Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy

Nie Wei Kan Rui-Feng Xu Zhen-Yu Yao Lu Xia Hui-Hui Peng Yu-Quan Zhang Bu-Qiang He Ya-Bai

Citation:

Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy

Nie Wei, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Xia Hui-Hui, Peng Yu-Quan, Zhang Bu-Qiang, He Ya-Bai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Accurate and reliable spectral line parameters of gas are very important for measuring gas concentration and temperature.The mainstream spectrum database (e.g.HITRAN) includes the values from theoretical computation based on different models,which have some inevitable deviations from the corresponding actual values.To address this problem,we develop a low-temperature spectral experimental platform for simulating low temperature and low pressure environment so as to accurately measure gas absorption spectral parameters.The spectral experimental platform uses the static cooling technology combined with the Dewar insulation system to maintain the quartz cell at a constant temperature.Through adjusting the electric heating and liquid helium refrigeration,we can achieve temperature change and stability.Temperature of the low temperature absorption cell can be adjusted in a range of 100-350 K with a precision lower than 0.3 K and the temperature gradient in the cell is lower than 0.01 K/cm.The length of quartz cell is 100 cm,and a reflector can be used to increase optical path for absorption.The window diameter is 76 mm,and the spectral resolution is better than 0.001 cm-1.We use a tunable diode laser spectrometer to measure absorption spectra of pure water vapor with the platform at different temperatures (230-340 K) and different pressures (10-1000 Pa).Voigt profile is the leastsquares fit to the measured spectra by using a multi-spectrum fitting routine.A filter is used to reduce electronic noise of detector signal.As spectral lines in the band of 7240-7246 cm-1 are often used in low temperature wind tunnel flow field measurements,a distributed feedback (DFB) diode laser with a wavelength of 1381 nm is used in the experiment, and five water vapor lines are selected and measured.Firstly,from the linear fitting of line area and the full width at half maximum of collisional broadening (or pressure broadening) we obtain line strengths and self-broadening half-width coefficients at different temperatures.Secondly,from nonlinear fitting of line strengths and self-broadening half-width coefficients at different temperatures we obtain the values of line strengths and self-broadening half-width coefficients at the reference temperature (296 K).In the end,comparison between our experimental results and HITRAN2012 database values shows that the maximum discrepancy between the HITRAN database and the experimental result is 10.96%.A transparent uncertainty analysis is given for the measurement values.Uncertainties of our measured line strengths are in a 1.11%-2.98% range (95% confidence level,k=2),which is smaller than those of HITRAN2012 database values (uncertainties are in a range of 5%-10%).The accurate spectral parameters are obtained experimentally,and of great significance for improving the spectrum measurement accuracy of water vapor in low temperature environment in the future.
      Corresponding author: Kan Rui-Feng, kanruifeng@aiofm.ac.cn;zyxu@aiofm.ac.cn ; Xu Zhen-Yu, kanruifeng@aiofm.ac.cn;zyxu@aiofm.ac.cn
    • Funds: Project supported by the National Major Scientific Instrument and Equipment Development Project of China (Grant No. 2014YQ060537).
    [1]

    Kiehl J T, Trenberth K E 1997 B. Am. Meteorol. Soc. 78 197

    [2]

    Maycock A C, Shine K P, Joshi M M 2011 Q. J. Roy. Meteotol. Soc. 137 1070

    [3]

    Ravishankara A R 2012 Science 337 809

    [4]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert-Witzel V 2012 Appl. Phys. B 109 521

    [5]

    Gallegos J G, Benyon R, Avila S, Benito A, Gavioso R M, Mitter H, Bell S, Stevens M, Bse N, Ebert V, Heinonen M, Sairanen H, Peruzzi A, Bosma R, Val' kov M 2015 J. Nat. Gas Sci. Eng. 23 407

    [6]

    Buchholz B, Afchine A, Klein A, Schiller C, Krmer M, Ebert V 2017 Atmos. Meas. Tech. 10 35

    [7]

    Mohamed A, Rosier B, Henry D, Louvet Y, Varghese P L 1996 AIAA J. 34 494

    [8]

    Albert S, Bauerecker S, Boudon V, Brown L R, Champion J P, Lote M 2009 Chem. Phys. 356 131

    [9]

    Gao W, Wang G S, Chen W D, Zhang W J, Gao X M 2011 Spectroscopy and Spectral Analysis 31 3180 (in Chinese)[高伟, 王贵师, 陈卫东, 张为俊, 高晓明2011光谱学与光谱分析31 3180]

    [10]

    Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081

    [11]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [12]

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013 Acta Phys. Sin. 62 224206 (in Chinese)[陈玖英, 刘建国, 何亚柏, 王辽, 江强, 许振宇, 姚路, 袁松, 阮俊, 何俊锋, 戴云海, 阚瑞峰2013物理学报62 224206]

    [13]

    Goldenstein C S, Jeffries J B, Hanson R K 2013 J. Quant. Spectrosc. Radiat. Transfer 130 100

    [14]

    Pogny A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108

    [15]

    Ngo N H, Ibrahim N, Landsheere X, Tran H, Chelin P, Schwell M, Hartmann J M 2012 J. Quant. Spectrosc. Radiat. Transfer 113 870

    [16]

    Liu X, Jeffries J B, Hanson R K 2007 Meas. Sci. Technol. 18 1185

    [17]

    Ptashnik I V, Smith K M, Shine K P 2005 J. Mol. Spectrosc. 232 186

    [18]

    Zhang G L, Liu J G, Kan R F, Xu Z Y 2014 Chin. Phys. B 23 124207

  • [1]

    Kiehl J T, Trenberth K E 1997 B. Am. Meteorol. Soc. 78 197

    [2]

    Maycock A C, Shine K P, Joshi M M 2011 Q. J. Roy. Meteotol. Soc. 137 1070

    [3]

    Ravishankara A R 2012 Science 337 809

    [4]

    Witzel O, Klein A, Wagner S, Meffert C, Schulz C, Ebert-Witzel V 2012 Appl. Phys. B 109 521

    [5]

    Gallegos J G, Benyon R, Avila S, Benito A, Gavioso R M, Mitter H, Bell S, Stevens M, Bse N, Ebert V, Heinonen M, Sairanen H, Peruzzi A, Bosma R, Val' kov M 2015 J. Nat. Gas Sci. Eng. 23 407

    [6]

    Buchholz B, Afchine A, Klein A, Schiller C, Krmer M, Ebert V 2017 Atmos. Meas. Tech. 10 35

    [7]

    Mohamed A, Rosier B, Henry D, Louvet Y, Varghese P L 1996 AIAA J. 34 494

    [8]

    Albert S, Bauerecker S, Boudon V, Brown L R, Champion J P, Lote M 2009 Chem. Phys. 356 131

    [9]

    Gao W, Wang G S, Chen W D, Zhang W J, Gao X M 2011 Spectroscopy and Spectral Analysis 31 3180 (in Chinese)[高伟, 王贵师, 陈卫东, 张为俊, 高晓明2011光谱学与光谱分析31 3180]

    [10]

    Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081

    [11]

    Rothman L S, Gordon I E, Babikov Y, Barbe A, Chris Benner D, Bernath P F, Birk M, Bizzocchi L, Boudon V, Brown L R, Campargue A, Chance K, Cohen E A, Coudert L H, Devi V M, Drouin B J, Fayt A, Flaud J M, Gamache R R, Harrison J J, Hartmann J M, Hill C, Hodges J T, Jacquemart D, Jolly A, Lamouroux J, Le Roy R J, Li G, Long D A, Lyulin O M, Mackie C J, Massie S T, Mikhailenko S, Mller H S P, Naumenko O V, Nikitin A V, Orphal J, Perevalov V, Perrin A, Polovtseva E R, Richard C, Smith M A H, Starikova E, Sung K, Tashkun S, Tennyson J, Toon G C, Tyuterev V G, Wagner G 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4

    [12]

    Chen J Y, Liu J G, He Y B, Wang L, Jiang Q, Xu Z Y, Yao L, Yuan S, Ruan J, He J F, Dai Y H, Kan R F 2013 Acta Phys. Sin. 62 224206 (in Chinese)[陈玖英, 刘建国, 何亚柏, 王辽, 江强, 许振宇, 姚路, 袁松, 阮俊, 何俊锋, 戴云海, 阚瑞峰2013物理学报62 224206]

    [13]

    Goldenstein C S, Jeffries J B, Hanson R K 2013 J. Quant. Spectrosc. Radiat. Transfer 130 100

    [14]

    Pogny A, Klein A, Ebert V 2015 J. Quant. Spectrosc. Radiat. Transfer 165 108

    [15]

    Ngo N H, Ibrahim N, Landsheere X, Tran H, Chelin P, Schwell M, Hartmann J M 2012 J. Quant. Spectrosc. Radiat. Transfer 113 870

    [16]

    Liu X, Jeffries J B, Hanson R K 2007 Meas. Sci. Technol. 18 1185

    [17]

    Ptashnik I V, Smith K M, Shine K P 2005 J. Mol. Spectrosc. 232 186

    [18]

    Zhang G L, Liu J G, Kan R F, Xu Z Y 2014 Chin. Phys. B 23 124207

  • [1] Long Jiang-Xiong, Shao Li, Zhang Yu-Jun, You Kun, He Ying, Ye Qing, Sun Xiao-Quan. Measurement research of line intensity and self-broadening coefficient for NH3 spectra in 4296–4302 cm–1. Acta Physica Sinica, 2022, 71(16): 164204. doi: 10.7498/aps.71.20220504
    [2] Li Meng-Qi, Zhang Yu-Jun, He Ying, You Kun, Fan Bo-Qiang, Yu Dong-Qi, Xie Hao, Lei Bo-En, Li Xiao-Yi, Liu Jian-Guo, Liu Wen-Qing. NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser. Acta Physica Sinica, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [3] Nie Wei, Kan Rui-Feng, Xu Zhen-Yu, Yang Chen-Guang, Chen Bing, Xia Hui-Hui, Wei Min, Chen Xiang, Yao Lu, Li Hang, Fan Xue-Li, Hu Jia-Yi. Measurements of line strengths for some lines of ammonia in 6611-6618 cm-1. Acta Physica Sinica, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [4] Zhao Bai-Qiang, Zhang Yun, Qiu Xiao-Yan, Wang Xue-Wei. First-principles study of the electronic structures and absorption spectrum of Fe:Mg:LiNbO3 crystals. Acta Physica Sinica, 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [5] Gao Jin-Yun, Zhang Qing-Li, Wang Xiao-Fei, Liu Wen-Peng, Sun Gui-Hua, Sun Dun-Lu, Yin Shao-Tang. Absorption spectrum analysis and crystal-field calculation of Nd3+ doped in GdTaO4 crystal. Acta Physica Sinica, 2015, 64(12): 124209. doi: 10.7498/aps.64.124209
    [6] Hou Qing-Yu, Lü Zhi-Yuan, Zhao Chun-Wang. Effects of V-heavy-doped ZnO on electric conductivity performance and absorption spectrum. Acta Physica Sinica, 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [7] Guo Shao-Qiang, Hou Qing-Yu, Zhao Chun-Wang, Mao Fei. First principles study of the effect of high V doping on the optical band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [8] Mao Fei, Hou Qing-Yu, Zhao Chun-Wang, Guo Shao-Qiang. First-principle study on the effect of high Pr doping on the optical band gap and absorption spectra of TiO2. Acta Physica Sinica, 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [9] Hou Qing-Yu, Guo Shao-Qiang, Zhao Chun-Wang. First-principle study of the effects of oxygen vacancy on the electronic structure and the absorption spectrum of ZnO. Acta Physica Sinica, 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [10] Hou Qing-Yu, Dong Hong-Ying, Ying Chun, Ma Wen. First-principles study on the effect of high Mn doped on the band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [11] Chen Jiu-Ying, Liu Jian-Guo, He Ya-Bai, Wang Liao, Gang Qiang, Xu Zhen-Yu, Yao Lu, Yuan Song, Ruan Jun, He Jun-Feng, Dai Yun-Hai, Kan Rui-Feng. Study of CO2 spectroscopic parameters at high temperature near 2.0 μm. Acta Physica Sinica, 2013, 62(22): 224206. doi: 10.7498/aps.62.224206
    [12] Hou Qing-Yu, Dong Hong-Ying, Ying Chun, Ma Wen. First-principles study on the effects of high Al doped on the band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [13] Lü Xiao-Jing, Weng Chun-Sheng, Li Ning. The analysis of CO2 absorption spectrum characteristics near 1.58 μm at high pressures. Acta Physica Sinica, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [14] Wu Ye-Qing, Su Liang-Bi, Xu Jun, Chen Hong-Bing, Li Hong-Jun, Zheng Li-He, Wang Qing-Guo. Spectroscopic and thermal properties of Yb doped CaF2-SrF2 laser crystal. Acta Physica Sinica, 2012, 61(17): 177801. doi: 10.7498/aps.61.177801
    [15] Wang Xiao-Bo, Ma Wei-Guang, Wang Jing-Jing, Xiao Lian-Tuan, Jia Suo-Tang. Single photon wavelength modulation absorption spectrum of acetylene for 1.5 m laser wavelength stabilization. Acta Physica Sinica, 2012, 61(10): 104205. doi: 10.7498/aps.61.104205
    [16] Xu Zhen-Yu, Liu Wen-Qing, Liu Jian-Guo, He Jun-Feng, Yao Lu, Ruan Jun, Chen Jiu-Ying, Li Han, Yuan Song, Geng Hui, Kan Rui-Feng. Temperature measurements based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(23): 234204. doi: 10.7498/aps.61.234204
    [17] Li Ning, Weng Chun-Sheng. Calibration-free wavelength modulation absorption spectrum of gas. Acta Physica Sinica, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [18] Xu Ling, Tang Chao-Qun, Qian Jun. The first-principles study of absorption spectrum of C-doped anatase TiO2. Acta Physica Sinica, 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
    [19] Huang Dan, Shao Yuan-Zhi, Chen Di-Hu, Guo Jin, Li Guang-Xu. First-principles calculation on the electronic structure and absorption spectrum of the wurtzite Zn1-xMgxO alloys. Acta Physica Sinica, 2008, 57(2): 1078-1083. doi: 10.7498/aps.57.1078
    [20] Wang Ce, Chen Xiao-Bo, Zhang Chun-Lin, Zhang Yun-Zhi, Chen Luan, Ma Hui, Li Song, Gao Ai-Hua. Optical parameters and energy level splitting of Er3+ in Er3+: GdVO4. Acta Physica Sinica, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
Metrics
  • Abstract views:  7571
  • PDF Downloads:  287
  • Cited By: 0
Publishing process
  • Received Date:  08 May 2017
  • Accepted Date:  05 June 2017
  • Published Online:  05 October 2017

/

返回文章
返回