova N, Kim Y Y, Le Guyader L, Mercurio G, Parchenko S, Rehr J J, Rubensson J E, Serkez S, Stransky M, Teichmann M, Yin Z, Žitnik M, Scherz A, Ziaja B, Rohringer N 2024Nat. Phys. 20 1564
[13] Forsman A, Ng A, Chiu G, More R M 1998Phys. Rev. E 58 R1248
[14] Ping Y, Correa A A, Ogitsu T, Draeger E, Schwegler E, Ao T, Widmann K, Price D F, Lee E, Tam H, Springer P T, Hanson D, Koslow I, Prendergast D, Collins G, Ng A 2010High Energy Density Phys. 6 246
[15] Ofori-Okai B K, Descamps A, McBride E E, Mo M Z, Weinmann A, Seipp L E, Ali S J, Chen Z, Fletcher L B, Glenzer S H 2024Phys. Plasmas 31 042711
[16] Ng A, Sterne P, Hansen S, Recoules V, Chen Z, Tsui Y Y, Wilson B 2016Phys. Rev. E 94 4
[17] Sun X, Wu H, Wang X, Lü Z, Zhang D, Liu D, Fan W, Su ingqin, Zhou W, Gu Y, Zhao Z, Yuan J 2023Chin. J. Lasers 50 1714013
[18] Ofori-Okai B K, Descamps A, Lu J, Seipp L E, Weinmann A, Glenzer S H, Chen Z 2018Rev. Sci. Instrum. 89 10D109
[19] Ao T, Ping Y, Widmann K, Price D F, Lee E, Tam H, Springer P T, Ng A 2006Phys. Rev. Lett. 96 1
[20] Widmann K, Ao T, Foord M E, Price D F, Ellis A D, Springer P T, Ng A 2004Phys. Rev. Lett. 92 10
[21] Ping Y, Hanson D, Koslow I, Ogitsu T, Prendergast D, Schwegler E, Collins G, Ng A 2006Phys. Rev. Lett. 96 255003
[22] Chen Z, Holst B, Kirkwood S E, Sametoglu V, Reid M, Tsui Y Y, Recoules V, Ng A 2013Phys. Rev. Lett. 110 135001
[23] Chen Z, Sametoglu V, Tsui Y Y, Ao T, Ng A 2012Phys. Rev. Lett. 108 1
[24] Dhar L, Fourkas J T, Nelson K A 1994Opt. Lett. 19 643
[25] Lindenberg A M, Larsson J, Sokolowski-Tinten K, Gaffney K J, Blome C, Synnergren O, Sheppard J, Caleman C, MacPhee A G, Weinstein D, Lowney D P, Allison T K, Matthews T, Falcone R W, Cavalieri A L, Fritz D M, Lee S H, Bucksbaum P H, Reis D A, Rudati J, Fuoss P H, Kao C C, Siddons D P, Pahl R, Als-Nielsen J, Duesterer S, Ischebeck R, Schlarb H, Schulte-Schrepping H, Tschentscher Th, Schneider J, Von Der Linde D, Hignette O, Sette F, Chapman H N, Lee R W, Hansen T N, Techert S, Wark J S, Bergh M, Huldt G, Van Der Spoel D, Timneanu N, Hajdu J, Akre R A, Bong E, Krejcik P, Arthur J, Brennan S, Luening K, Hastings J B 2005Science 308 392
[26] Chen Z, Hering P, Brown S B, Curry C, Tsui Y Y, Glenzer S H 2016Rev. Sci. Instrum. 87
[27] Liu Y Y, Zhao K, He P, Huang H D, Teng H, Wei Z Y 2017Chin. Phys. Lett. 34 074204
[28] Wang Y, Wang S, Rockwood A, Luther B M, Hollinger R, Curtis A, Calvi C, Menoni C S, Rocca J J 2017Opt. Lett. 42 3828
[29] Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X, Zhao Z 2020Chin. Phys. Lett. 37 114202
[30] Chang H T, Zürch M, Kraus P M, Borja L J, Neumark D M, Leone S R 2016Opt. Lett. 41 5365
[31] Wang X, Wang L, Xiao F, Zhang D, Lue Z, Yuan J, Zhao Z 2020Chin. Phys. Lett. 37 023201
[32] Shillaber C P 1945 Photomicrography : in theory and practice. (New York: Wiley)
[33] Born M, Wolf E 1999 Principles of Optics (Cambridge: Cambridge University Press)
Metrics
- Abstract views: 72
- PDF Downloads: 8
- Cited By: 0