Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Measurement research of line intensity and self-broadening coefficient for NH3 spectra in 4296–4302 cm–1

Long Jiang-Xiong Shao Li Zhang Yu-Jun You Kun He Ying Ye Qing Sun Xiao-Quan

Citation:

Measurement research of line intensity and self-broadening coefficient for NH3 spectra in 4296–4302 cm–1

Long Jiang-Xiong, Shao Li, Zhang Yu-Jun, You Kun, He Ying, Ye Qing, Sun Xiao-Quan
PDF
HTML
Get Citation
  • Spectral parameters of NH3 in a range of 4296–4302 cm–1 in the HITRAN database are different from the actual situation as they are derived from theoretical calculations. In order to correct the spectral parameters of NH3 in this range in HITRAN, tunable diode laser absorption spectroscopy (TDLAS) technology and metrological theory are used to measure the absorption spectrum high-purity NH3 in the range of 4296–4302 cm–1 at 2–10 Torr. The line intensity and self-broadening coefficient of the main absorption line of NH3 in this band are retrieved and their uncertainty are calculated by comprehensively considering main factors including pressure, temperature, optical path of gas cell, wavenumber and line shape fitting. The discrepancies between our measured line intensities and latest peer-measured results are within 20%. The biases between our self-broadening coefficients and the ones in HITRAN2020 are within 14%. Their uncertainties are in a range of the 0.63–2.7% and 0.77–5.4%, respectively, which are smaller than the uncertainty range of 10–20% in the HITRAN database. Some of the measured spectral parameters are not recorded in HITRAN. The experimental results in this work are of significant reference in supplementing and correcting the HITRAN spectral parameters of NH3 in the range of 4296–4302 cm–1.
      Corresponding author: Shao Li, shaoli-eei@163.com ; Zhang Yu-Jun, yjzhang@aiofm.ac.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 62033012) and the Key Research and Development Program of Anhui Province, China (Grant No. 201904a07020093)
    [1]

    Kwak D, Lei Y, Maric R 2019 Talanta 204 713Google Scholar

    [2]

    Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar

    [3]

    Bolshov M A, Kuritsyn Yu A, Romanovskii Yu V 2015 Spectrochim. Acta B 106 45Google Scholar

    [4]

    Du Z, Zhang S, Li J, Gao N, Tong K 2019 Appl. Sci. 9 338Google Scholar

    [5]

    Kireev S V, Shnyrev S L 2018 Laser Phys. Lett. 15 035705Google Scholar

    [6]

    Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Perevalov V I, Perrin A, Shine K P, Smith M A H, Tennyson J, Toon G C, Tran H, Tyuterev V G, Barbe A, Császár A G, Devi V M, Furtenbacher T, Harrison J J, Hartmann J-M, Jolly A, Johnson T J, Karman T, Kleiner I, Kyuberis A A, Loos J, Lyulin O M, Massie S T, Mikhailenko S N, Moazzen-Ahmadi N, Müller H S P, Naumenko O V, Nikitin A V, Polyansky O L, Rey M, Rotger M, Sharpe S W, Sung K, Starikova E, Tashkun S A, Auwera J V, Wagner G, Wilzewski J, Wcisło P, Yu S, Zak E J 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar

    [7]

    Jacquinet-Husson N, Armante R, Scott N A, Chédin A, Crépeau L, Boutammine C, Bouhdaoui A, Crevoisier C, Capelle V, Boonne C, Poulet-Crovisier N, Barbe A, Chris Benner D, Boudon V, Brown L R, Buldyreva J, Campargue A, Coudert L H, Devi V M, Down M J, Drouin B J, Fayt A, Fittschen C, Flaud J-M, Gamache R R, Harrison J J, Hill C, Hodnebrog Ø, Hu S-M, Jacquemart D, Jolly A, Jiménez E, Lavrentieva N N, Liu A-W, Lodi L, Lyulin O M, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A, Nielsen C J, Orphal J, Perevalov V I, Perrin A, Polovtseva E, Predoi-Cross A, Rotger M, Ruth A A, Yu S S, Sung K, Tashkun S A, Tennyson J, Tyuterev Vl G, Vander Auwera J, Voronin B A, Makie A 2016 J. Mol. Spectrosc. 327 31Google Scholar

    [8]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Ra. 111 2139Google Scholar

    [9]

    Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Ra. 110 347Google Scholar

    [10]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao Lu, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

    [11]

    Pogány A, Balslev-Harder D, Braban C F, Cassidy N, Ebert V, Ferracci V, Hieta T, Leuenberger D, Martin N A, Pascale C, Peltola J, Persijn S, Tiebe C, Twigg M M, Vaittinen O, van Wijk J, Wirtz K, Niederhauser B 2016 Meas. Sci. Technol. 27 115012Google Scholar

    [12]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Ra. 175 90Google Scholar

    [13]

    李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清 2020 物理学报 69 074201Google Scholar

    Li M Q, Zhang Y J, He Y, You K, Fan B Q, Yu D Q, Xie H, Lei B E, Li X Y, Liu J G, Liu W Q 2020 Acta Phys. Sin. 69 074201Google Scholar

    [14]

    Raza M, Ma L, Yao S, Chen L, Ren W 2021 Fuel 305 121591Google Scholar

    [15]

    Čermák P, Hovorka J, Veis P, Cacciani P, Cosléou J, El Romh J, Khelkhal M 2014 J. Quant. Spectrosc. Ra. 137 13Google Scholar

    [16]

    Čermák P, Cacciani P, Cosléou J 2021 J. Quant. Spectrosc. Ra. 274 107861Google Scholar

    [17]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J –M., Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Yu, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar

    [18]

    Down M J, Hill C, Yurchenko S N, Tennyson J, Brown L R, Kleiner I 2013 J. Quant. Spectrosc. Ra. 130 260Google Scholar

    [19]

    Nemtchinov V, Sung K, Varanasi P 2004 J. Quant. Spectrosc. Ra. 83 243Google Scholar

    [20]

    Nwaboh J A, Pratzler S, Werhahn O, Ebert V 2017 Appl. Spectrosc. 71 888Google Scholar

    [21]

    Hanson R K, Spearrin R M, Goldenstein C S 2016 Spectroscopy and Optical Diagnostics for Gases (Cham: Springer International Publishing) p125

    [22]

    Li J, Du Y, Peng Z, Ding Y 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar

    [23]

    Nwaboh J A, Qu Z, Werhahn O, Ebert V 2017 Appl. Opt. 56 E84Google Scholar

    [24]

    International Organization for Standardization 2008 https://www.iso.org/cms/render/live/en/sites/isoorg/contents/ data/standard/05/04/50461.html

    [25]

    龙江雄, 张玉钧, 邵立, 叶庆, 何莹, 尤坤, 孙晓泉 2022 光谱学与光谱分析 42 in press

    Long J X, Zhang Y J, Shao L, Ye Q, He Y, You K, Sun X Q 2022 Spectrosc. Spect. Anal. 42 (in press) (in Chinese)

  • 图 1  TDLAS实验装置示意图(DFB: 分布式反馈激光器; D: InGaAs探测器; VG: 真空计; BV: 球阀; NV: 针阀)

    Figure 1.  Schematic of TDLAS setup (DFB: distributed feedback; D: detector (InGaAs); VG: Vacuum gauge; BV: Ball valve; NV: Needle valve).

    图 2  不同气压下NH3在4296.4—4297.7 cm–1的探测器信号和扫描的相对波数

    Figure 2.  Detector signal and scanned relative wavenumber for NH3 in 4296.4–4297.7 cm–1 at different pressure.

    图 3  不同气压下4296.4—4297.7 cm–1范围内4条谱线的光谱吸光度与Voigt线型拟合

    Figure 3.  Spectral absorbance and Voigt fitting for 4 spectral lines in 4296.4–4297.7 cm–1 at different pressure.

    图 4  不同气压下(a)积分吸光度, (b)洛伦兹半高全宽的线性回归分析

    Figure 4.  Linear regression analysis for (a) integral absorbance and (b) Lorentzian FWHM at different pressure.

    表 1  测量线强和自展宽系数与HITRAN2020及同行数据对比

    Table 1.  Comparison of measured line intensity and self-broadening coefficient with HITRAN2020 and peer data.

    ν0/cm–1S(T0)/(10–22 cm·molecule–1)γself/(cm–1·atm–1)
    ČermákTWHTRTW/%TWHTRTW/%
    4296.65295.7365.846 (37)6.421 b0.630.4402(34)0.5 b0.77
    4297.014625.8223.68(15)29.37 b0.630.588(13)0.5 b2.2
    4297.44437.0236.162(39)7.806 b0.630.2967(27)0.299 a0.91
    4297.56993.5413.137(22)3.853 b0.700.3118(59)0.299 a1.9
    4298.02940.63180.6343(86)0.558 b1.30.4465(80)0.486 b1.8
    4298.16630.63750.6944(97)0.00336 b1.40.2741(94)0.5 b3.4
    4298.25435.415.486(64)5.999 b1.20.3255(67)0.328 a2.1
    4298.82210.62830.6611(60)None0.900.2634(90)None3.4
    4298.85820.74840.6855(61)0.725 b0.890.320(11)0.327 b3.4
    4299.725211.149.751(81)11.16 b0.830.3960(82)0.452 a2.1
    4300.14097.6866.174(57)6.921c0.920.3958(80)0.364 a2.0
    4300.28392.0451.674(23)1.803 b1.30.220(12)0.255 b5.4
    4300.6540.55490.669(18)None2.70.485(13)None2.7
    4300.75181.0681.1089(86)0.893 b0.770.2138(85)0.486 b3.9
    4301.1316.9066.415(45)7.385 b0.700.3995(54)0.455 a1.3
    注: TW代表本文工作, RTW 代表本工作数据的相对标准不确定度, Čermák代表Čermák等[16]测量的线强数据, HT代表HITRAN2020, T0 = 296 K; a不确定度2%—5%, b不确定度10%—20%, c不确定度 > 20%; 括号中的数字表示标准不确定度(如5.846 (37)表示5.846 ± 0.037), None表示HITRAN2020没有该谱线数据.
    DownLoad: CSV

    表 2  4297.01 cm–1处不同输入参量在单次测量中的不确定度贡献

    Table 2.  Uncertainty contribution of different input parameters for one measurement at 4297.01 cm–1.

    QuantityValueRelative uncertainty/%Index of uncertainty contribution/%
    S(T0)γself
    p1.17 × 10–3 MPa0.210.070.82
    T296.2 K0.2111.110.9
    L81.61 cm0.5165.535.34
    A0.055837 cm–10.203
    Afit0.055837 cm–10.0370.34
    kν10.210.07
    kLf10.1072.88
    S(T0)2.368 × 10–21 cm/molecule0.63
    $\Delta {\nu _{\text{L}}}$0.0142 cm–10.21
    $\Delta {\nu _{ {\text{L,fit} } } }$0.0142 cm–10.070.1
    kν10.20.82
    kLf12.12 92.02
    γself0.588 cm–1/atm2.21
    DownLoad: CSV
  • [1]

    Kwak D, Lei Y, Maric R 2019 Talanta 204 713Google Scholar

    [2]

    Guo X, Zheng F, Li C, Yang X, Li N, Liu S, Wei J, Qiu X, He Q 2019 Opt. Lasers Eng. 115 243Google Scholar

    [3]

    Bolshov M A, Kuritsyn Yu A, Romanovskii Yu V 2015 Spectrochim. Acta B 106 45Google Scholar

    [4]

    Du Z, Zhang S, Li J, Gao N, Tong K 2019 Appl. Sci. 9 338Google Scholar

    [5]

    Kireev S V, Shnyrev S L 2018 Laser Phys. Lett. 15 035705Google Scholar

    [6]

    Gordon I E, Rothman L S, Hill C, Kochanov R V, Tan Y, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Drouin B J, Flaud J M, Gamache R R, Hodges J T, Jacquemart D, Perevalov V I, Perrin A, Shine K P, Smith M A H, Tennyson J, Toon G C, Tran H, Tyuterev V G, Barbe A, Császár A G, Devi V M, Furtenbacher T, Harrison J J, Hartmann J-M, Jolly A, Johnson T J, Karman T, Kleiner I, Kyuberis A A, Loos J, Lyulin O M, Massie S T, Mikhailenko S N, Moazzen-Ahmadi N, Müller H S P, Naumenko O V, Nikitin A V, Polyansky O L, Rey M, Rotger M, Sharpe S W, Sung K, Starikova E, Tashkun S A, Auwera J V, Wagner G, Wilzewski J, Wcisło P, Yu S, Zak E J 2017 J. Quant. Spectrosc. Ra. 203 3Google Scholar

    [7]

    Jacquinet-Husson N, Armante R, Scott N A, Chédin A, Crépeau L, Boutammine C, Bouhdaoui A, Crevoisier C, Capelle V, Boonne C, Poulet-Crovisier N, Barbe A, Chris Benner D, Boudon V, Brown L R, Buldyreva J, Campargue A, Coudert L H, Devi V M, Down M J, Drouin B J, Fayt A, Fittschen C, Flaud J-M, Gamache R R, Harrison J J, Hill C, Hodnebrog Ø, Hu S-M, Jacquemart D, Jolly A, Jiménez E, Lavrentieva N N, Liu A-W, Lodi L, Lyulin O M, Massie S T, Mikhailenko S, Müller H S P, Naumenko O V, Nikitin A, Nielsen C J, Orphal J, Perevalov V I, Perrin A, Polovtseva E, Predoi-Cross A, Rotger M, Ruth A A, Yu S S, Sung K, Tashkun S A, Tennyson J, Tyuterev Vl G, Vander Auwera J, Voronin B A, Makie A 2016 J. Mol. Spectrosc. 327 31Google Scholar

    [8]

    Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Ra. 111 2139Google Scholar

    [9]

    Jia H, Zhao W, Cai T, Chen W, Zhang W, Gao X 2009 J. Quant. Spectrosc. Ra. 110 347Google Scholar

    [10]

    聂伟, 阚瑞峰, 许振宇, 杨晨光, 陈兵, 夏晖晖, 魏敏, 陈祥, 姚路, 李杭, 范雪丽, 胡佳屹 2017 物理学报 66 054207Google Scholar

    Nie W, Kan R F, Xu Z Y, Yang C G, Chen B, Xia H H, Wei M, Chen X, Yao Lu, Li H, Fan X L, Hu J Y 2017 Acta Phys. Sin. 66 054207Google Scholar

    [11]

    Pogány A, Balslev-Harder D, Braban C F, Cassidy N, Ebert V, Ferracci V, Hieta T, Leuenberger D, Martin N A, Pascale C, Peltola J, Persijn S, Tiebe C, Twigg M M, Vaittinen O, van Wijk J, Wirtz K, Niederhauser B 2016 Meas. Sci. Technol. 27 115012Google Scholar

    [12]

    Sur R, Spearrin R M, Peng W Y, Strand C L, Jeffries J B, Enns G M, Hanson R K 2016 J. Quant. Spectrosc. Ra. 175 90Google Scholar

    [13]

    李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清 2020 物理学报 69 074201Google Scholar

    Li M Q, Zhang Y J, He Y, You K, Fan B Q, Yu D Q, Xie H, Lei B E, Li X Y, Liu J G, Liu W Q 2020 Acta Phys. Sin. 69 074201Google Scholar

    [14]

    Raza M, Ma L, Yao S, Chen L, Ren W 2021 Fuel 305 121591Google Scholar

    [15]

    Čermák P, Hovorka J, Veis P, Cacciani P, Cosléou J, El Romh J, Khelkhal M 2014 J. Quant. Spectrosc. Ra. 137 13Google Scholar

    [16]

    Čermák P, Cacciani P, Cosléou J 2021 J. Quant. Spectrosc. Ra. 274 107861Google Scholar

    [17]

    Gordon I E, Rothman L S, Hargreaves R J, Hashemi R, Karlovets E V, Skinner F M, Conway E K, Hill C, Kochanov R V, Tan Y, Wcisło P, Finenko A A, Nelson K, Bernath P F, Birk M, Boudon V, Campargue A, Chance K V, Coustenis A, Drouin B J, Flaud J –M., Gamache R R, Hodges J T, Jacquemart D, Mlawer E J, Nikitin A V, Perevalov V I, Rotger M, Tennyson J, Toon G C, Tran H, Tyuterev V G, Adkins E M, Baker A, Barbe A, Canè E, Császár A G, Dudaryonok A, Egorov O, Fleisher A J, Fleurbaey H, Foltynowicz A, Furtenbacher T, Harrison J J, Hartmann J M, Horneman V M, Huang X, Karman T, Karns J, Kassi S, Kleiner I, Kofman V, Kwabia–Tchana F, Lavrentieva N N, Lee T J, Long D A, Lukashevskaya A A, Lyulin O M, Makhnev V Yu, Matt W, Massie S T, Melosso M, Mikhailenko S N, Mondelain D, Müller H S P, Naumenko O V, Perrin A, Polyansky O L, Raddaoui E, Raston P L, Reed Z D, Rey M, Richard C, Tóbiás R, Sadiek I, Schwenke D W, Starikova E, Sung K, Tamassia F, Tashkun S A, Vander Auwera J, Vasilenko I A, Vigasin A A, Villanueva G L, Vispoel B, Wagner G, Yachmenev A, Yurchenko S N 2022 J. Quant. Spectrosc. Ra. 277 107949Google Scholar

    [18]

    Down M J, Hill C, Yurchenko S N, Tennyson J, Brown L R, Kleiner I 2013 J. Quant. Spectrosc. Ra. 130 260Google Scholar

    [19]

    Nemtchinov V, Sung K, Varanasi P 2004 J. Quant. Spectrosc. Ra. 83 243Google Scholar

    [20]

    Nwaboh J A, Pratzler S, Werhahn O, Ebert V 2017 Appl. Spectrosc. 71 888Google Scholar

    [21]

    Hanson R K, Spearrin R M, Goldenstein C S 2016 Spectroscopy and Optical Diagnostics for Gases (Cham: Springer International Publishing) p125

    [22]

    Li J, Du Y, Peng Z, Ding Y 2019 J. Quant. Spectrosc. Ra. 224 197Google Scholar

    [23]

    Nwaboh J A, Qu Z, Werhahn O, Ebert V 2017 Appl. Opt. 56 E84Google Scholar

    [24]

    International Organization for Standardization 2008 https://www.iso.org/cms/render/live/en/sites/isoorg/contents/ data/standard/05/04/50461.html

    [25]

    龙江雄, 张玉钧, 邵立, 叶庆, 何莹, 尤坤, 孙晓泉 2022 光谱学与光谱分析 42 in press

    Long J X, Zhang Y J, Shao L, Ye Q, He Y, You K, Sun X Q 2022 Spectrosc. Spect. Anal. 42 (in press) (in Chinese)

  • [1] Wang Xia-Chun, Zhang Zhi-Rong, Cai Yong-Jun, Sun Peng-Shuai, Pang Tao, Xia Hua, Wu Bian, Guo Qiang. Methane gas spectral imaging method based on dual wedge scanning mirrors. Acta Physica Sinica, 2024, 73(11): 114202. doi: 10.7498/aps.73.20231906
    [2] Pang Wei-Xu, Li Ning, Huang Xiao-Long, Kang Yang, Li Can, Fan Xu-Dong, Weng Chun-Sheng. Optimization of beam arrangement for tunable diode laser absorption tomography reconstruction based on fractional Tikhonov regularization. Acta Physica Sinica, 2023, 72(3): 037801. doi: 10.7498/aps.72.20221731
    [3] Zhao Rong, Zhou Bin, Liu Qi, Dai Ming-Lu, Wang Bu-Bin, Wang Yi-Hong. Online tomography algorithm based on laser absorption spectroscopy. Acta Physica Sinica, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [4] Xue Zheng-Yue, Li Jun, Liu Xiao-Hai, Wang Jing-Jing, Gao Xiao-Ming, Tan Tu. Measurement and profile inversion of atmospheric N2O absorption spectrum based on laser heterodyne detection. Acta Physica Sinica, 2021, 70(21): 217801. doi: 10.7498/aps.70.20210710
    [5] Adsorption and Desorption Behaviors of the NH3 Molecule on the TaC (0001) surface: A First-Principles Study. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210400
    [6] Li Ning, Tu Xin, Huang Xiao-Long, Weng Chun-Sheng. Development of beam arrangement design for tunable diode laser absorption tomography reconstruction based on Tikhonov regularization parameter matrix. Acta Physica Sinica, 2020, 69(22): 227801. doi: 10.7498/aps.69.20201144
    [7] Li Meng-Qi, Zhang Yu-Jun, He Ying, You Kun, Fan Bo-Qiang, Yu Dong-Qi, Xie Hao, Lei Bo-En, Li Xiao-Yi, Liu Jian-Guo, Liu Wen-Qing. NH3 aliasing absorption spectra at 1103.4 cm–1 based on continuous quantum cascade laser. Acta Physica Sinica, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [8] Guan Lin-Qiang, Deng Hao, Yao Lu, Nie Wei, Xu Zhen-Yu, Li Xiang, Zang Yi-Peng, Hu Mai, Fan Xue-Li, Yang Chen-Guang, Kan Rui-Feng. Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [9] Wang Chuan-Wei, Li Ning, Huang Xiao-Long, Weng Chun-Sheng. Two-stage velocity distribution measurement from multiple projections by tunable diode laser absorption spectrum. Acta Physica Sinica, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [10] Sun Ming-Guo, Ma Hong-Liang, Liu Qiang, Cao Zhen-Song, Wang Gui-Shi, Liu Kun, Huang Yin-Bo, Gao Xiao-Ming, Rao Rui-Zhong. Highly precise and real-time measurements of 13CO2/12CO2 isotopic ratio in breath using a 2 μm diode laser. Acta Physica Sinica, 2018, 67(6): 064206. doi: 10.7498/aps.67.20171861
    [11] Li Ning, Lü Xiao-Jing, Jing Weng. Laser intensity and absorbance measurements by tunable diode laser absorption spectroscopy based on non-line fitting algorithm. Acta Physica Sinica, 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [12] Nie Wei, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Xia Hui-Hui, Peng Yu-Quan, Zhang Bu-Qiang, He Ya-Bai. Measuring spectral parameters of water vapor at low temperature based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204
    [13] Nie Wei, Kan Rui-Feng, Xu Zhen-Yu, Yang Chen-Guang, Chen Bing, Xia Hui-Hui, Wei Min, Chen Xiang, Yao Lu, Li Hang, Fan Xue-Li, Hu Jia-Yi. Measurements of line strengths for some lines of ammonia in 6611-6618 cm-1. Acta Physica Sinica, 2017, 66(5): 054207. doi: 10.7498/aps.66.054207
    [14] Geng Hui, Liu Jian-Guo, Zhang Yu-Jun, Kan Rui-Feng, Xu Zhen-Yu, Yao Lu, Ruan Jun. Ethanol vapor measurement based on tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [15] Wang Yang, Li Ang, Xie Pin-Hua, Chen Hao, Xu Jin, Wu Feng-Cheng, Liu Jian-Guo, Liu Wen-Qing. Retrieving vertical profile of aerosol extinction by multi-axis differential optical absorption spectroscopy. Acta Physica Sinica, 2013, 62(18): 180705. doi: 10.7498/aps.62.180705
    [16] Chen Jiu-Ying, Liu Jian-Guo, He Ya-Bai, Wang Liao, Gang Qiang, Xu Zhen-Yu, Yao Lu, Yuan Song, Ruan Jun, He Jun-Feng, Dai Yun-Hai, Kan Rui-Feng. Study of CO2 spectroscopic parameters at high temperature near 2.0 μm. Acta Physica Sinica, 2013, 62(22): 224206. doi: 10.7498/aps.62.224206
    [17] Zhang Shuai, Liu Wen-Qing, Zhang Yu-Jun, Ruan Jun, Kan Rui-Feng, You Kun, Yu Dian-Qiang, Dong Jin-Ting, Han Xiao-Lei. Research of quantitative remote sensing of natural gas pipeline leakage based on laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [18] Zhang Liang, Liu Jian-Guo, Kan Rui-Feng, Liu Wen-Qing, Zhang Yu-Jun, Xu Zhen-Yu, Chen Jun. On the methodology of measuring high-speed flows using tunable diode laser absorption spectroscopy. Acta Physica Sinica, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [19] Li Ning, Weng Chun-Sheng. Gas concentration and temperature reconstruction by genetic simulated annealing algorithm based on multi-wavelengths diode laser absorption spectroscopy. Acta Physica Sinica, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [20] Wang Fei, Huang Qun-Xing, Li Ning, Yan Jian-Hua, Chi Yong, Cen Ke-Fa. The tunable diode laser absorption spectroscoty for measurement of NH3 with particles. Acta Physica Sinica, 2007, 56(7): 3867-3872. doi: 10.7498/aps.56.3867
Metrics
  • Abstract views:  5256
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  21 March 2022
  • Accepted Date:  18 April 2022
  • Available Online:  06 August 2022
  • Published Online:  20 August 2022

/

返回文章
返回