Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Experimental study on radiative opacity of radiatively heated carbon plasma at SGIII prototype laser facility

ZHAO Yang QING Bo XIONG Gang ZHANG Zhiyu SUN Ao YANG Guohong ZHAO Yan ZHANG Yuxue HUANG Chengwu ZHU Tuo SONG Tianming LI Liling LI Jin CHE Xingsen ZHAN Xiayu ZHANG Jiyan DONG Yunsong YANG Jiamin

Citation:

Experimental study on radiative opacity of radiatively heated carbon plasma at SGIII prototype laser facility

ZHAO Yang, QING Bo, XIONG Gang, ZHANG Zhiyu, SUN Ao, YANG Guohong, ZHAO Yan, ZHANG Yuxue, HUANG Chengwu, ZHU Tuo, SONG Tianming, LI Liling, LI Jin, CHE Xingsen, ZHAN Xiayu, ZHANG Jiyan, DONG Yunsong, YANG Jiamin
cstr: 32037.14.aps.74.20250600
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Experimental opacity data are used to evaluate the opacity models and their accuracy of the calculated results. In order to study the opacity of carbon material in the shell of the inertial confinement fusion ignition target, the experimental study of the spectrally-resolved opacity of radiatively heated carbon plasma is carried out on the Shenguang III prototype laser facility. Eight nanosecond lasers are injected into a conical-cylindrical gold hohlraum and converted into intense X-ray radiation, the high-temperature plasma is obtained by radiatively heating the CH film in the center of the hohlraum. Temporal evolutions of temperature and density of carbon plasma are simulated with the Multi-1D code. By using a spatially-resolved flat-field grating spectrometer combined with the ninth beam smoothing surface backlight technology, the absorption spectra of CH sample and the backlighter spectra are measured in one shot. Finally, the experimental transmission spectra of carbon plasma (with a temperature of 65 eV and density of 0.003 g/cm3) in a range of 300–500 eV are obtained and compared with the calculated results of a DCA/UTA opacity code. The datasets presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j00213.00153.
      Corresponding author: ZHANG Jiyan, zhangjiyanzjy@163.com
    • Funds: Project supported by the Science Challenge Project (Grant Nos. TZ2018005, TZ2018001) and the National Natural Science Foundation of China (Grant Nos. 12374261, 12335015, 12375238, U2430206).
    [1]

    Rogers F J, Iglesias C A, 1994 Science 263 50Google Scholar

    [2]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784Google Scholar

    [3]

    Springer P T, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992 Phys. Rev. Lett. 69 3735Google Scholar

    [4]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Golovkin I, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J C, Pradhan A K, Sherrill M, Wilson B G 2015 Nature 517 56Google Scholar

    [5]

    Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J C, Sherrill M E, Wilson B G 2019 Phys. Rev. Lett. 122 235001Google Scholar

    [6]

    高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民 2023 物理学报 72 183101Google Scholar

    Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101Google Scholar

    [7]

    MacKinnon A J, Meezan N B, Ross J S, Pape S L, Hopkins L B, Divol L, Ho D, Milovich J, Pak A, Ralph J, Döppner T, Patel P K, Thomas C, Tommasini R, Haan S, MacPhee A G, McNaney J, Caggiano J, Hatarik R, Bionta R, Ma T, Spears B, Rygg J R, Benedetti L R, Town R P J, Bradley D K, Dewald E L, Fittinghoff D, Jones O S, Robey H R, Moody J D, Khan S, Callahan D A, Hamza A, Biener J, Celliers P M, Braun D G, Erskine D J, Prisbrey S T, Wallace R J, Kozioziemski B, Dylla-Spears R, Sater J, Collins G, Storm E, Hsing W, Landen O, Atherton J L, Lindl J D, Edwards M J, Frenje J A, Gatu-Johnson M, Li C K, Petrasso R, Rinderknecht H, Rosenberg M, Séguin F H, Zylstra A, Knauer J P, Grim G, Guler N, Merrill F, Olson R, Kyrala G A, Kilkenny J D, Nikroo A, Moreno K, Hoover D E, Wild C, Werner E 2014 Phys. Plasmas 21 056318Google Scholar

    [8]

    Zylstra A B, Kritcher A L, Hurricane O A, Callahan D A, Baker K, Braun T, Casey D T, Clark D, Clark K, Doppner T, Divol L, Hinkel D E, Hohenberger M, Kong C, Landen O L, Nikroo A, Pak A, Patel P, Ralph J E, Rice N, Tommasini R, Schoff M, Stadermann M, Strozzi D, Weber C, Young C, Wild C, Town R P J, Edward M J 2021 Phys. Rev. Lett. 126 025001Google Scholar

    [9]

    Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706Google Scholar

    [10]

    Zhao Y, Wei M X, Deng B, Zhu T, Hu Z M, Xiong G, Shang W L, Kuang L Y, Yang G H, Zhang J Y, Yang J M 2011 Chin. Phys. Lett. 28 060701Google Scholar

    [11]

    Zhao Y, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505.Google Scholar

    [12]

    Xiong G, Yang G H, Li H, Zhang J Y, Zhao Y, Hu Z M, Wei M X, Qing B, Yang J M, Liu S Y, Jiang S N 2014 Rev. Sci. Instrum. 85 43104Google Scholar

    [13]

    Qing B, Wei M X, Yang G H, Zhang Z Y, Zhao Y, Xiong G, Lv M, Hu Z M, Zhang J Y, Liu S Y, Yang J M 2018 Rev. Sci. Instrum. 89 083108Google Scholar

    [14]

    Zhang J Y, Yang J M, Xu Y, Yang G H, Ding Y N, Yan J, Yuan J M, Ding Y K, Zheng Z J, Zhao Y, Hu Z M 2009 Phys. Rev. E 79 016401Google Scholar

    [15]

    Zhao Y, Shang W L, Xiong G, Jin F T, Hu Z M, Wei M X, Yang G H, Zhang J Y, Yang J M 2010 Chin. Phys. Lett. 27 113202Google Scholar

    [16]

    Xiong G, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016 Astrophys. J. 816 36Google Scholar

    [17]

    Qing B, Zhang Z Y, Wei M X, Yang Y M, Yang Z W, Yang G H, Zhao Y, Lv M, Xiong G, Hu Z M, Zhang J Y, Yang J M, Yan J 2018 Phys. Plasma 25 023301Google Scholar

    [18]

    Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024 Matter Radiat. Extremes 9 047801Google Scholar

    [19]

    Yang J M, Ding Y N, Yan J, Li J M, Zhang B H, Yang G H, Zhang W H, Wang Y M 2002 Phys. Plasmas 9 678Google Scholar

    [20]

    Zhang J Y, Yang J M, Xiong G, Meng X J, Yang G H, Zhao Y, Qing B, Li H, Yuan Z, Yang Y M, Wu Z Q, Yan J, Liu S Y, Jiang S E, Ding Y K 2015 Science and Technology of High Energy Density 1 1

    [21]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [22]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [23]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [24]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [25]

    Yan J, Qiu Y B 2001 Phys. Rev. E 64 056401Google Scholar

  • 图 1  实验排布示意图

    Figure 1.  Schematic of the experimental setup.

    图 2  CH样品的辐射流体力学模拟 (a)辐射温度时间演化; (b)温度和密度时间演化

    Figure 2.  Hydrodynamic simulation of the CH sample: (a) The temporal evolution of radiation temperature at the sample; (b) the temporal evolutions of temperature and density.

    图 3  0.65 ns时刻CH样品的温度密度空间分布

    Figure 3.  Temperature and density profile of the CH sample at 0.65 ns.

    图 4  空间分辨的X光吸收与背光源谱图像

    Figure 4.  Space-resolved X-ray absorption and backlighter spectra.

    图 5  (a)实验背光源谱与吸收谱; (b)实验与理论透过率光谱的比较

    Figure 5.  (a) Experimental backlighter and absorption spectra; (b) the comparison of the measured transmission spectrum with the calculated result.

  • [1]

    Rogers F J, Iglesias C A, 1994 Science 263 50Google Scholar

    [2]

    Perry T S, Davidson S J, Serduke F J D, Bach D R, Smith C C, Foster J M, Doyas R J, Ward R A, Iglesias C A, Rogers F J, Abdallah J, Stewart R E, Kilkenny J D, Lee R W 1991 Phys. Rev. Lett. 67 3784Google Scholar

    [3]

    Springer P T, Fields D J, Wilson B G, Nash J K, Goldstein W H, Iglesias C A, Rogers F J, Swenson J K, Chen M H, Bar-Shalom A, Stewart R E 1992 Phys. Rev. Lett. 69 3735Google Scholar

    [4]

    Bailey J E, Nagayama T, Loisel G P, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Golovkin I, Hansen S B, Iglesias C A, Kilcrease D P, MacFarlane J J, Mancini R C, Nahar S N, Orban C, Pain J C, Pradhan A K, Sherrill M, Wilson B G 2015 Nature 517 56Google Scholar

    [5]

    Nagayama T, Bailey J E, Loisel G P, Dunham G S, Rochau G A, Blancard C, Colgan J, Cosse P, Faussurier G, Fontes C J, Gilleron F, Hansen S B, Iglesias C A, Golovkin I E, Kilcrease D P, MacFarlane J J, Mancini R C, More R M, Orban C, Pain J C, Sherrill M E, Wilson B G 2019 Phys. Rev. Lett. 122 235001Google Scholar

    [6]

    高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民 2023 物理学报 72 183101Google Scholar

    Gao C, Liu Y P, Yan G P, Yan J, Chen X Q, Hou Y, Jin F T, Wu J H, Zeng J L, Yuan J M 2023 Acta Phys. Sin. 72 183101Google Scholar

    [7]

    MacKinnon A J, Meezan N B, Ross J S, Pape S L, Hopkins L B, Divol L, Ho D, Milovich J, Pak A, Ralph J, Döppner T, Patel P K, Thomas C, Tommasini R, Haan S, MacPhee A G, McNaney J, Caggiano J, Hatarik R, Bionta R, Ma T, Spears B, Rygg J R, Benedetti L R, Town R P J, Bradley D K, Dewald E L, Fittinghoff D, Jones O S, Robey H R, Moody J D, Khan S, Callahan D A, Hamza A, Biener J, Celliers P M, Braun D G, Erskine D J, Prisbrey S T, Wallace R J, Kozioziemski B, Dylla-Spears R, Sater J, Collins G, Storm E, Hsing W, Landen O, Atherton J L, Lindl J D, Edwards M J, Frenje J A, Gatu-Johnson M, Li C K, Petrasso R, Rinderknecht H, Rosenberg M, Séguin F H, Zylstra A, Knauer J P, Grim G, Guler N, Merrill F, Olson R, Kyrala G A, Kilkenny J D, Nikroo A, Moreno K, Hoover D E, Wild C, Werner E 2014 Phys. Plasmas 21 056318Google Scholar

    [8]

    Zylstra A B, Kritcher A L, Hurricane O A, Callahan D A, Baker K, Braun T, Casey D T, Clark D, Clark K, Doppner T, Divol L, Hinkel D E, Hohenberger M, Kong C, Landen O L, Nikroo A, Pak A, Patel P, Ralph J E, Rice N, Tommasini R, Schoff M, Stadermann M, Strozzi D, Weber C, Young C, Wild C, Town R P J, Edward M J 2021 Phys. Rev. Lett. 126 025001Google Scholar

    [9]

    Olson R E, Rochau G A, Landen O L, Leeper R J 2011 Phys. Plasmas 18 032706Google Scholar

    [10]

    Zhao Y, Wei M X, Deng B, Zhu T, Hu Z M, Xiong G, Shang W L, Kuang L Y, Yang G H, Zhang J Y, Yang J M 2011 Chin. Phys. Lett. 28 060701Google Scholar

    [11]

    Zhao Y, Zhang J Y, Liu J S, Yuan X, Jin F T 2009 Rev. Sci. Instrum. 80 043505.Google Scholar

    [12]

    Xiong G, Yang G H, Li H, Zhang J Y, Zhao Y, Hu Z M, Wei M X, Qing B, Yang J M, Liu S Y, Jiang S N 2014 Rev. Sci. Instrum. 85 43104Google Scholar

    [13]

    Qing B, Wei M X, Yang G H, Zhang Z Y, Zhao Y, Xiong G, Lv M, Hu Z M, Zhang J Y, Liu S Y, Yang J M 2018 Rev. Sci. Instrum. 89 083108Google Scholar

    [14]

    Zhang J Y, Yang J M, Xu Y, Yang G H, Ding Y N, Yan J, Yuan J M, Ding Y K, Zheng Z J, Zhao Y, Hu Z M 2009 Phys. Rev. E 79 016401Google Scholar

    [15]

    Zhao Y, Shang W L, Xiong G, Jin F T, Hu Z M, Wei M X, Yang G H, Zhang J Y, Yang J M 2010 Chin. Phys. Lett. 27 113202Google Scholar

    [16]

    Xiong G, Yang J M, Zhang J Y, Hu Z M, Zhao Y, Qing B, Yang G H, Wei M X, Yi R Q, Song T M, Li H, Yuan Z, Lv M, Meng X J, Xu Y, Wu Z Q, Yan J 2016 Astrophys. J. 816 36Google Scholar

    [17]

    Qing B, Zhang Z Y, Wei M X, Yang Y M, Yang Z W, Yang G H, Zhao Y, Lv M, Xiong G, Hu Z M, Zhang J Y, Yang J M, Yan J 2018 Phys. Plasma 25 023301Google Scholar

    [18]

    Xiong G, Qing B, Zhang Z Y, Jing L F, Zhao Y, Wei M X, Yang Y M, Hou L F, Huang C W, Zhu T, Song T M, Lv M, Zhao Y, Zhang Y X, Yang G H, Wu Z Q, Yan J, Zou Y M, Zhang J Y, Yang J M 2024 Matter Radiat. Extremes 9 047801Google Scholar

    [19]

    Yang J M, Ding Y N, Yan J, Li J M, Zhang B H, Yang G H, Zhang W H, Wang Y M 2002 Phys. Plasmas 9 678Google Scholar

    [20]

    Zhang J Y, Yang J M, Xiong G, Meng X J, Yang G H, Zhao Y, Qing B, Li H, Yuan Z, Yang Y M, Wu Z Q, Yan J, Liu S Y, Jiang S E, Ding Y K 2015 Science and Technology of High Energy Density 1 1

    [21]

    Zhao Y, Yang J M, Zhang J Y, Yang G H, Wei M X, Xiong G, Song T M, Zhang Z Y, Bao L H, Deng B, Li Y K, He X A, Li C G, Mei Y, Yu R Z, Jiang S E, Liu S Y, Ding Y K Zhang B H 2013 Phys. Rev. Lett. 111 155003Google Scholar

    [22]

    Li Z C, Jiang X H, Liu S Y, Huang T X, Zheng J, Yang J M, Li S W, Guo L, Zhao X F, Du H B, Song T M, Yi R Q, Liu Y G, Jiang S E, Ding Y K 2010 Rev. Sci. Instrum. 81 073504Google Scholar

    [23]

    Zhang Z Y, Zhao Y, Zhang J Y, Hu Z M, Jing L F, Qing B, Xiong G, Lv M, Du H B, Yang Y M, Zhan X Y, Yu R Z, Mei Y, Yang J M 2019 Phys. Plasmas 26 072704Google Scholar

    [24]

    Ramis R, Schmalz R, Meyer-Ter-Vehn J 1988 Comput. Phys. Commun. 49 475Google Scholar

    [25]

    Yan J, Qiu Y B 2001 Phys. Rev. E 64 056401Google Scholar

  • [1] Li Shu, Wang Yang, Ji Zhi-Cheng, Lan Ke. Global variance reduction method for Monte Carlo simulation of thermal radiation transport. Acta Physica Sinica, 2023, 72(13): 139501. doi: 10.7498/aps.72.20230218
    [2] Yang Jun-Lan, Zhong Zhe-Qiang, Weng Xiao-Feng, Zhang Bin. Method of statistically characterizing target plane light field properties in inertial confinement fusion device. Acta Physica Sinica, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [3] Jiang Xiu-Juan, Tang Yi-Fan, Wang Li, Li Jing-Hui, Wang Bo, Xiang Ying. Performance of smoothing by spectral dispersion with consideration of the gain characteristic of Nd:glass amplifier. Acta Physica Sinica, 2017, 66(12): 124204. doi: 10.7498/aps.66.124204
    [4] Nie Wei, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Xia Hui-Hui, Peng Yu-Quan, Zhang Bu-Qiang, He Ya-Bai. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204
    [5] Wang Jian, Hou Peng-Cheng, Zhang Bin. A new scheme of spectral dispersion smoothing based on hybrid grating. Acta Physica Sinica, 2016, 65(20): 204201. doi: 10.7498/aps.65.204201
    [6] Zhao Ying-Kui, Ouyang Bei-Yao, Wen Wu, Wang Min. Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion. Acta Physica Sinica, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [7] Li Shu, Li Gang, Tian Dong-Feng, Deng Li. An implicit Monte Carlo method for thermal radiation transport. Acta Physica Sinica, 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [8] Zhang Ji-Yan, Yang Jia-Min, Yang Guo-Hong, Ding Yao-Nan, Li Jun, Yan Jun, Wu Ze-Qing, Ding Yong-Kun, Zhang Bao-Han, Zheng Zhi-Jian. Investigations on radiative opacity measurement by the method of direct laser-heating and self-backlighting. Acta Physica Sinica, 2013, 62(19): 195201. doi: 10.7498/aps.62.195201
    [9] Song Tian-Ming, Yi Rong-Qing, Cui Yan-Li, Yu Rui-Zhen, Yang Jia-Min, Zhu Tuo, Hou Li-Fei, Du Hua-Bing. Fiducial system for the diagnosis of temporal evolution of radiation fluxes with soft-X-ray spectrometer in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(7): 075208. doi: 10.7498/aps.61.075208
    [10] Zhang Zhan-Wen, Qi Xiao-Bo, Li Bo. Properties and fabrication status of capsules for ignition targets in inertial confinement fusion experiments. Acta Physica Sinica, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [11] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [12] Li Ning, Weng Chun-Sheng. Calibration-free wavelength modulation absorption spectrum of gas. Acta Physica Sinica, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [13] Zhan Jiang-Hui, Yao Xin, Gao Fu-Hua, Yang Ze-Jian, Zhang Yi-Xiao, Guo Yong-Kang. Study on intensity distribution inside the frequency conversion crystals for continuous phase plate front-located in inertialconfinement fusion driver. Acta Physica Sinica, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [14] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Ding Lei, Tang Jun, Liu Hua, Jing Feng, Zhang Xiao-Min. Experimental research on smoothing by spectral dispersion based on wave-guide phase modulator. Acta Physica Sinica, 2010, 59(9): 6290-6298. doi: 10.7498/aps.59.6290
    [15] Zhang Rui, Wang Jian-Jun, Su Jing-Qin, Liu Lan-Qin, Deng Qing-Hua. Experimental study on smoothing by spectral dispersion using linear frequency-modulated pulse. Acta Physica Sinica, 2010, 59(2): 1088-1094. doi: 10.7498/aps.59.1088
    [16] Yao Xin, Gao Fu-Hua, Zhang Yi-Xiao, Wen Sheng-Lin, Guo Yong-Kang, Lin Xiang-Di. Study on the frontal condition for continuous phase plate in inertial confinement fusion driver. Acta Physica Sinica, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [17] Yao Xin, Gao Fu-Hua, Gao Bo, Zhang Yi-Xiao, Huang Li-Xin, Guo Yong-Kang, Lin Xiang-Di. Optimization of frequency conversion system in inertial confinement fusion driver for frontally located beam smoothing elements. Acta Physica Sinica, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] Ding Jun, Yang Qiu-Hong, Tang Zai-Feng, Xu Jun, Su Liang-Bi. Spectroscopic properties of Er3+/Yb3+ co-doped transparent yttrium lanthanum oxide ceramic. Acta Physica Sinica, 2007, 56(4): 2207-2211. doi: 10.7498/aps.56.2207
    [19] Wang Ce, Chen Xiao-Bo, Zhang Chun-Lin, Zhang Yun-Zhi, Chen Luan, Ma Hui, Li Song, Gao Ai-Hua. Optical parameters and energy level splitting of Er3+ in Er3+: GdVO4. Acta Physica Sinica, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
    [20] Ma Wen, Jin Feng-Tao, Yuan Jian-Min. Effect of line shift on the calculated radiative opacity using average atom approach. Acta Physica Sinica, 2007, 56(10): 5709-5714. doi: 10.7498/aps.56.5709
Metrics
  • Abstract views:  472
  • PDF Downloads:  19
  • Cited By: 0
Publishing process
  • Received Date:  07 May 2025
  • Accepted Date:  02 June 2025
  • Available Online:  03 July 2025
  • Published Online:  05 August 2025
  • /

    返回文章
    返回