Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of annealing atmosphere on the structure and spectral properties of GdScO3 and Yb:GdScO3 crystals

Li Jia-Hong Sun Gui-Hua Zhang Qing-Li Wang Xiao-Fei Zhang De-Ming Liu Wen-Peng Gao Jin-Yun Zheng Li-Li Han Song Chen Zhao Yin Shao-Tang

Citation:

Effect of annealing atmosphere on the structure and spectral properties of GdScO3 and Yb:GdScO3 crystals

Li Jia-Hong, Sun Gui-Hua, Zhang Qing-Li, Wang Xiao-Fei, Zhang De-Ming, Liu Wen-Peng, Gao Jin-Yun, Zheng Li-Li, Han Song, Chen Zhao, Yin Shao-Tang
PDF
HTML
Get Citation
  • GdScO3 and Yb:GdScO3 single crystals are grown by the chzochralski method in nitrogen atmosphere, and they are characterized by X-ray diffraction(XRD), Raman spectra and transmission spectra . Their lattice parameters, atomic coordinates and temperature factors are determined by Rietveld refinement. It is found that the cell volume of GdScO3 and Yb:GdScO3 annealed in air atmosphere increase, but after these sample are annealed in H2 atmosphere their cell volumes decrease. Based on these results, we demonstrate that the crystal grown in nitrogen atmosphere has interstitial oxygen atoms, and the number of interstitial oxygen atoms in the sample annealed in air atmosphere increases, but that annealed in H2 atmosphere decreases. The Raman peaks of 155 cm–1, 298 cm–1, 351 cm–1 of GdScO3 are weakened or even disappear when Yb3+ ions are doped into it. The Raman spectra of the Yb:GdScO3 unannealed and annealed in H2 and air atmosphere are nearly consistent with each other, which indicates that Raman spectrum is insensitive to the defects such as oxygen interstitial caused by annealing. It is suggested that the optical loss of GdScO3 in the visible wavelength originates mainly from the defect energy level absorption of oxygen interstitial, and transmissivity of Yb:GdScO3 increases when it is annealed in hydrogen atmosphere, which results from the fact that ytterbium ion can reduce some interstitial oxygen atoms. When GdScO3 and Yb:GdScO3 are annealed in air or hydrogen atmosphere, the optical absorption loss of GdScO3 and Yb:GdScO3 in a wavelength range of 1000–3000 nm increase due to the trap level produced near the conduction or valence band. The effect on structure and spectral properties of Yb:GdScO3 and GdScO3 are explored preliminarily, which is useful for further studying and optimizing laser performance of rare earth doped GdScO3 crystal.
      Corresponding author: Sun Gui-Hua, ghsun@aiofm.ac.cn ; Zhang Qing-Li, zql@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51502292, 51802307) and the Open Project of Advanced Laser Technology Laboratory of Anhui Province, China (Grant No. NO.AHL 20220 ZR04).
    [1]

    Chaix-Pluchery O, Kreisel J 2011 Phase Transitions 84 542Google Scholar

    [2]

    Sheng J M, Kan X C, Ge H, Yuan P Q, Zhang L, Zhao N, Song Z M, Yao Y Y, Tang J N, Wang S M, Tian M L, Tong X, Wu L S 2020 Chin. Phys. B 29 66Google Scholar

    [3]

    Jia J H, Ke Y J, Zhang X X, Wang J F, Su L, Wu Y D, Xia Z C 2019 J. Alloys Compd. 803 992Google Scholar

    [4]

    Rong S S, Faheem M B, Li Y B 2021 J. Electron. Sci. Technol. 19 119Google Scholar

    [5]

    Aamir M, Bibi I, Ata S, Jilani K, Majid F, Kamal S, Alwadai N, Raza M A S, Bashir M, Iqbal S, Aadil M, Iqbal M 2021 Ceram. Int. 47 16696Google Scholar

    [6]

    Lin S H, Lin Z Q, Chen C W 2021 Ceram. Int 47 16828Google Scholar

    [7]

    Rumyantsev S, Stillman W, Shur M, Heeg T, Schlom D G, Koveshnikov S, Kambhampati R, Tokranov V, Oktyabrsky S 2012 Int. J. High Speed Electron. Syst. 20 105Google Scholar

    [8]

    Mizzi C A, Koirala P, Marks L D 2018 Phys. Rev. Mater. 2 025001Google Scholar

    [9]

    Schäfer A, Besmehn A, Luysberg M, Winden A, Stoica T, Schnee M, Zander W, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M, Schubert J 2014 Semicond. Sci. Technol. 29 075005Google Scholar

    [10]

    Schäfer A, Rahmanizadeh K, Bihlmayer G, Luysberg M, Wendt F, Besmehn A, Fox A, Schnee M, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M, Schubert J 2015 J. Alloys Compd. 651 514Google Scholar

    [11]

    Uecker R, Velickov B, Klimm D, Bertram R, Bernhagen M, Rabe M, Albrecht M, Fornari R, Schlom D G 2008 J. Cryst. Growth 310 2649Google Scholar

    [12]

    Mansley Z R, Mizzi C A, Koirala P, Wen J, Marks L D 2020 Phys. Rev. Mater. 4 045003Google Scholar

    [13]

    Paull R J, Mansley Z R, Ly T, Marks L D, Poeppelmeier K R 2018 Inorg. Chem. 57 4104Google Scholar

    [14]

    Seidel S, Schmid A, Miersch C, Schubert J, Heitmann J 2021 Appl. Phys. Lett. 118 052902Google Scholar

    [15]

    Briones J, Guinto M C, Pelicano C M 2021 Mater. Lett. 298 130040Google Scholar

    [16]

    Liu Y 2021 IOP Conference Series:Earth and Environmental Science 781 022069Google Scholar

    [17]

    Hidde J, Guguschev C, Ganschow S, Klimm D 2018 J. Alloys Compd. 738 415Google Scholar

    [18]

    Wu Y D, Chen H, Hua J Y, Qin Y L, Ma X H, Wei Y Y, Zi Z F 2019 Ceram. Int. 45 13094Google Scholar

    [19]

    Peng F, Liu W, Zhang Q, Luo J, Sun D, Sun G, Zhang D, Wang X 2018 J. Lumin. 201 176Google Scholar

    [20]

    Li Q, Dong J, Wang Q, Xue Y, Tang H, Xu X, Xu J 2020 Opt. Mater. 109 110298Google Scholar

    [21]

    Li Q, Dong J, Wang Q, Zhao H, Xue Y, Tang H, Xu X, Xu J 2021 J. Lumin. 230 117681Google Scholar

    [22]

    Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y, Wang Q, Xie G, Xu X, Xu J 2020 Opt. Mater. Express 10 2730Google Scholar

    [23]

    Wang D, Hou W, Li N, Xue Y, Wang Q, Xu X, Li D, Zhao H, Xu J 2019 Opt. Mater. Express 9 4218Google Scholar

    [24]

    Peng F, Liu W, Luo J, Sun D, Chen Y, Zhang H, Ding S, Zhang Q 2018 Crystengcomm 20 6291Google Scholar

    [25]

    Yamaji A, Kochurikhin V, Fujimoto Y, Futami Y, Yanagida T, Yokota Y, Kurosawa S, Yoshikawa A 2012 Phys. Status SolidiC 9 2267Google Scholar

    [26]

    Gupta S K, Grover V, Shukla R, Srinivasu K, Natarajan V, Tyagi A K 2016 Chem. Eng. J. 283 114Google Scholar

    [27]

    Arsenev P A, Bienert K E, Sviridova R K 1972 Phys. Status Solidi A 9 K103Google Scholar

    [28]

    Rietveld H 1967 Acta Crystallogr. 22 151Google Scholar

    [29]

    Rietveld H 1969 J. Appl. Crystallogr 2 65Google Scholar

    [30]

    张克从, 张乐潓 1997 晶体生长科学与技术(上) (北京: 科学出版社) 第472页

    Zhang K C, Zhang L H 1997 Crystal Growth Science and Technology (Vol. 1) (Beijing: Science Press) p472 (in Chinese)

    [31]

    Chopelas A 2011 Phys. Chem. Miner. 38 709Google Scholar

    [32]

    Grover V, Shukla R, Jain D, Deshpande S K, Arya A, Pillai C G S, Tyagi A K 2012 Chem. Mater. 24 2186Google Scholar

    [33]

    Chaix-Pluchery O, Kreisel J 2009 J. Phys. Condens. Matter 21 175901Google Scholar

    [34]

    Weber M C, Guennou M, Zhao H J, Íñiguez J, Vilarinho R, Almeida A, Moreira J A, Kreisel J 2016 Phys. Rev. B 94 214103Google Scholar

    [35]

    Iliev M N, Abrashev M V, Laverdière J, Jandl S, Gospodinov M M, Wang Y Q, Sun Y Y 2006 Phys. Rev. B 73 064302Google Scholar

    [36]

    Alsowayigh M M, Timco G A, Borilovic I, Alanazi A, Vitorica-Yrezabal I J, Whitehead G F S, McNaughter P D, Tuna F, O'Brien P, Winpenny R E P, Lewis D J, Collison D 2020 Inorg. Chem. 59 15796Google Scholar

    [37]

    Singh M K, Jang H M, Gupta H C, Katiyar R S 2008 J. Raman Spectrosc. 39 842Google Scholar

    [38]

    Ruffo A, Mozzati M C, Albini B, Galinetto P, Bini M 2020 J. Mater. Sci.: Mater. Electron. 31 18263Google Scholar

    [39]

    Nikl M, Nitsch K, Hybler J, Chval J, Reiche P 1996 Phys. Status Solidi B 196 7Google Scholar

    [40]

    李涛, 赵广军, 何晓明, 徐 军, 潘守夔 2002 人工晶体学报 31 456

    Li T, Zhao G J, He X M, Xu J, Pan S K 2002 J. Artif. Cryst. 31 456

  • 图 1  GdScO3晶体XRD数据Rietveld精修结果(cal, obs, bckgr和diff表示计算值、实验值、背底以及实验值和计算值之间的误差)

    Figure 1.  Rietveld refinement results of the GdScO3 crystal obtained from the XRD data. (cal, obs, bckgr, and diff mean calculated data, observed data, background, and the difference between observed data and calculated data).

    图 2  不同气氛退火GdScO3晶体XRD精修结果与GdScO3标准卡片(ICSD#65513) (a) Yb:GdScO3未退火; (b) Yb:GdScO3空气气氛退火; (c) Yb:GdScO3 H2气氛退火; (d) GdScO3空气气氛退火; (e) GdScO3 H2气氛退火; (f) GdScO3(ICSD#65513)

    Figure 2.  Rietveld refinement results of the GdScO3 crystal obtained from the XRD data annealed in different atmospheres and (ICSD#65513): (a) Yb:GdScO3 unannealed; (b) Yb:GdScO3 annealed in air atmosphere; (c) Yb:GdScO3 annealed in H2; (d) GdScO3 annealed in air atmosphere; (e) GdScO3 annealed in H2; (f) GdScO3(ICSD#65513).

    图 3  不同退火气氛下Yb:GdScO3和GdScO3晶体的拉曼光谱 (a) Yb:GdScO3 未退火; (b) Yb:GdScO3 空气气氛退火; (c) Yb:GdScO3 H2气氛退火; (d) GdScO3 空气气氛退火; (e) GdScO3 H2气氛退火

    Figure 3.  Raman spectra of Yb:GdScO3 and GdScO3 crystals annealed in different atmospheres: (a) Yb:GdScO3 unannealed; ( b) Yb:GdScO3 annealed in air atmosphere; (c) Yb:GdScO3 annealed in H2; (d) GdScO3 annealed in air atmosphere; (e) GdScO3 annealed in H2.

    图 4  不同退火气氛条件下GdScO3晶体在250—3000 nm范围内的透射光谱 (a) GdScO3 H2气氛退火(样品厚度d = 1.60 mm); (b) GdScO3 未退火(样品厚度d = 1.63 mm); (c) GdScO3 空气气氛退火(样品厚度d=1.62 mm)

    Figure 4.  Transmittance spectra of the GdScO3 crystal before and after annealed in the range of 250–3000 nm: (a) GdScO3 annealed in H2; (b) GdScO3 unannealed; (c) GdScO3 annealedin air atmosphere.

    图 5  不同气氛条件下Yb:GdScO3晶体在250—3000 nm范围内的透射光谱 (a) Yb:GdScO3 H2气氛退火(样品厚度d = 1.65 mm); (b) Yb:GdScO3 未退火(样品厚度d = 1.60 mm); (c) Yb:GdScO3 空气气氛退火(样品厚度d = 1.66 mm)

    Figure 5.  Transmittance spectra of the Yb:GdScO3 crystal before and after annealed in the range of 250—3000 nm: (a) Yb:GdScO3 annealed in H2; (b) Yb:GdScO3 unannealed; (c) Yb:GdScO3 annealed in air atmosphere.

    表 1  GdScO3晶体XRD数据精修结构参数

    Table 1.  Refined structural parameters of GdScO3 crystal obtained from XRD data.

    AtomMultiplicity
    Wyckoff letter
    xyzOccupancyUisoR factor
    RpRwp
    GdScO3 annealed in H2
    O14c0.4510780.2500000.1123751.01440.01800
    Sc14b0.0000000.0000000.5000000.99940.024184.12%5.19%
    O28d0.1933000.5571770.1827740.99850.04452
    Gd14c0.4405670.7500000.4823400.92680.01880
    GdScO3 annealed in air atmosphere
    O14c0.4688030.2500000.1083930.02980.01489
    Sc14b0.0000000.0000000.5000000.99840.011574.56%5.83%
    O28d0.2053470.5614590.1887951.06160.01910
    Gd14c0.4405660.7500000.4865511.00220.01328
    Yb:GdScO3 annealed in H2
    O14c0.4595760.2500000.1037011.12950.00793
    Sc14b0.0000000.0000000.5000001.00620.016484.45%5.66%
    O28d0.1991950.5590330.1832121.04820.01898
    Gd14c0.4397480.7500000.4858060.97810.01645
    Yb14c0.4510140.7500000.4043420.01890.07962
    Yb:GdScO3 annealed in air atmosphere
    O14c0.4629040.2500000.0928041.09520.01311
    Sc14b0.0000000.0000000.5000001.02410.023874.67%5.99%
    O28d0.1847430.5524960.1890581.01010.03297
    Gd14c0.4380270.7500000.4831590.98070.02051
    Yb14c0.4434780.7500000.4133920.01920.04427
    Yb:GdScO3 unannealed
    O14c0.4650200.2500000.3382901.36350.01824
    Sc14b0.0000000.0000000.5000000.97070.017805.20%7.13%
    O28d0.1778860.5733370.2022981.04660.03207
    Gd14c0.4371670.7500000.4820110.95400.01456
    Yb 14c0.4590290.7500000.3709780.01810.09000
    DownLoad: CSV

    表 2  不同气氛退火GdScO3和Yb: GdScO3的晶胞参数、晶胞体积和计算密度

    Table 2.  Refined lattice parameters, unit cell volumes and calculated densities of GdScO3 and Yb:GdScO3 annealed in different atmospheres.

    GdScO3abcV3ρ/(g·cm–3)
    GdScO3 annealed in H25.7502247.9363615.485410250.3313676.6380
    GdScO3 annealed in air5.7508607.9362715.485696250.3692686.6399
    Yb:GdScO3 annealed in H25.7476297.9318955.481167249.8841556.6584
    Yb:GdScO3 annealed in air5.7542687.9422105.488072250.8433136.6328
    Yb:GdScO3 unannealed5.7483977.9362445.482695250.1242816.6519
    DownLoad: CSV
  • [1]

    Chaix-Pluchery O, Kreisel J 2011 Phase Transitions 84 542Google Scholar

    [2]

    Sheng J M, Kan X C, Ge H, Yuan P Q, Zhang L, Zhao N, Song Z M, Yao Y Y, Tang J N, Wang S M, Tian M L, Tong X, Wu L S 2020 Chin. Phys. B 29 66Google Scholar

    [3]

    Jia J H, Ke Y J, Zhang X X, Wang J F, Su L, Wu Y D, Xia Z C 2019 J. Alloys Compd. 803 992Google Scholar

    [4]

    Rong S S, Faheem M B, Li Y B 2021 J. Electron. Sci. Technol. 19 119Google Scholar

    [5]

    Aamir M, Bibi I, Ata S, Jilani K, Majid F, Kamal S, Alwadai N, Raza M A S, Bashir M, Iqbal S, Aadil M, Iqbal M 2021 Ceram. Int. 47 16696Google Scholar

    [6]

    Lin S H, Lin Z Q, Chen C W 2021 Ceram. Int 47 16828Google Scholar

    [7]

    Rumyantsev S, Stillman W, Shur M, Heeg T, Schlom D G, Koveshnikov S, Kambhampati R, Tokranov V, Oktyabrsky S 2012 Int. J. High Speed Electron. Syst. 20 105Google Scholar

    [8]

    Mizzi C A, Koirala P, Marks L D 2018 Phys. Rev. Mater. 2 025001Google Scholar

    [9]

    Schäfer A, Besmehn A, Luysberg M, Winden A, Stoica T, Schnee M, Zander W, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M, Schubert J 2014 Semicond. Sci. Technol. 29 075005Google Scholar

    [10]

    Schäfer A, Rahmanizadeh K, Bihlmayer G, Luysberg M, Wendt F, Besmehn A, Fox A, Schnee M, Niu G, Schroeder T, Mantl S, Hardtdegen H, Mikulics M, Schubert J 2015 J. Alloys Compd. 651 514Google Scholar

    [11]

    Uecker R, Velickov B, Klimm D, Bertram R, Bernhagen M, Rabe M, Albrecht M, Fornari R, Schlom D G 2008 J. Cryst. Growth 310 2649Google Scholar

    [12]

    Mansley Z R, Mizzi C A, Koirala P, Wen J, Marks L D 2020 Phys. Rev. Mater. 4 045003Google Scholar

    [13]

    Paull R J, Mansley Z R, Ly T, Marks L D, Poeppelmeier K R 2018 Inorg. Chem. 57 4104Google Scholar

    [14]

    Seidel S, Schmid A, Miersch C, Schubert J, Heitmann J 2021 Appl. Phys. Lett. 118 052902Google Scholar

    [15]

    Briones J, Guinto M C, Pelicano C M 2021 Mater. Lett. 298 130040Google Scholar

    [16]

    Liu Y 2021 IOP Conference Series:Earth and Environmental Science 781 022069Google Scholar

    [17]

    Hidde J, Guguschev C, Ganschow S, Klimm D 2018 J. Alloys Compd. 738 415Google Scholar

    [18]

    Wu Y D, Chen H, Hua J Y, Qin Y L, Ma X H, Wei Y Y, Zi Z F 2019 Ceram. Int. 45 13094Google Scholar

    [19]

    Peng F, Liu W, Zhang Q, Luo J, Sun D, Sun G, Zhang D, Wang X 2018 J. Lumin. 201 176Google Scholar

    [20]

    Li Q, Dong J, Wang Q, Xue Y, Tang H, Xu X, Xu J 2020 Opt. Mater. 109 110298Google Scholar

    [21]

    Li Q, Dong J, Wang Q, Zhao H, Xue Y, Tang H, Xu X, Xu J 2021 J. Lumin. 230 117681Google Scholar

    [22]

    Hou W, Zhao H, Qin Z, Liu J, Wang D, Xue Y, Wang Q, Xie G, Xu X, Xu J 2020 Opt. Mater. Express 10 2730Google Scholar

    [23]

    Wang D, Hou W, Li N, Xue Y, Wang Q, Xu X, Li D, Zhao H, Xu J 2019 Opt. Mater. Express 9 4218Google Scholar

    [24]

    Peng F, Liu W, Luo J, Sun D, Chen Y, Zhang H, Ding S, Zhang Q 2018 Crystengcomm 20 6291Google Scholar

    [25]

    Yamaji A, Kochurikhin V, Fujimoto Y, Futami Y, Yanagida T, Yokota Y, Kurosawa S, Yoshikawa A 2012 Phys. Status SolidiC 9 2267Google Scholar

    [26]

    Gupta S K, Grover V, Shukla R, Srinivasu K, Natarajan V, Tyagi A K 2016 Chem. Eng. J. 283 114Google Scholar

    [27]

    Arsenev P A, Bienert K E, Sviridova R K 1972 Phys. Status Solidi A 9 K103Google Scholar

    [28]

    Rietveld H 1967 Acta Crystallogr. 22 151Google Scholar

    [29]

    Rietveld H 1969 J. Appl. Crystallogr 2 65Google Scholar

    [30]

    张克从, 张乐潓 1997 晶体生长科学与技术(上) (北京: 科学出版社) 第472页

    Zhang K C, Zhang L H 1997 Crystal Growth Science and Technology (Vol. 1) (Beijing: Science Press) p472 (in Chinese)

    [31]

    Chopelas A 2011 Phys. Chem. Miner. 38 709Google Scholar

    [32]

    Grover V, Shukla R, Jain D, Deshpande S K, Arya A, Pillai C G S, Tyagi A K 2012 Chem. Mater. 24 2186Google Scholar

    [33]

    Chaix-Pluchery O, Kreisel J 2009 J. Phys. Condens. Matter 21 175901Google Scholar

    [34]

    Weber M C, Guennou M, Zhao H J, Íñiguez J, Vilarinho R, Almeida A, Moreira J A, Kreisel J 2016 Phys. Rev. B 94 214103Google Scholar

    [35]

    Iliev M N, Abrashev M V, Laverdière J, Jandl S, Gospodinov M M, Wang Y Q, Sun Y Y 2006 Phys. Rev. B 73 064302Google Scholar

    [36]

    Alsowayigh M M, Timco G A, Borilovic I, Alanazi A, Vitorica-Yrezabal I J, Whitehead G F S, McNaughter P D, Tuna F, O'Brien P, Winpenny R E P, Lewis D J, Collison D 2020 Inorg. Chem. 59 15796Google Scholar

    [37]

    Singh M K, Jang H M, Gupta H C, Katiyar R S 2008 J. Raman Spectrosc. 39 842Google Scholar

    [38]

    Ruffo A, Mozzati M C, Albini B, Galinetto P, Bini M 2020 J. Mater. Sci.: Mater. Electron. 31 18263Google Scholar

    [39]

    Nikl M, Nitsch K, Hybler J, Chval J, Reiche P 1996 Phys. Status Solidi B 196 7Google Scholar

    [40]

    李涛, 赵广军, 何晓明, 徐 军, 潘守夔 2002 人工晶体学报 31 456

    Li T, Zhao G J, He X M, Xu J, Pan S K 2002 J. Artif. Cryst. 31 456

  • [1] Zhang Mao-Di, Jiao Chen-Yin, Wen Ting, Li Jing, Pei Sheng-Hai, Wang Zeng-Hui, Xia Juan. In-situ high pressure polarized Raman spectroscopy of rhenium disulfide. Acta Physica Sinica, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] Song Meng-Ting, Zhang Yue, Huang Wen-Juan, Hou Hua-Yi, Chen Xiang-Bai. Enhancement of two-magnon scattering in annealed nickel oxide studied by Raman spectroscopy. Acta Physica Sinica, 2021, 70(16): 167201. doi: 10.7498/aps.70.20210454
    [3] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] Wang Xin, Kang Zhe-Ming, Liu Long, Fan Xian-Guang. Baseline correction algorithm for Raman spectra based on median filtering and un-uniform B-spline. Acta Physica Sinica, 2020, 69(20): 200701. doi: 10.7498/aps.69.20200552
    [5] Huang Hao, Zhang Kan, Wu Ming, Li Hu, Wang Min-Juan, Zhang Shu-Ming, Chen Jian-Hong, Wen Mao. Comparison between axial residual stresses measured by Raman spectroscopy and X-ray diffraction in SiC fiber reinforced titanium matrix composite. Acta Physica Sinica, 2018, 67(19): 197203. doi: 10.7498/aps.67.20181157
    [6] Zhang Li, Zheng Hai-Yang, Wang Ying-Ping, Ding Lei, Fang Li. Characteristics of Raman spectrum from stand-off detection. Acta Physica Sinica, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [7] Xu Si-Wei, Wang Li, Shen Xiang. Raman scattering and X-ray photoelectron spectra of GexSb20Se80-x Glasses. Acta Physica Sinica, 2015, 64(22): 223302. doi: 10.7498/aps.64.223302
    [8] Liang Yuan, Xing Huai-Zhong, Chao Ming-Ju, Liang Er-Jun. Syntheses of negative thermal expansion materials Sc2(MO4)3 (M=W, Mo) with a CO2 laser and their Raman spectra. Acta Physica Sinica, 2014, 63(24): 248106. doi: 10.7498/aps.63.248106
    [9] Chen Yuan-Zheng, Li Shuo, Li Liang, Men Zhi-Wei, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Study of phase transition of HoVO4 under high pressure by Raman scattering and ab initio calculations. Acta Physica Sinica, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [10] Zhou Mi, Li Zhan-Long, Lu Guo-Hui, Li Dong-Fei, Sun Cheng-Lin, Gao Shu-Qin, Li Zuo-Wei. High pressure Raman investigation on the Fermi resonance of biphenyl. Acta Physica Sinica, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [11] Wang Li-Hong, You Jing-Lin, Wang Yuan-Yuan, Zheng Shao-Bo, Simon Patrick, Hou Min, Ji Zi-Fang. Temperature dependent Raman spectra and micro-structure study of hexagonal MgTiO3 crystal. Acta Physica Sinica, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [12] Zang Hang, Wang Zhi-Guang, Pang Li-Long, Wei Kong-Fang, Yao Cun-Feng, Shen Tie-Long, Sun Jian-Rong, Ma Yi-Zhun, Gou Jie, Sheng Yan-Bin, Zhu Ya-Bin. Raman investigation of ion-implanted ZnO films. Acta Physica Sinica, 2010, 59(7): 4831-4836. doi: 10.7498/aps.59.4831
    [13] Zhou Wen-Ping, Wan Song-Ming, Zhang Xia, Zhang Qing-Li, Sun Dun-Lu, Qiu Huai-Li, You Jing-Lin, Yin Shao-Tang. Study of growth units and the growth habit of PbMoO4 crystal using high temperature Raman spectra. Acta Physica Sinica, 2008, 57(11): 7305-7309. doi: 10.7498/aps.57.7305
    [14] Tan Guo-Tai, Chen Zheng-Hao. XRD analysis on lattice structure of La1-xTexMnO3. Acta Physica Sinica, 2007, 56(3): 1702-1706. doi: 10.7498/aps.56.1702
    [15] Wei Zhong-Chao, Dai Qiao-Feng, Wang He-Zhou. Spectral properties of fcc-like cylindrical colloidal crystals. Acta Physica Sinica, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [16] Ding Shuo, Liu Yu-Long, G. G. Siu. Raman study of SnO2 nanograins under different annealing temperature. Acta Physica Sinica, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [17] Xu Cun-Ying, Zhang Peng-Xiang, Yan Lei. Blue shift of Raman peaks of coated BaTiO3 nanoparticles. Acta Physica Sinica, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [18] Bai Ying, Lan Yan-Na, Mo Yu-Jun. Temperature measurement from the Raman spectra of porous silicon. Acta Physica Sinica, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [19] Sun Dun-Lu, Qiu Huai-Li, Hang Yin, Zhang Lian-Han, Zhu Shi-Ning, Wang Ai-Hua, Yin Shao-Tang. Study on laser-micro-Raman spectra in near-stoichiometric LiNbO3 crystals. Acta Physica Sinica, 2004, 53(7): 2270-2274. doi: 10.7498/aps.53.2270
    [20] Ding Pei, Liang Er-Jun, Zhang Hong-Rui, Liu Yi-Zhen, Liu Hui, Guo Xin-Yong, Du Zu-Liang. Growth mechanism and Raman spectroscopic study of “interlinked-cone" shaped CNx nanotubes. Acta Physica Sinica, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
Metrics
  • Abstract views:  5008
  • PDF Downloads:  82
  • Cited By: 0
Publishing process
  • Received Date:  27 January 2022
  • Accepted Date:  10 April 2022
  • Available Online:  29 July 2022
  • Published Online:  20 August 2022

/

返回文章
返回