-
Experimental opacity data were used to evaluate the opacity models and their accuracy of the calculated results. In order to study the opacity of carbon material in the shell of the inertial confinement fusion ignition target, the experimental study of the spectral-resolved opacity of radiation heated carbon plasma was carried out on the Shenguang III prototype laser facility. Eight nanosecond lasers were injected into a conical-cylindrical gold hohlraum and converted to intense X-ray radiation,the high temperature plasma was obtained by radiatively heating the CH film in the center of the hohlraum. Temporal evolutions of temperature and density of carbon plasma were simulated with the Multi-1D code. By using a spatially resolved gated flat field grating spectrometer combined with the ninth beam smoothing surface backlight technology, the absorption spectra and backlighter spectra of CH sample were measured in one shot. Finally, the experimental transmission spectra of carbon plasma (with temperature of 65eV and density of 0.003g/cm3) in the 300eV-500eV region have been obtained and compared with the calculated results of a DCA/UTA opacity code.
-
Keywords:
- Radiative opacity /
- Inertial confinement fusion /
- Absorption spectra
-
[1] Rogers F J, Iglesias C A, 1994 Science 263, 50.
[2] Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784.
[3] Springer P T, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992 Phys. Rev. Lett. 69 3735.
[4] Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Golovkin I, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J C, Pradhan A K, Sherrill M, Wilson B G 2015 Nature 517 56.
[5] Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J C, Sherrill M E, Wilson B G 2019 Phys. Rev. Lett. 122 235001.
[6] Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101 (in Chinese) [高城,刘彦鹏,严冠鹏,闫杰,陈小棋,侯永,靳奉涛,吴建华,曾交龙,袁建民 2023 物理学报 72 183101].
[7] MacKinnon A J, Meezan N B, Ross J S, Pape S L, Hopkins L B, Divol L, Ho D, Milovich J, Pak A, Ralph J, Döppner T, Patel P K, Thomas C, Tommasini R, Haan S, MacPhee A G, McNaney J, Caggiano J, Hatarik R, Bionta R, Ma T, Spears B, Rygg J R, Benedetti L R, Town R P J, Bradley D K, Dewald E L, Fittinghoff D, Jones O S, Robey H R, Moody J D, Khan S, Callahan D A, Hamza A, Biener J, Celliers P M, Braun D G, Erskine D J, Prisbrey S T, Wallace R J, Kozioziemski B, Dylla-Spears R, Sater J, Collins G, Storm E, Hsing W, Landen O, Atherton J L, Lindl J D, Edwards M J, Frenje J A, Gatu-Johnson M, Li C K, Petrasso R, Rinderknecht H, Rosenberg M, Séguin F H, Zylstra A, Knauer J P, Grim G, Guler N, Merrill F, Olson R, Kyrala G A, Kilkenny J D, Nikroo A, Moreno K, Hoover D E, Wild C, Werner E 2014 Phys. Plasmas 21 056318.
[8] Zylstra A B, Kritcher A L, Hurricane O A, Callahan D A, Baker K, Braun T, Casey D T, Clark D, Clark K, Doppner T, Divol L, Hinkel D E, Hohenberger M, Kong C, Landen O L, Nikroo A, Pak A, Patel P, Ralph J E, Rice N, Tommasini R, Schoff M, Stadermann M, Strozzi D, Weber C, Young C, Wild C, Town R P J, Edward M J 2021 Phys. Rev. Lett. 126 025001.
[9] Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706.
[10] Zhao Y, Wei M X, Deng B, Zhu T, Hu Z M, Xiong G, Shang W L, Kuang L Y, Yang G H, Zhang J Y, Yang J M 2011 Chin. Phys. Lett. 28 060701.
[11] Zhao Y, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505.
[12] Xiong G, Yang G H, Li H, Zhang J Y, Zhao Y, Hu Z M, Wei M X, Qing B, Yang J M, Liu S Y, Jiang S N 2014 Rev. Sci. Instrum. 85 43104.
[13] Qing B, Wei M X, Yang G H, Zhang Z Y, Zhao Y, Xiong G, Lv M, Hu Z M, Zhang J Y, Liu S Y, Yang J M 2018 Rev. Sci. Instrum. 89 083108.
[14] Zhang J Y, Yang J M, Xu Y, Yang G H, Ding Y N, Yan J, Yuan J M, Ding Y K, Zheng Z J, Zhao Y, Hu Z M 2009 Phys. Rev. E 79 016401.
[15] Zhao Y, Shang W L, Xiong G, Jin F T, Hu Z M, Wei M X, Yang G H, Zhang J Y, Yang J M 2010 Chin. Phys. Lett. 27 113202.
[16] Xiong G, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016 The Astrophysical Journal 816 36.
[17] Qing B, Zhang Z Y, Wei M X, Yang Y M, Yang Z W, Yang G H, Zhao Y, Lv M, Xiong G, Hu Z M, Zhang J Y, Yang J M, Yan J 2018 Phys. Plasma 25 023301.
[18] Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024 Matter Radiat. Extremes 9 047801.
[19] Yang J M, Ding Y N, Yan J, Li J M, Zhang B H, Yang G H, Zhang W H, Wang Y M 2022 Phys. Plasmas 9 678.
[20] Zhang J Y, Yang J M, Xiong G, Meng X J, Yang G H, Zhao Y, Qing B, Li H, Yuan Z, Yang Y M, Wu Z Q, Yan J, Liu S Y, Jiang S E, Ding Y K 2015 Science and Technology of High Energy Density 1 1.
[21] Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K Zhang B H Phys. Rev. Lett. 2013 111 155003.
[22] Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504.
[23] Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M. 2019 Phys. Plasmas 26 072704.
[24] Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475.
[25] Yan J, Qiu Y B 2001 Phys.Rev.E 64 056401.
Metrics
- Abstract views: 54
- PDF Downloads: 0
- Cited By: 0