Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A wide-range multiphase equation of state for lead

FANG Jun ZHAO Yanhong GAO Xingyu ZHANG Qili WANG Yuechao SUN Bo LIU Haifeng SONG Haifeng

Citation:

A wide-range multiphase equation of state for lead

FANG Jun, ZHAO Yanhong, GAO Xingyu, ZHANG Qili, WANG Yuechao, SUN Bo, LIU Haifeng, SONG Haifeng
cstr: 32037.14.aps.74.20250569
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • We present a multi-phase equation of state (EOS) for lead (Pb, Z = 82) in wide ranges of densities and temperatures: $ {11}{.34}\;{\text{g}}/{\text{c}}{{\text{m}}^3} < \rho < 80\; {\text{g}}/{\text{c}}{{\text{m}}^3}{,} $ $ 300\;{\mathrm{K}} < T < 10\;{\mathrm{MK}}. $ The EOS model is based on a standard decomposition of the Helmholtz free energy that is regarded as a function of the specific volume and the temperature into cold term, ion-thermal term, and electronic excitation term. The cold term models both the compression and the expansion states; the ion-thermal term introduces the Debye approximation and the melting entropy; the electronic excitation term employs the Thomas-Fermi-Kirzhnits (TFK) model. The thermodynamic properties of the warm-dense lead are calculated using the extended first-principles molecular dynamics (ext-FPMD) method, with the density reaching five times that of ambient density and the temperature up to 0.4 MK. Our EOS model is used to predict the principle Hugoniot, the room-temperature isotherm, the melting curve, and the thermodynamic properties in the warm-dense region. A systematic comparison with the experimental data, the SESAME-3200 table, and the ext-FPMD calculations is made and shows that our EOS model is consistent with not only the various experimental data, but also the ext-FPMD calculations, indicating some superiority over the SESAME-3200 table in the warm-dense region. The datasets presented in this paper, including the tabular EOS consisting of internal energy and pressure at the different densities and temperatures, are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00166.
      Corresponding author: ZHAO Yanhong, zhao_yanhong@iapcm.ac.cn
    • Funds: Project supported by the Foundation of the National Key Laboratory of Computational Physics (Grant No. 6142A05230302), the National Natural Science Foundation of China (Grant Nos. U23A20537, U2230401), and the Science Challenge Project, China (Grant No. TZ2025013).
    [1]

    徐锡申, 张万箱 1986 实用物态方程理论导引(北京: 科学出版社)第1, 191页

    Xu X S, Zhang W X 1986 Introduction to Practical Equation of States (Beijing: Scientific Press) pp1, 191

    [2]

    Holzapfel W B, Hartwig M, Sievers W 2001 J. Phys. Chem. Ref. Data 30 515Google Scholar

    [3]

    Lyon S P, Johnson J D 1992 Los Alamos Technical Report No. LA-UR-92-3407

    [4]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [5]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter Radiat. Extrem. 1 123Google Scholar

    [6]

    Zhao Y H, Wang L F, Zhang Q L, Zhang L, Song H Z, Gao X Y, Sun B, Liu H F, Song H F 2025 Chin. Phys. B 34 036401Google Scholar

    [7]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 物理学报 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [8]

    Graziani F, Desjarlais M P, Redmer R, Trickey S B (Eds.) 2014 Frontiers and Challenges in Warm Dense Matter (Cham: Springer International Publishing) p123

    [9]

    刘千锐 2023 博士学位论文(北京: 北京大学)

    Liu Q R 2023 Ph. D. Dissertation (Beijing: Peking University

    [10]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 B864Google Scholar

    [11]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 A1133Google Scholar

    [12]

    Martin R M 2004 Electronic Structure: Basic Theory and Practical Methods (Cambridge: Cambridge University Press) p119

    [13]

    Cytter Y, Rabani E, Neuhauser D, Baer R 2018 Phys. Rev. B 97 115207Google Scholar

    [14]

    Militzer B, González-Cataldo F, Zhang S, Driver K P, Soubiran F 2021 Phys. Rev. E 103 013203Google Scholar

    [15]

    Zhang S, Wang H W, Kang W, Zhang P, He X T 2016 Phys. Plasmas 23 042707Google Scholar

    [16]

    Blanchet A, Clérouin J, Torrent M, Soubiran F 2022 Comput. Phys. Commun. 271 108215Google Scholar

    [17]

    White A J, Collins L A 2020 Phys. Rev. Lett. 125 055002Google Scholar

    [18]

    Liu Q R, Chen M H 2022 Phys. Rev. B 106 125132Google Scholar

    [19]

    Wilson B G, Johnson D D, Alam A 2011 High Energy Density Phys. 7 61Google Scholar

    [20]

    Starrett C E 2018 Phys. Rev. E 97 053205Google Scholar

    [21]

    Walsh J M, Rice M H, Mcqueen R G, Yarger F L 1957 Phys. Rev. 108 196Google Scholar

    [22]

    Al'tshuler L V, Krupnikov K K, Brazhnik M I 1958 Zh. Eksp. Teor. Fiz. 34 886 (in Russian

    [23]

    Al'tshuler L V, Kormer S B, Bakanova A A, Trunin R F 1960 Zh. Eksp. Teor. Fiz. 38 790 (in Russian

    [24]

    McQueen R G, Marsh S P 1960 J. Appl. Phys. 31 1253Google Scholar

    [25]

    Al'tshuler L V, Bakanova A A, Bushman A V, Dudoladov I P, Zubarev V N 1977 Zh. Eksp. Teor. Fiz. 73 1866 (in Russian

    [26]

    Marsh S P (Ed.) 1980 LASL Shock Hugoniot Data (Berkeley: Univ. California Press) p100

    [27]

    Avrorin E N, Vodolaga B K, Voloshin N P, Kuropatenko V F, Kovalenko G V, Simonenko V A, Chernodolyuk B T 1986 Pis'ma Zh. Eksp. Teor. Fiz. 43 241 (in Russian

    [28]

    Mitchell A C, Nellis W J, Moriarty J A, Heinle R A, Holmes N C, Tipton R E, Repp G W 1991 J. Appl. Phys. 69 2981Google Scholar

    [29]

    Trunin R F, Il'kaeva L A, Podurets M A, Popov L V, Pechenkin B V, Prokhorov L V, Sevast'yanov A G, Khrustalev V V 1994 Teplofiz. Vys. Temp. 32 692 (in Russian

    [30]

    Trunin R F 1994 Usp. Fiz. Nauk 164 1215 (in Russian

    [31]

    Mao H K, Wu Y, Shu J F 1990 Solid State Commun. 74 1027Google Scholar

    [32]

    Partouche-Sebban D, Pélissier J L 2005 J. Appl. Phys. 97 043521Google Scholar

    [33]

    Dewaele A, Mezouar M, Guignot N, Loubeyre P 2007 Phys. Rev. B 76 144106Google Scholar

    [34]

    Smirnov N A 2021 J. Phys.: Condens. Matter 33 035402Google Scholar

    [35]

    Zhang S, Morales M A 2020 AIP Conf. Proc. 2272 090004

    [36]

    Yang X, Zeng X G, Chen H Y, Wang Y T, He L, Wang F 2019 J. Alloy. Comp. 808 151702Google Scholar

    [37]

    Strässle Th, Klotz S, Kunc K, Pomjakushin V, White J S 2014 Phys. Rev. B 90 014101

    [38]

    Kozyrev N V, Gordeev V V 2022 Metals 12 16

    [39]

    Schulte O, Holzapfel W B 1995 Phys. Rev. B 52 12636Google Scholar

    [40]

    Morita K, Sobolev V, Flad M 2007 J. Nucl. Mater. 362 227Google Scholar

    [41]

    Sobolev V P, Schuurmans P, Benamati G 2008 J. Nucl. Mater. 376 358Google Scholar

    [42]

    Song P, Cai L C 2010 Physica B 405 1509Google Scholar

    [43]

    Gao X Y, Mo Z Y, Fang J, Song H F, Wang H 2017 Comput. Phys. Commun. 211 54Google Scholar

    [44]

    Zhou Y Z, Wang H, Liu Y, Gao X Y, Song H F 2018 Phys. Rev. E 97 033305Google Scholar

    [45]

    Fang J, Gao X Y, Song H F 2019 Commun. Comput. Phys. 26 1196Google Scholar

    [46]

    Blanchet A, Torrent M, Clérouin J 2020 Phys. Plasmas 27 122706Google Scholar

    [47]

    Sjostrom T, Crockett S, Rudin S 2016 Phys. Rev. B 94 144101Google Scholar

    [48]

    Kadatskiy M A 2019 High Energy Density Phys. 33 100700Google Scholar

    [49]

    Liu X, Zhang X H, Gao C, Zhang S, Wang C, Li D F, Zhang P, Kang W, Zhang W Y, He X T 2021 Phys. Rev. B 103 174111Google Scholar

    [50]

    Schwarz K 2003 J. Solid State Chem. 176 319Google Scholar

    [51]

    Benedict L X, Driver K P, Hamel S, Militzer B, Qi T, Correa A A, Saul A, Schwegler E 2014 Phys. Rev. B 89 224109Google Scholar

    [52]

    Mattsson A E 2012 Sandia Technical Report No. SAND2012-7389

    [53]

    Eliezer S, Ricci R A (Eds.) 1991 High Pressure Equations of State: Theory and Applications (Amsterdam: North Holland) p249

    [54]

    Johnson J D 1991 Int. J. High Press. Res. 6 277Google Scholar

    [55]

    Benedict L X, Ogitsu T, Trave A, Wu C J, Sterne P A, Schwegler E 2009 Phys. Rev. B 79 064106Google Scholar

    [56]

    Wilson B, Sonnad V, Sterne P, Isaace W 2006 J. Quant. Spectrosc. Ra. 99 658Google Scholar

  • 图 1  面心立方铅的冷压线(压强-体积) 22个价电子的PAW势计算结果与WIEN2k全势结果的对比

    Figure 1.  Cold pressure results of face-centered-cubic lead calculated by CESSP with the 22 electron PAW potential, compared with full-potential results from WIEN2k.

    图 2  冲击雨贡纽线(压强-压缩比)理论计算值, 以及与SESAME-3200和实验数据的对比

    Figure 2.  Principle Hugoniot predicted by the theoretical model in this work, compared with the SESAME-3200 table and the experimental data.

    图 3  300 K等温压缩线(体积比-压强)理论计算值与SESAME-3200[3]和实验数据[31]的对比

    Figure 3.  Room-temperature isotherm predicted by the theoretical model in this work, compared with the SESAME-3200 table[3] and the experimental data[31].

    图 4  熔化线及雨贡纽线(温度-压强)理论计算值与SESAME-3200和实验数据的对比

    Figure 4.  Melting curve predicted by the theoretical model in this work, compared with the experimental data. The T-P Hugoniot curves from our model and the SESAME-3200 table are also given to illustrate the difference.

    图 5  温稠密过渡区物性(压强-压缩比)理论模型与SESAME-3200[3]和第一性原理ext-FPMD模拟的对比

    Figure 5.  Thermodynamic properties of the warm-dense lead predicted by the theoretical model in this work, compared with the SESAME-3200 table[3] and the ext-FPMD calculations.

    表 1  Ext-FP方法与标准DFT方法下铅的计算结果比较

    Table 1.  Comparison of results from the ext-FP method and the DFT method.

    电子温度/MK Ext-FP方法 标准DFT方法
    Ncut P/GPa ΔP/% Nocc P/GPa
    0.1 40 134.654 –0.01 100 134.670
    0.2 60 414.783 –0.03 200 414.890
    0.3 80 791.144 –0.23 350 792.977
    DownLoad: CSV

    表 2  不同温度密度条件下最低价态(铅的5s态)的占据数

    Table 2.  Occupation numbers of the lowest energy valence state (5s state of lead) at the different temperatures and densities.

    ρ02ρ03ρ04ρ05ρ0
    T = 0.05 MK1.000001.000001.000001.000001.00000
    T = 0.1 MK1.000001.000001.000001.000001.00000
    T = 0.2 MK0.999730.999770.999810.999840.99988
    T = 0.3 MK0.994920.995760.996400.997010.99746
    T = 0.4 MK0.977040.980740.983640.986120.98821
    T = 0.5 MK0.942430.951550.958810.965040.96917
    DownLoad: CSV
  • [1]

    徐锡申, 张万箱 1986 实用物态方程理论导引(北京: 科学出版社)第1, 191页

    Xu X S, Zhang W X 1986 Introduction to Practical Equation of States (Beijing: Scientific Press) pp1, 191

    [2]

    Holzapfel W B, Hartwig M, Sievers W 2001 J. Phys. Chem. Ref. Data 30 515Google Scholar

    [3]

    Lyon S P, Johnson J D 1992 Los Alamos Technical Report No. LA-UR-92-3407

    [4]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [5]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter Radiat. Extrem. 1 123Google Scholar

    [6]

    Zhao Y H, Wang L F, Zhang Q L, Zhang L, Song H Z, Gao X Y, Sun B, Liu H F, Song H F 2025 Chin. Phys. B 34 036401Google Scholar

    [7]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 物理学报 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [8]

    Graziani F, Desjarlais M P, Redmer R, Trickey S B (Eds.) 2014 Frontiers and Challenges in Warm Dense Matter (Cham: Springer International Publishing) p123

    [9]

    刘千锐 2023 博士学位论文(北京: 北京大学)

    Liu Q R 2023 Ph. D. Dissertation (Beijing: Peking University

    [10]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 B864Google Scholar

    [11]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 A1133Google Scholar

    [12]

    Martin R M 2004 Electronic Structure: Basic Theory and Practical Methods (Cambridge: Cambridge University Press) p119

    [13]

    Cytter Y, Rabani E, Neuhauser D, Baer R 2018 Phys. Rev. B 97 115207Google Scholar

    [14]

    Militzer B, González-Cataldo F, Zhang S, Driver K P, Soubiran F 2021 Phys. Rev. E 103 013203Google Scholar

    [15]

    Zhang S, Wang H W, Kang W, Zhang P, He X T 2016 Phys. Plasmas 23 042707Google Scholar

    [16]

    Blanchet A, Clérouin J, Torrent M, Soubiran F 2022 Comput. Phys. Commun. 271 108215Google Scholar

    [17]

    White A J, Collins L A 2020 Phys. Rev. Lett. 125 055002Google Scholar

    [18]

    Liu Q R, Chen M H 2022 Phys. Rev. B 106 125132Google Scholar

    [19]

    Wilson B G, Johnson D D, Alam A 2011 High Energy Density Phys. 7 61Google Scholar

    [20]

    Starrett C E 2018 Phys. Rev. E 97 053205Google Scholar

    [21]

    Walsh J M, Rice M H, Mcqueen R G, Yarger F L 1957 Phys. Rev. 108 196Google Scholar

    [22]

    Al'tshuler L V, Krupnikov K K, Brazhnik M I 1958 Zh. Eksp. Teor. Fiz. 34 886 (in Russian

    [23]

    Al'tshuler L V, Kormer S B, Bakanova A A, Trunin R F 1960 Zh. Eksp. Teor. Fiz. 38 790 (in Russian

    [24]

    McQueen R G, Marsh S P 1960 J. Appl. Phys. 31 1253Google Scholar

    [25]

    Al'tshuler L V, Bakanova A A, Bushman A V, Dudoladov I P, Zubarev V N 1977 Zh. Eksp. Teor. Fiz. 73 1866 (in Russian

    [26]

    Marsh S P (Ed.) 1980 LASL Shock Hugoniot Data (Berkeley: Univ. California Press) p100

    [27]

    Avrorin E N, Vodolaga B K, Voloshin N P, Kuropatenko V F, Kovalenko G V, Simonenko V A, Chernodolyuk B T 1986 Pis'ma Zh. Eksp. Teor. Fiz. 43 241 (in Russian

    [28]

    Mitchell A C, Nellis W J, Moriarty J A, Heinle R A, Holmes N C, Tipton R E, Repp G W 1991 J. Appl. Phys. 69 2981Google Scholar

    [29]

    Trunin R F, Il'kaeva L A, Podurets M A, Popov L V, Pechenkin B V, Prokhorov L V, Sevast'yanov A G, Khrustalev V V 1994 Teplofiz. Vys. Temp. 32 692 (in Russian

    [30]

    Trunin R F 1994 Usp. Fiz. Nauk 164 1215 (in Russian

    [31]

    Mao H K, Wu Y, Shu J F 1990 Solid State Commun. 74 1027Google Scholar

    [32]

    Partouche-Sebban D, Pélissier J L 2005 J. Appl. Phys. 97 043521Google Scholar

    [33]

    Dewaele A, Mezouar M, Guignot N, Loubeyre P 2007 Phys. Rev. B 76 144106Google Scholar

    [34]

    Smirnov N A 2021 J. Phys.: Condens. Matter 33 035402Google Scholar

    [35]

    Zhang S, Morales M A 2020 AIP Conf. Proc. 2272 090004

    [36]

    Yang X, Zeng X G, Chen H Y, Wang Y T, He L, Wang F 2019 J. Alloy. Comp. 808 151702Google Scholar

    [37]

    Strässle Th, Klotz S, Kunc K, Pomjakushin V, White J S 2014 Phys. Rev. B 90 014101

    [38]

    Kozyrev N V, Gordeev V V 2022 Metals 12 16

    [39]

    Schulte O, Holzapfel W B 1995 Phys. Rev. B 52 12636Google Scholar

    [40]

    Morita K, Sobolev V, Flad M 2007 J. Nucl. Mater. 362 227Google Scholar

    [41]

    Sobolev V P, Schuurmans P, Benamati G 2008 J. Nucl. Mater. 376 358Google Scholar

    [42]

    Song P, Cai L C 2010 Physica B 405 1509Google Scholar

    [43]

    Gao X Y, Mo Z Y, Fang J, Song H F, Wang H 2017 Comput. Phys. Commun. 211 54Google Scholar

    [44]

    Zhou Y Z, Wang H, Liu Y, Gao X Y, Song H F 2018 Phys. Rev. E 97 033305Google Scholar

    [45]

    Fang J, Gao X Y, Song H F 2019 Commun. Comput. Phys. 26 1196Google Scholar

    [46]

    Blanchet A, Torrent M, Clérouin J 2020 Phys. Plasmas 27 122706Google Scholar

    [47]

    Sjostrom T, Crockett S, Rudin S 2016 Phys. Rev. B 94 144101Google Scholar

    [48]

    Kadatskiy M A 2019 High Energy Density Phys. 33 100700Google Scholar

    [49]

    Liu X, Zhang X H, Gao C, Zhang S, Wang C, Li D F, Zhang P, Kang W, Zhang W Y, He X T 2021 Phys. Rev. B 103 174111Google Scholar

    [50]

    Schwarz K 2003 J. Solid State Chem. 176 319Google Scholar

    [51]

    Benedict L X, Driver K P, Hamel S, Militzer B, Qi T, Correa A A, Saul A, Schwegler E 2014 Phys. Rev. B 89 224109Google Scholar

    [52]

    Mattsson A E 2012 Sandia Technical Report No. SAND2012-7389

    [53]

    Eliezer S, Ricci R A (Eds.) 1991 High Pressure Equations of State: Theory and Applications (Amsterdam: North Holland) p249

    [54]

    Johnson J D 1991 Int. J. High Press. Res. 6 277Google Scholar

    [55]

    Benedict L X, Ogitsu T, Trave A, Wu C J, Sterne P A, Schwegler E 2009 Phys. Rev. B 79 064106Google Scholar

    [56]

    Wilson B, Sonnad V, Sterne P, Isaace W 2006 J. Quant. Spectrosc. Ra. 99 658Google Scholar

  • [1] XIAO Fan, WANG Xiaowei, WANG Li, WANG Jiacan, SUN Xu, ZHENG Zhigang, FAN Xiaohui, ZHANG Dongwen, ZHAO Zengxiu. Improvement and analysis of time accuracy in single-shot measurement of ac conductivity of warm dense matter. Acta Physica Sinica, 2025, 74(9): 095202. doi: 10.7498/aps.74.20250135
    [2] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min. Experimental method for warm dense matter ionization distribution based on X-ray fluorescence pectroscopy. Acta Physica Sinica, 2024, 73(1): 015201. doi: 10.7498/aps.73.20231216
    [3] Zhang Zhi-Yu, Zhao Yang, Qing Bo, Zhang Ji-Yan, Ma Jian-Yi, Lin Cheng-Liang, Yang Guo-Hong, Wei Min-Xi, Xiong Gang, Lü Min, Huang Cheng-Wu, Zhu Tuo, Song Tian-Ming, Zhao Yan, Zhang Yu-Xue, Zhang Lu, Li Li-Ling, Du Hua-Bing, Che Xing-Sen, Li Yu-Kun, Zhan Xia-Yu, Yang Jia-Min. Density effect on electronic structure of warm dense matter based on X-ray fluorescence spectroscopy. Acta Physica Sinica, 2023, 72(24): 245201. doi: 10.7498/aps.72.20231215
    [4] Tian Chun-Ling, Liu Hai-Yan, Wang Biao, Liu Fu-Sheng, Gan Yun-Dan. Phase transition and equation of state of dense liquid nitrogen at high temperature and high pressure. Acta Physica Sinica, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [5] Jin Yang, Zhang Ping, Li Yong-Jun, Hou Yong, Zeng Jiao-Long, Yuan Jian-Min. Influence of different charge-state ion distribution on elastic X-ray scattering in warm dense matter. Acta Physica Sinica, 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [6] Wang Tian-Hao, Wang Kun, Zhang Yue, Jiang Lin-Cun. Investigation on equation of state and ionization equilibrium for aluminum in warm dense matter regime. Acta Physica Sinica, 2020, 69(9): 099101. doi: 10.7498/aps.69.20191826
    [7] Ma Gui-Cun, Zhang Qi-Li, Song Hong-Zhou, Li Qiong, Zhu Xi-Rui, Meng Xu-Jun. Theoretical study of the equation of state for warm dense matter. Acta Physica Sinica, 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [8] Fan Xiao-Bing, Chen Jun-Xiang, Xiang Shi-Kai. Complete equation of state based on specific heat. Acta Physica Sinica, 2016, 65(23): 236401. doi: 10.7498/aps.65.236401
    [9] Yu Ji-Dong, Li Ping, Wang Wen-Qiang, Wu Qiang. A solid-liquid-gas three-phase complete equation of state of aluminum. Acta Physica Sinica, 2014, 63(11): 116401. doi: 10.7498/aps.63.116401
    [10] Sheng Zong-Qiang, Shu Liang-Ping, Meng Ying, Hu Ji-Gang, Qian Jian-Fa. Systematic calculations on cluster radioactivity half-lives of trans-lead nuclei with effective liquid drop model. Acta Physica Sinica, 2014, 63(16): 162302. doi: 10.7498/aps.63.162302
    [11] Peng Xiao-Juan, Liu Fu-Sheng. Problem and modification to the equation of state for liquid and solid-liquid mixed phase in Grover model. Acta Physica Sinica, 2012, 61(18): 186201. doi: 10.7498/aps.61.186201
    [12] Li Ying-Hua, Chang Jing-Zhen, Li Xue-Mei, Yu Yu-Ying, Dai Cheng-Da, Zhang Lin. Multiphase equation of states of solid and liquid phases for bismuth. Acta Physica Sinica, 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [13] Zhu Xi-Rui, Meng Xu-Jun. Calculation of electronic equation of state(EOS) of gold at arbitrary temperature and matter density in improved atomic model. Acta Physica Sinica, 2011, 60(9): 093103. doi: 10.7498/aps.60.093103
    [14] Gu Yun-Jun, Zheng Jun, Chen Zhi-Yun, Chen Qi-Feng, Cai Ling-Cang. The equation of state of H2+He fluid mixture in the region of partial dissociation. Acta Physica Sinica, 2010, 59(7): 4508-4513. doi: 10.7498/aps.59.4508
    [15] Zhao Yan-Hong, Liu Hai-Feng, Zhang Gong-Mu. Equation of state of detonation products based on statistical mechanical theory. Acta Physica Sinica, 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [16] Tian Chun-Ling, Cai Ling-Cang, Gu Yun-Jun, Jing Fu-Qian, Chen Zhi-Yun. Investigation of the pressure-volume-temperature equation of state for dense hydrogen-helium mixture using multi-shock compression method. Acta Physica Sinica, 2007, 56(7): 4180-4186. doi: 10.7498/aps.56.4180
    [17] Hou Yong, Yuan Jian-Min. First-principle calculations of phase transitions and equation of state at T=0K for gold. Acta Physica Sinica, 2007, 56(6): 3458-3463. doi: 10.7498/aps.56.3458
    [18] Zhang Ying, Chen Qi-Feng, Gu Yun-Jun, Cai Ling-Cang, Lu Tie-Cheng. Self-consistent variational calculation of the dense fluid helium plasma in the region of partial ionization. Acta Physica Sinica, 2007, 56(3): 1318-1324. doi: 10.7498/aps.56.1318
    [19] Tian Yang-Meng, Wang Cai-Xia, Jiang Ming, Cheng Xin-Lu, Yang Xiang-Dong. State equation of inert plasma. Acta Physica Sinica, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [20] Li Xiao-Jie. . Acta Physica Sinica, 2002, 51(5): 1098-1102. doi: 10.7498/aps.51.1098
Metrics
  • Abstract views:  522
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  28 April 2025
  • Accepted Date:  03 June 2025
  • Available Online:  18 June 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回