-
Spectral parameters of NH3 in a range of 4296–4302 cm–1 in the HITRAN database are different from the actual situation as they are derived from theoretical calculations. In order to correct the spectral parameters of NH3 in this range in HITRAN, tunable diode laser absorption spectroscopy (TDLAS) technology and metrological theory are used to measure the absorption spectrum high-purity NH3 in the range of 4296–4302 cm–1 at 2–10 Torr. The line intensity and self-broadening coefficient of the main absorption line of NH3 in this band are retrieved and their uncertainty are calculated by comprehensively considering main factors including pressure, temperature, optical path of gas cell, wavenumber and line shape fitting. The discrepancies between our measured line intensities and latest peer-measured results are within 20%. The biases between our self-broadening coefficients and the ones in HITRAN2020 are within 14%. Their uncertainties are in a range of the 0.63–2.7% and 0.77–5.4%, respectively, which are smaller than the uncertainty range of 10–20% in the HITRAN database. Some of the measured spectral parameters are not recorded in HITRAN. The experimental results in this work are of significant reference in supplementing and correcting the HITRAN spectral parameters of NH3 in the range of 4296–4302 cm–1.
-
Keywords:
- ammonia /
- laser absorption spectroscopy /
- TDLAS /
- line intensity /
- self-broadening coefficient
[1] Kwak D, Lei Y, Maric R 2019 Talanta 204 713Google Scholar
[2] Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar
[3] Bolshov M A, Kuritsyn Yu A, Romanovskii Yu V 2015 Spectrochim. Acta B 106 45Google Scholar
[4] Du Z, Zhang S, Li J, Gao N, Tong K 2019 Appl. Sci. 9 338Google Scholar
[5] Kireev S V, Shnyrev S L 2018 Laser Phys. Lett. 15 035705Google Scholar
[6] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Perevalov V I, Perrin A, Shine K P, Smith M A H, Tennyson J, Toon G C, Tran H, Tyuterev V G, Barbe A, Császár A G, Devi V M, Furtenbacher T, Harrison J J, Hartmann J-M, Jolly A, Johnson T J, Karman T, Kleiner I, Kyuberis A A, Loos J, Lyulin O M, Massie S T, Mikhailenko S N, Moazzen-Ahmadi N, Müller H S P, Naumenko O V, Nikitin A V, Polyansky O L, Rey M, Rotger M, Sharpe S W, Sung K, Starikova E, Tashkun S A, Auwera J V, Wagner G, Wilzewski J, Wcisło P, Yu S, Zak E J 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar
[7] Jacquinet-Husson N, Armante R, Scott N A, Chédin A, Crépeau L, Boutammine C, Bouhdaoui A, Crevoisier C, Capelle V, Boonne C, Poulet-Crovisier N, Barbe A, Chris Benner D, Boudon V, Brown L R, Buldyreva J, Campargue A, Coudert L H, Devi V M, Down M J, Drouin B J, Fayt A, Fittschen C, Flaud J-M, Gamache R R, Harrison J J, Hill C, Hodnebrog Ø, Hu S-M, Jacquemart D, Jolly A, Jiménez E, Lavrentieva N N, Liu A-W, Lodi L, Lyulin O M, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A, Nielsen C J, Orphal J, Perevalov V I, Perrin A, Polovtseva E, Predoi-Cross A, Rotger M, Ruth A A, Yu S S, Sung K, Tashkun S A, Tennyson J, Tyuterev Vl G, Vander Auwera J, Voronin B A, Makie A 2016 J. Mol. Spectrosc. 327 31Google Scholar
[8] Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Ra. 111 2139Google Scholar
[9] Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Ra. 110 347Google Scholar
[10] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar
Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao Lu, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar
[11] Pogány A, Balslev-Harder D, Braban C F, Cassidy N, Ebert V, Ferracci V, Hieta T, Leuenberger D, Martin N A, Pascale C, Peltola J, Persijn S, Tiebe C, Twigg M M, Vaittinen O, van Wijk J, Wirtz K, Niederhauser B 2016 Meas. Sci. Technol. 27 115012Google Scholar
[12] Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Ra. 175 90Google Scholar
[13] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清 2020 物理学报 69 074201Google Scholar
Li M Q, Zhang Y J, He Y, You K, Fan B Q, Yu D Q, Xie H, Lei B E, Li X Y, Liu J G, Liu W Q 2020 Acta Phys. Sin. 69 074201Google Scholar
[14] Raza M, Ma L, Yao S, Chen L, Ren W 2021 Fuel 305 121591Google Scholar
[15] Čermák P, Hovorka J, Veis P, Cacciani P, Cosléou J, El Romh J, Khelkhal M 2014 J. Quant. Spectrosc. Ra. 137 13Google Scholar
[16] Čermák P, Cacciani P, Cosléou J 2021 J. Quant. Spectrosc. Ra. 274 107861Google Scholar
[17] Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J –M., Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Yu, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar
[18] Down M J, Hill C, Yurchenko S N, Tennyson J, Brown L R, Kleiner I 2013 J. Quant. Spectrosc. Ra. 130 260Google Scholar
[19] Nemtchinov V, Sung K, Varanasi P 2004 J. Quant. Spectrosc. Ra. 83 243Google Scholar
[20] Nwaboh J A, Pratzler S, Werhahn O, Ebert V 2017 Appl. Spectrosc. 71 888Google Scholar
[21] Hanson R K, Spearrin R M, Goldenstein C S 2016 Spectroscopy and Optical Diagnostics for Gases (Cham: Springer International Publishing) p125
[22] Li J, Du Y, Peng Z, Ding Y 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar
[23] Nwaboh J A, Qu Z, Werhahn O, Ebert V 2017 Appl. Opt. 56 E84Google Scholar
[24] International Organization for Standardization 2008 https://www.iso.org/cms/render/live/en/sites/isoorg/contents/ data/standard/05/04/50461.html
[25] 龙江雄, 张玉钧, 邵立, 叶庆, 何莹, 尤坤, 孙晓泉 2022 光谱学与光谱分析 42 in press
Long J X, Zhang Y J, Shao L, Ye Q, He Y, You K, Sun X Q 2022 Spectrosc. Spect. Anal. 42 (in press) (in Chinese)
-
表 1 测量线强和自展宽系数与HITRAN2020及同行数据对比
Table 1. Comparison of measured line intensity and self-broadening coefficient with HITRAN2020 and peer data.
ν0/cm–1 S(T0)/(10–22 cm·molecule–1) γself/(cm–1·atm–1) Čermák TW HT RTW/% TW HT RTW/% 4296.6529 5.736 5.846 (37) 6.421 b 0.63 0.4402(34) 0.5 b 0.77 4297.0146 25.82 23.68(15) 29.37 b 0.63 0.588(13) 0.5 b 2.2 4297.4443 7.023 6.162(39) 7.806 b 0.63 0.2967(27) 0.299 a 0.91 4297.5699 3.541 3.137(22) 3.853 b 0.70 0.3118(59) 0.299 a 1.9 4298.0294 0.6318 0.6343(86) 0.558 b 1.3 0.4465(80) 0.486 b 1.8 4298.1663 0.6375 0.6944(97) 0.00336 b 1.4 0.2741(94) 0.5 b 3.4 4298.2543 5.41 5.486(64) 5.999 b 1.2 0.3255(67) 0.328 a 2.1 4298.8221 0.6283 0.6611(60) None 0.90 0.2634(90) None 3.4 4298.8582 0.7484 0.6855(61) 0.725 b 0.89 0.320(11) 0.327 b 3.4 4299.7252 11.14 9.751(81) 11.16 b 0.83 0.3960(82) 0.452 a 2.1 4300.1409 7.686 6.174(57) 6.921c 0.92 0.3958(80) 0.364 a 2.0 4300.2839 2.045 1.674(23) 1.803 b 1.3 0.220(12) 0.255 b 5.4 4300.654 0.5549 0.669(18) None 2.7 0.485(13) None 2.7 4300.7518 1.068 1.1089(86) 0.893 b 0.77 0.2138(85) 0.486 b 3.9 4301.131 6.906 6.415(45) 7.385 b 0.70 0.3995(54) 0.455 a 1.3 注: TW代表本文工作, RTW 代表本工作数据的相对标准不确定度, Čermák代表Čermák等[16]测量的线强数据, HT代表HITRAN2020, T0 = 296 K; a不确定度2%—5%, b不确定度10%—20%, c不确定度 > 20%; 括号中的数字表示标准不确定度(如5.846 (37)表示5.846 ± 0.037), None表示HITRAN2020没有该谱线数据. 表 2 4297.01 cm–1处不同输入参量在单次测量中的不确定度贡献
Table 2. Uncertainty contribution of different input parameters for one measurement at 4297.01 cm–1.
Quantity Value Relative uncertainty/% Index of uncertainty contribution/% S(T0) γself p 1.17 × 10–3 MPa 0.2 10.07 0.82 T 296.2 K 0.21 11.11 0.9 L 81.61 cm 0.51 65.53 5.34 A 0.055837 cm–1 0.203 Afit 0.055837 cm–1 0.037 0.34 kν 1 0.2 10.07 kLf 1 0.107 2.88 S(T0) 2.368 × 10–21 cm/molecule 0.63 $\Delta {\nu _{\text{L}}}$ 0.0142 cm–1 0.21 $\Delta {\nu _{ {\text{L,fit} } } }$ 0.0142 cm–1 0.07 0.1 kν 1 0.2 0.82 kLf 1 2.12 92.02 γself 0.588 cm–1/atm 2.21 -
[1] Kwak D, Lei Y, Maric R 2019 Talanta 204 713Google Scholar
[2] Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar
[3] Bolshov M A, Kuritsyn Yu A, Romanovskii Yu V 2015 Spectrochim. Acta B 106 45Google Scholar
[4] Du Z, Zhang S, Li J, Gao N, Tong K 2019 Appl. Sci. 9 338Google Scholar
[5] Kireev S V, Shnyrev S L 2018 Laser Phys. Lett. 15 035705Google Scholar
[6] Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Perevalov V I, Perrin A, Shine K P, Smith M A H, Tennyson J, Toon G C, Tran H, Tyuterev V G, Barbe A, Császár A G, Devi V M, Furtenbacher T, Harrison J J, Hartmann J-M, Jolly A, Johnson T J, Karman T, Kleiner I, Kyuberis A A, Loos J, Lyulin O M, Massie S T, Mikhailenko S N, Moazzen-Ahmadi N, Müller H S P, Naumenko O V, Nikitin A V, Polyansky O L, Rey M, Rotger M, Sharpe S W, Sung K, Starikova E, Tashkun S A, Auwera J V, Wagner G, Wilzewski J, Wcisło P, Yu S, Zak E J 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar
[7] Jacquinet-Husson N, Armante R, Scott N A, Chédin A, Crépeau L, Boutammine C, Bouhdaoui A, Crevoisier C, Capelle V, Boonne C, Poulet-Crovisier N, Barbe A, Chris Benner D, Boudon V, Brown L R, Buldyreva J, Campargue A, Coudert L H, Devi V M, Down M J, Drouin B J, Fayt A, Fittschen C, Flaud J-M, Gamache R R, Harrison J J, Hill C, Hodnebrog Ø, Hu S-M, Jacquemart D, Jolly A, Jiménez E, Lavrentieva N N, Liu A-W, Lodi L, Lyulin O M, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A, Nielsen C J, Orphal J, Perevalov V I, Perrin A, Polovtseva E, Predoi-Cross A, Rotger M, Ruth A A, Yu S S, Sung K, Tashkun S A, Tennyson J, Tyuterev Vl G, Vander Auwera J, Voronin B A, Makie A 2016 J. Mol. Spectrosc. 327 31Google Scholar
[8] Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Ra. 111 2139Google Scholar
[9] Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Ra. 110 347Google Scholar
[10] 聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar
Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao Lu, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar
[11] Pogány A, Balslev-Harder D, Braban C F, Cassidy N, Ebert V, Ferracci V, Hieta T, Leuenberger D, Martin N A, Pascale C, Peltola J, Persijn S, Tiebe C, Twigg M M, Vaittinen O, van Wijk J, Wirtz K, Niederhauser B 2016 Meas. Sci. Technol. 27 115012Google Scholar
[12] Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Ra. 175 90Google Scholar
[13] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清 2020 物理学报 69 074201Google Scholar
Li M Q, Zhang Y J, He Y, You K, Fan B Q, Yu D Q, Xie H, Lei B E, Li X Y, Liu J G, Liu W Q 2020 Acta Phys. Sin. 69 074201Google Scholar
[14] Raza M, Ma L, Yao S, Chen L, Ren W 2021 Fuel 305 121591Google Scholar
[15] Čermák P, Hovorka J, Veis P, Cacciani P, Cosléou J, El Romh J, Khelkhal M 2014 J. Quant. Spectrosc. Ra. 137 13Google Scholar
[16] Čermák P, Cacciani P, Cosléou J 2021 J. Quant. Spectrosc. Ra. 274 107861Google Scholar
[17] Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J –M., Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Yu, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar
[18] Down M J, Hill C, Yurchenko S N, Tennyson J, Brown L R, Kleiner I 2013 J. Quant. Spectrosc. Ra. 130 260Google Scholar
[19] Nemtchinov V, Sung K, Varanasi P 2004 J. Quant. Spectrosc. Ra. 83 243Google Scholar
[20] Nwaboh J A, Pratzler S, Werhahn O, Ebert V 2017 Appl. Spectrosc. 71 888Google Scholar
[21] Hanson R K, Spearrin R M, Goldenstein C S 2016 Spectroscopy and Optical Diagnostics for Gases (Cham: Springer International Publishing) p125
[22] Li J, Du Y, Peng Z, Ding Y 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar
[23] Nwaboh J A, Qu Z, Werhahn O, Ebert V 2017 Appl. Opt. 56 E84Google Scholar
[24] International Organization for Standardization 2008 https://www.iso.org/cms/render/live/en/sites/isoorg/contents/ data/standard/05/04/50461.html
[25] 龙江雄, 张玉钧, 邵立, 叶庆, 何莹, 尤坤, 孙晓泉 2022 光谱学与光谱分析 42 in press
Long J X, Zhang Y J, Shao L, Ye Q, He Y, You K, Sun X Q 2022 Spectrosc. Spect. Anal. 42 (in press) (in Chinese)
Catalog
Metrics
- Abstract views: 5256
- PDF Downloads: 77
- Cited By: 0