-
As a new family member of two-dimensional materials, black phosphorus has attracted much attention due to its infrared band gap and strongly anisotropic properties, bringing new concepts and applications in different fields. In characterizing black phosphorus, optical method and electrical method are typically used to obtain structural information and fundamental properties in terms of behaviors of electrons. So far, more studies are still needed to understand in depth the physical principle and facilitate applications. In this paper, multilayered black phosphorus flakes are synthesized via mechanical exfoliation from the bulk crystal, and field-effect transistors based on few-layer black phosphorus are fabricated by micro-nano fabrication technology, which owns 0°–360° four pairs of symmetrical electrodes. We experimentally obtain the characteristics of Raman modes
A1g ,B2g , andA2g in parallel (XX) and vertical (XY) polarization configuration. Furthermore, the angle-dependent source-drain current angle is measured through a BP field-effect transistor. The Raman spectrum results demonstrate that three characteristic peaks are located at 361, 439 and 467 cm–1 in a range of 200–500 cm–1, corresponding to the vibration modes ofA1g ,B2g, andA2g , respectively. The fitting experimental data of polarization-dependent Raman spectra also show that the intensity for each of the three characteristic peaks has a 180° periodic variation in a parallel polarization configuration and also in a vertical polarization configuration. The maximum Raman intensity of Ag is along the AC direction, while that of B2g is along the ZZ direction. On the other hand, the electric transport curves illustrate that the largest source leakage current can be obtained near 0° (180°) armchair direction. Such results indicate the anisotropy of black phosphorus. Furthermore, transfer curves with different electrode angles show that the weak bipolarity of black phosphorus at 45° (225°), 90° (270°), and p-type performance at 0° (180°), 135° (315°) can be offered, respectively. This work is conducive to studying the properties and practical applications of devices based on black phosphorus.-
Keywords:
- black phosphorus /
- anisotropy /
- Raman spectra /
- field effect transistor
1. 引 言
黑磷(black phosphorus, BP)因其晶体结构在锯齿形(zigzag, ZZ)和扶手椅形(armchair, AC)方向原子间共价键键长与键角不同, 在光、电、热和机械等方面[1-7]具有强的各向异性特性, 表现出与石墨烯[8]、过渡金属硫化物[9]等其他二维材料不同的特性. 自2014年黑磷场效应晶体管(black phosphorous-field effect transistors, BP-FETs)[10]首次被成功制备, 相关的研究[11-13]迅速展开. 如, Qiao等[14]于2014年研究了少层BP的各向异性高迁移输运和线性二色性; 2017年, Zhang等[15]研究了基于柔性基底BP-FET在应力下的带隙调控与压阻效应, 2018年, Zhu等[16]利用角分辨拉曼研究了在应力下各向异性光子-电子的相互作用. 目前, 更深入的研究仍需亟待继续展开, 尤其是BP各向异性特性方面细致深入的研究, 将对BP结构机制和物理特性的理解, 以及基于BP相关效应的光学及电学器件实际应用的发展有重要意义.
本文采用机械剥离法制备出层状BP, 通过微纳加工制备0º—360º四对对称电极BP-FET, 对BP的偏振拉曼光谱和不同角度电极源漏电流特性及栅压-源漏电流转移特性进行研究, 相关结果表征了BP的各向异性特性. 结果表明, 其输运特性在不同方向呈现不同的双极性或空穴型性质. 研究结果对BP结构机制和物理特性的深入理解以及BP光学和电学器件实际应用发展提供了重要参考.
2. 实 验
2.1 样品的制备
单层BP晶体结构如图1(a)所示. 采用机械剥离法得到的BP样品如图1(b)所示, 其制备过程如下: 先在蓝膜胶带上获得多层BP, 然后转移到PDMS固态胶上, 放于显微镜平台, 通过观察薄膜的透明度来寻找所需的薄层BP, 并采用定位干法转移, 将其转移到预先准备好的SiO2/Si的基底上. 实验中所用SiO2厚度为300 nm, Si厚度为500 μm. 图1(b)样品紫色部分为SiO2, 其余部分为BP, 其中蓝色部分为薄层BP.
为避免BP的重复污染, 预先制备出场效应晶体管源漏电极, 再将BP转移到源漏电极沟道上. 实验中先将硅片基底清洗干净, 然后进行光刻. 光刻步骤为: 4000 r/min旋涂光刻胶、前烘60 s、紫外曝光20 s、后烘90 s、显影、氮气吹干, 完成电极图案的光刻. 随后, 依次进行电子束蒸镀电极金属Cr (10 nm)和Cu (50 nm); 蒸镀后的电极样品浸泡于丙酮中, 并进行超声清洗及氮气吹干; 最后, 在显微镜下将预先准备好的层状BP转移到制备好的电极沟道上. 全过程尽量在半小时内完成以为防止BP氧化影响性能[17-19].
2.2 测量与表征
拉曼光谱采用德国WITec公司生产的Alpha 300R激光共焦拉曼光谱仪进行采集, 激光波长为532 nm, 物镜50×. 为避免样品被激光损伤, 控制样品表面的激光功率低于1 mW, 信号采集时间为3—10 s, 测试在室温真空下进行, 扫描范围为200—600 cm–1, 测试精度为1 cm–1. 偏振拉曼测量通过改变起偏器和检偏器的角度来实现Z(XX)
ˉZ 及Z(XY)ˉZ 构型对BP进行表征.BP-FETs电学输运性能测试采用Lake Shore CRX-6.5k探针台及PDA FS380半导体器件电性能参数测试仪进行测量. 将样品放入探针台的真空腔内, 抽真空到10–1 Pa, 在配套的显微镜辅助下将探针移动到电极上并接触, 测量转移特性曲线和输出特性曲线.
3. 结果与讨论
拉曼光谱表征时入射激光垂直照射于图1(b)样品上, 得到图谱结果如图1(c)所示, 在200—600 cm–1波数范围内有4个分别位于361, 439, 467和523.7㎝–1波数的特征峰, 分别对应
A1g , B2g,A2g 和硅的振动模式.众所周知, 拉曼模式
A1g , B2g和A2g 分别对应于平面外Z方向振动、ZZ方向振动和AC方向振动[20,21], 通过对图1(b)样品进行角度依赖的拉曼光谱表征, 提取各个角度中3个特征峰的强度, 即得到如图2所示的极化图. 其中, 黑点为实验结果, 红线为拟合曲线, 拟合公式[22,23]为:I=a+b{cos[π(x+c)/180]}2 , 其中I为拉曼强度, a, b, c为拟合参数, x为角度, 该公式用于直接显示材料的各向异性.当入射光沿不同的偏振角度照射样品时, BP
A1g , B2g和A2g 三个特征峰的位置几乎没有变化, B2g和A2g 模式强度对偏振角度具有高度依赖性, 而A1g 的强度对偏振角并不依赖. 从图2(a)—(c)可以看出如果使用平行的Z(XX)ˉZ 构型, 即入射激光(X)的偏振角平行于散射光(X), 所有高频振动模式为180º的周期, 并且Ag的拉曼强度最大值是沿着AC方向, 而B2g的拉曼强度最大值是沿着ZZ方向. 图2(d)—(f)采用的是入射光(X)的偏振角与散射光(Y)有一个90º的差值的Z(XY)ˉZ 构型, 可以看出其与Z(XX)ˉZ 构型测量的结果类似.为进一步研究BP的各向异性电学输运特性, 设计并通过微纳加工工艺制备了四对对称电极的BP-FETs结构. 结构设计及单组电路如图3(a)所示, 相邻电极之间夹角为45º, 电极伸出的臂长为500 μm, 臂长宽度为8 μm, 臂长的尾部连接一个400 μm × 600 μm的长方形电极, 对称电极之间的距离为40 μm. 图3(b)为图3(a)对应的实验器件光学显微图, 其中虚线框出的部分是它的局部放大图, 在图中标明了它所对应的角度方向.
对图3(a)所示的器件进行电学测量, 提取各个角度下最大的源漏电流, 得到如图4(a)角度依赖性源漏电流图谱, 红色曲线为拟合曲线; 图4(b)为图4(a)对应位置测量并进行归一化处理的
A2g 振动模式偏振拉曼图谱, 对比可以看出, 两者具有一致的变化规律, 当A2g 振动模式强度在0º (180º)最大时, 其对应角度附近源漏电流也为最大. 这是由于A2g 振动模式强度最大的方向对应着BP的AC方向, 而研究[24]表明一般情况下BP在AC方向的迁移率最大. 从图4(a)可以看出, 实验数据点与拟合曲线存在一定的误差, 这可能是由于在制备过程中接触空气, 造成BP表面发生氧化.图5为对图3器件进行电学测量获得的不同电极角度下的栅压-源漏电流转移特性曲线, 其表明, 在45º (225º)和90º (270º)方向为微弱的双极性输运行为, 0º (180º)和135º (315º)为空穴型输运行为, 即, 主要以空穴电导为主. 双极性行为可以理解如下: 栅压具有调控载流子浓度和迁移速度的能力, 在施加负栅压时, 栅压为器件提供更多的空穴载流子, 负方向的栅压越大, 提供的空穴也就越多, 电流也就越大; 当施加正栅压时, 由于BP自身含有空穴载流子, 在施加小的正栅压时, 电子会与BP自身的空穴复合, 导致电流随栅压的增大而减小. 当更多的电子注入时, 器件又成为以电子导电为主, 电流随栅压的增大而增大.
4. 结 论
本文采用机械剥离法获得层状BP, 并进行了偏振拉曼表征及电学特性研究. 不同构型的偏振拉曼光谱表明, BP由于结构上AC和ZZ方向上的差异, 导致其光谱显示出与结构相对应的各向异性, 并且呈现出180º的周期. BP-FETs电学输运测量结果与拉曼光谱结果一致, 并进一步细致地表明了BP的各向异性特性. 另外, 不同电极角度栅压-源漏电流转移特性曲线表明其输运特性在不同方向呈现不同的双极性或空穴型性质. 研究结果对BP结构机制和物理特性的深入理解以及BP光学和电学器件实际应用发展提供了参考.
[1] Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J 2014 Sci. Rep. 4 6452
Google Scholar
[2] Qin G, Yan Q, Qin Z, Yue S, Cui H, Zheng Q, Su G 2014 Sci. Rep. 4 6946
Google Scholar
[3] Fei R X, Yang L 2014 Nano Lett. 14 2884
Google Scholar
[4] Suvansinpan N, Hussain F, Zhang G, Chiu C H, Cai Y Q, Zhang Y W 2016 Nanotechnology 27 065708
Google Scholar
[5] Tran V, Soklaski R, Liang Y F, Yang L 2014 Phy. Rev. B 89 235319
Google Scholar
[6] Warschauer D 1963 J. Appl. Phys. 34 1853
Google Scholar
[7] Mao N, Tang J, Xie L, Wu J X, Han B, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300
Google Scholar
[8] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[9] Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674
Google Scholar
[10] Li L K, Yu Y J, Ye G J, Ge Q D, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372
Google Scholar
[11] Mittendorff M, Suess R J, Leong E, Murphy T E 2017 Nano Lett. 17 5811
Google Scholar
[12] Zhang G, Huang S, Chaves A, Song C, Ozcelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071
Google Scholar
[13] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648
Google Scholar
[14] Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475
Google Scholar
[15] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097
Google Scholar
[16] Zhu W, Liang L, Roberts R H, Lin J, Akinwande D 2018 ACS Nano 12 12512
Google Scholar
[17] Li L, Kim J, Jin C, Ye G J, Qiu D Y, Jornada F H D, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21
Google Scholar
[18] Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106
Google Scholar
[19] Island J O, Steele G A, Zant H S J, Castellanosgomez A 2014 2D Mater. 2 011002
Google Scholar
[20] Huang S, Ling X 2017 Small 13 1700823
Google Scholar
[21] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒 2020 物理学报 69 167803
Google Scholar
Meng D, Cong X, Len Y Z, Lin M L, Wang J H, Yu B L, Liu X F, Yu X F, Tan P H 2020 Acta Phys. Sin. 69 167803
Google Scholar
[22] Pant A, Torun E, Chen B, Bhat S, Fan X, Wu K, Wright D P, Peeters F M, Soignard E, Sahin H, Tongav S 2016 Nanoscale 8 16259
Google Scholar
[23] Wang X, Jones A M, Seyler K L, Vv T, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F 2015 Nat. Nanotechnol. 10 517
Google Scholar
[24] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS nano 8 4033
Google Scholar
-
-
[1] Zhang J, Liu H J, Cheng L, Wei J, Liang J H, Fan D D, Shi J, Tang X F, Zhang Q J 2014 Sci. Rep. 4 6452
Google Scholar
[2] Qin G, Yan Q, Qin Z, Yue S, Cui H, Zheng Q, Su G 2014 Sci. Rep. 4 6946
Google Scholar
[3] Fei R X, Yang L 2014 Nano Lett. 14 2884
Google Scholar
[4] Suvansinpan N, Hussain F, Zhang G, Chiu C H, Cai Y Q, Zhang Y W 2016 Nanotechnology 27 065708
Google Scholar
[5] Tran V, Soklaski R, Liang Y F, Yang L 2014 Phy. Rev. B 89 235319
Google Scholar
[6] Warschauer D 1963 J. Appl. Phys. 34 1853
Google Scholar
[7] Mao N, Tang J, Xie L, Wu J X, Han B, Lin J J, Deng S B, Ji W, Xu H, Liu K H, Tong L M, Zhang J 2016 J. Am. Chem. Soc. 138 300
Google Scholar
[8] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[9] Wang H, Yu L L, Lee Y H, Shi Y M, Hsu A, Chin M L, Li L J, Dubey M, Kong J, Palacios T 2012 Nano Lett. 12 4674
Google Scholar
[10] Li L K, Yu Y J, Ye G J, Ge Q D, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372
Google Scholar
[11] Mittendorff M, Suess R J, Leong E, Murphy T E 2017 Nano Lett. 17 5811
Google Scholar
[12] Zhang G, Huang S, Chaves A, Song C, Ozcelik V O, Low T, Yan H 2017 Nat. Commun. 8 14071
Google Scholar
[13] Guo Q, Pospischil A, Bhuiyan M, Jiang H, Tian H, Farmer D, Deng B C, Li C, Han S, Wang H, Xia Q F, Ma T P, Mueller T, Xia F N 2016 Nano Lett. 16 4648
Google Scholar
[14] Qiao J, Kong X, Hu Z, Yang F, Ji W 2014 Nat. Commun. 5 4475
Google Scholar
[15] Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097
Google Scholar
[16] Zhu W, Liang L, Roberts R H, Lin J, Akinwande D 2018 ACS Nano 12 12512
Google Scholar
[17] Li L, Kim J, Jin C, Ye G J, Qiu D Y, Jornada F H D, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X H, Zhang Y, Wang F 2017 Nat. Nanotechnol. 12 21
Google Scholar
[18] Koenig S P, Doganov R A, Schmidt H, Neto A H C, Ozyilmaz B 2014 Appl. Phys. Lett. 104 103106
Google Scholar
[19] Island J O, Steele G A, Zant H S J, Castellanosgomez A 2014 2D Mater. 2 011002
Google Scholar
[20] Huang S, Ling X 2017 Small 13 1700823
Google Scholar
[21] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒 2020 物理学报 69 167803
Google Scholar
Meng D, Cong X, Len Y Z, Lin M L, Wang J H, Yu B L, Liu X F, Yu X F, Tan P H 2020 Acta Phys. Sin. 69 167803
Google Scholar
[22] Pant A, Torun E, Chen B, Bhat S, Fan X, Wu K, Wright D P, Peeters F M, Soignard E, Sahin H, Tongav S 2016 Nanoscale 8 16259
Google Scholar
[23] Wang X, Jones A M, Seyler K L, Vv T, Jia Y, Zhao H, Wang H, Yang L, Xu X, Xia F 2015 Nat. Nanotechnol. 10 517
Google Scholar
[24] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS nano 8 4033
Google Scholar
期刊类型引用(1)
1. 邹菁,王浩,阳曼,邹逸伦,王海涛,江吉周. 二维黑磷的制备及电化学传感应用研究进展. 聊城大学学报(自然科学版). 2023(03): 64-73+81 . 百度学术
其他类型引用(3)
Catalog
Metrics
- Abstract views: 15503
- PDF Downloads: 329
- Cited By: 4