Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pressure-driven fluid flow characteristics in black phosphorus nanochannels

Zhang Zhong-Qiang Liu Han-Lun Fan Jin-Wei Ding Jian-Ning Cheng Guang-Gui

Citation:

Pressure-driven fluid flow characteristics in black phosphorus nanochannels

Zhang Zhong-Qiang, Liu Han-Lun, Fan Jin-Wei, Ding Jian-Ning, Cheng Guang-Gui
PDF
HTML
Get Citation
  • With the rapid development of low-dimensional materials, the opportunity that promotes the development of micro/nano fluid devices, a new low-dimensional material black phosphorus (BP) has attracted wide attention due to its excellent properties, and has been applied to many areas. In this paper, the influences of driving force, water-BP anisotropy, channels’ width and the number of black phosphorus layers on the flow characteristics of water molecules in the nanochannels are studied by molecular dynamics based on the Poiseuille flow model. The results show that the boundary slip velocity increases with the driving force increasing. The anisotropy will also affect the flow characteristics of water molecules in the nanochannel under the pressure driving the Poiseuille flow. Specifically, the boundary slip velocity decreases with the chirality angle increasing, and the viscosity coefficient of water molecules is still not affected by the anisotropy. The natural rippled structure of the BP surface leads to the coarse potential surface, and further results in the anisotropic boundary slip and interfacial friction between water and BP sheets. With the driving acceleration kept constant, the influences of the width of nanochannels and the number of black phosphorus layers on the boundary slip velocity and viscosity coefficient of water molecules are investigated. The results indicate that the slip velocity of water molecules in the nanochannels decreases with the width of the nanochannels increasing. The velocity profile of water molecules in the bilayer model is slightly different from that in the monolayer model. With the number of BP layers increasing, the energy of BP-water solid-liquid interface increases while the anisotropic interfacial property remains unchanged. The results will provide a theoretical basis for the study of the characteristics of the fluid flowing in the black phosphorus nanochannels and the design of micro/nano fluid devices based on black phosphorus materials.
      Corresponding author: Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11872192, 51675236).
    [1]

    Keim N C, Arratia P E 2014 Phys. Rev. Lett. 112 028302Google Scholar

    [2]

    Naumis G G, Barraza-Lopez S, Oliva-Leyva M, Terrones H 2017 Rep. Prog. Phys. 80 096501Google Scholar

    [3]

    Paul J T, Singh A K, Dong Z, Zhuang H, Revard B C, Rijal B, Ashton M, Linscheid A, Blonsky M, Gluhovic D, Guo J, Hennig R G 2017 J. Phys.: Condens. Matter 29 473001Google Scholar

    [4]

    胡小唐, 李源, 饶志军, 胡春光, 傅星 2004 纳米技术与精密工程 2 1

    Hu X T, Li Y, Rao Z J, Hu C G, Fu X 2004 Nanotechnology and Precision Engineering 2 1

    [5]

    周兆英, 杨兴 2003 仪表技术与传感器 2 1Google Scholar

    Zhou Z Y, Yang X 2003 Instrument Technique and Sensor 2 1Google Scholar

    [6]

    严宇才, 张端 2011 电子工业专用设备 40 1Google Scholar

    Yan Y C, Zhang R 2011 Equipment for Electronic Products Manufacturing 40 1Google Scholar

    [7]

    Wu L, Deng D, Jin J, Lu X B, Chen J P 2012 Biosens. Bioelectron. 35 193Google Scholar

    [8]

    Khan M, Misra S K, Wang Z, Daza E, Schwartz-Duval A, Kus M J, Pan D 2017 Anal. Chem. 89 2107Google Scholar

    [9]

    Narang J, Malhotra N, Singhal C, Mathur A, Chakraborty D, Anil A, Ingle A, Pundir C S 2017 Biosens. Bioelectron. 88 249Google Scholar

    [10]

    Connacher W, Zhang N, An H, Mei J Y, Zhang S, Gopesh T, Friend J 2018 Lab Chip 10 1039

    [11]

    Soong C Y, Yen T H, Tzeng P Y 2007 Phys. Rev. E 76 036303Google Scholar

    [12]

    Sofos F D, Karakasidis T E, Antonios L 2009 Phys. Rev. E 79 026305Google Scholar

    [13]

    Turlo V, Politano O, Baras F 2015 Acta Mater. 99 363Google Scholar

    [14]

    Balasubramanian S, Mundy C J 1999 Bull. Mater. Sci. 22 873Google Scholar

    [15]

    Wang Z, Jia H, Zheng X, Yang R, Wang Z F, Ye G J, Chen X H, Shan J, Feng, P X L 2015 Nanoscale 7 877Google Scholar

    [16]

    Li L, Guo J Y, Tran V, Tran V, Fei R, Zhang Y 2015 Nat. Nanotechnol. 10 608Google Scholar

    [17]

    Wang X M, Jones A M, Seyler K L, Tran V, Jia Y C, Zhao H, Wang H, Yang L, Xu X D, Xia F N 2015 Nat. Nanotechnol. 10 517Google Scholar

    [18]

    袁振洲, 刘丹敏, 田楠, 张国庆, 张永哲 2016 化学学报 74 488

    Yuan Z Z, Liu D M, Tian N, Zhang G Q, Zhang Y Z 2016 Acta Chimica Sinica 74 488

    [19]

    Chen H, Huang P, Guo D, Xie G X 2016 J. Phys. Chem. C 120 29491Google Scholar

    [20]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [21]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [22]

    Fernández-Escamilla H N, Quijano-Briones J J, Tlahuice-Flores A 2016 Phys. Chem. Chem. Phys. 18 12414Google Scholar

    [23]

    Cai K, Wan J, Wei N, Qin Q H 2016 Nanotechnology 27 275701Google Scholar

    [24]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [25]

    Ryckaert J P, Ciccotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327Google Scholar

    [26]

    Cai K, Liu L, Jiao S, Qin Q H 2017 Mater. Des. 121 406Google Scholar

    [27]

    Zhang H W, Ye H F, Zheng Y G, Zhang Z 2011 Microfluid. Nanofluid. 10 403Google Scholar

    [28]

    Thompson P A, Troian S M 1997 Nature 63 360

    [29]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar

    [30]

    Zhang H W, Zhang Z Q, Zheng Y G, Wang L, Wang J B 2010 Phys. Rev. E 81 066303Google Scholar

    [31]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [32]

    Koplik J, Banavar J R, Willemsen J F 1988 Phys. Rev. Lett. 60 1282Google Scholar

  • 图 1  (a)单层黑磷模型图, 其中手性角度θ指黑磷褶皱方向与水分子流动方向夹角; (b)黑磷纳米通道内水分子流动的Poiseuille流模型图

    Figure 1.  (a) Monolayer black phosphorus models, chiral angle θ is the intersection angle between water flow direction adjacent the top plate and the ripple direction of BP monolayer; (b) poiseuille flow model of water molecules in black phosphorus nanochannels.

    图 2  模型手性角度为0°时水分子的速度分布

    Figure 2.  The velocity distribution of water molecules when the chiral angle of the model is 0°.

    图 3  黑磷纳米通道内水分子沿通道宽度方向的数密度分布图

    Figure 3.  Number density distribution of water molecules along the channel width in the black phosphorus nanochannels.

    图 4  速度分布图及势能云图 (a) 模型手性角度为37.4°时水分子的速度分布; (b) 模型手性角度为66.6°时水分子的速度分布; (c) 模型手性角度为90°时水分子的速度分布; (d)模型手性角度为90°时的势能分布云图

    Figure 4.  Velocity distribution diagram and potential energy cloud diagram: (a) The velocity distribution of water molecules when the chiral angle of the model is 37.4°; (b) the velocity distribution of water molecules when the chiral angle of the model is 66.6°; (c) the velocity distribution of water molecules when the chiral angle of the model is 90°; (d) potential energy cloud diagram when the chiral angle of the model is 90°.

    图 5  不同手性的模拟系统在不同加速度条件下的水分子黏度系数方差分布图

    Figure 5.  Variance distribution of water molecular viscosity coefficient of a simulation system with different chirality under different acceleration conditions.

    图 6  不同纳米通道宽度内水分子沿通道宽度方向速度分布图

    Figure 6.  Velocity distribution of water molecules along the width of different nanochannel widths.

    图 7  不同层数模型对应的速度分布图

    Figure 7.  Velocity distributions corresponding to different layer models.

    表 1  L-J势能函数的参数值

    Table 1.  Parameter values of L-J potential function

    Atomsε/kcal·mol–1σ
    P-P0.367603.43800
    O-O0.162753.16435
    P-O0.244603.30120
    DownLoad: CSV

    表 2  不同手性情况中, 不同加速度对应的水分子边界滑移速度VS统计表

    Table 2.  Statistical table of water molecule boundary slip velocity VS corresponding to different accelerations in different chiral conditions.

    gx/m·s–1Angle/(°)
    037.466.690
    1.0 × 10126.33055.79904.78183.5462
    1.5 × 10128.98478.79796.88675.8156
    2.0 × 101213.491212.969410.69957.5839
    DownLoad: CSV

    表 3  不同手性的模拟系统在不同加速度条件下的水分子黏度系数μ分布表

    Table 3.  Distribution of water molecular viscosity coefficient μ of simulation systems with different chirality under different acceleration conditions.

    gx/m·s–1Angle/(°)
    037.466.690
    1.0 × 10120.11820.12090.11160.1212
    1.5 × 10120.11930.11730.11230.1168
    2.0 × 10120.11710.12030.12010.1183
    DownLoad: CSV

    表 4  不同纳米通道宽度内水分子的边界滑移表

    Table 4.  Boundary slip of water molecules at different nanochannels widths.

    H/nm3456
    VS/m·s–14.02674.35475.80057.5839
    DownLoad: CSV

    表 5  不同黑磷层数纳米通道模型中流固界面参数对比

    Table 5.  Comparison of the interfacial parameters for the models with different BP layers.

    VS/m·s–1μ/mPa·sEw-BP/kcal·mol–1·nm–2
    MonolayerBilayerMonolayerBilayerMonolayerBilayer
    13.491212.92560.11710.1216–13.7663–13.9138
    37.4°12.969412.44600.12030.1204–13.7797–13.9285
    DownLoad: CSV
  • [1]

    Keim N C, Arratia P E 2014 Phys. Rev. Lett. 112 028302Google Scholar

    [2]

    Naumis G G, Barraza-Lopez S, Oliva-Leyva M, Terrones H 2017 Rep. Prog. Phys. 80 096501Google Scholar

    [3]

    Paul J T, Singh A K, Dong Z, Zhuang H, Revard B C, Rijal B, Ashton M, Linscheid A, Blonsky M, Gluhovic D, Guo J, Hennig R G 2017 J. Phys.: Condens. Matter 29 473001Google Scholar

    [4]

    胡小唐, 李源, 饶志军, 胡春光, 傅星 2004 纳米技术与精密工程 2 1

    Hu X T, Li Y, Rao Z J, Hu C G, Fu X 2004 Nanotechnology and Precision Engineering 2 1

    [5]

    周兆英, 杨兴 2003 仪表技术与传感器 2 1Google Scholar

    Zhou Z Y, Yang X 2003 Instrument Technique and Sensor 2 1Google Scholar

    [6]

    严宇才, 张端 2011 电子工业专用设备 40 1Google Scholar

    Yan Y C, Zhang R 2011 Equipment for Electronic Products Manufacturing 40 1Google Scholar

    [7]

    Wu L, Deng D, Jin J, Lu X B, Chen J P 2012 Biosens. Bioelectron. 35 193Google Scholar

    [8]

    Khan M, Misra S K, Wang Z, Daza E, Schwartz-Duval A, Kus M J, Pan D 2017 Anal. Chem. 89 2107Google Scholar

    [9]

    Narang J, Malhotra N, Singhal C, Mathur A, Chakraborty D, Anil A, Ingle A, Pundir C S 2017 Biosens. Bioelectron. 88 249Google Scholar

    [10]

    Connacher W, Zhang N, An H, Mei J Y, Zhang S, Gopesh T, Friend J 2018 Lab Chip 10 1039

    [11]

    Soong C Y, Yen T H, Tzeng P Y 2007 Phys. Rev. E 76 036303Google Scholar

    [12]

    Sofos F D, Karakasidis T E, Antonios L 2009 Phys. Rev. E 79 026305Google Scholar

    [13]

    Turlo V, Politano O, Baras F 2015 Acta Mater. 99 363Google Scholar

    [14]

    Balasubramanian S, Mundy C J 1999 Bull. Mater. Sci. 22 873Google Scholar

    [15]

    Wang Z, Jia H, Zheng X, Yang R, Wang Z F, Ye G J, Chen X H, Shan J, Feng, P X L 2015 Nanoscale 7 877Google Scholar

    [16]

    Li L, Guo J Y, Tran V, Tran V, Fei R, Zhang Y 2015 Nat. Nanotechnol. 10 608Google Scholar

    [17]

    Wang X M, Jones A M, Seyler K L, Tran V, Jia Y C, Zhao H, Wang H, Yang L, Xu X D, Xia F N 2015 Nat. Nanotechnol. 10 517Google Scholar

    [18]

    袁振洲, 刘丹敏, 田楠, 张国庆, 张永哲 2016 化学学报 74 488

    Yuan Z Z, Liu D M, Tian N, Zhang G Q, Zhang Y Z 2016 Acta Chimica Sinica 74 488

    [19]

    Chen H, Huang P, Guo D, Xie G X 2016 J. Phys. Chem. C 120 29491Google Scholar

    [20]

    Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar

    [21]

    Xia F, Wang H, Jia Y 2014 Nat. Commun. 5 4458Google Scholar

    [22]

    Fernández-Escamilla H N, Quijano-Briones J J, Tlahuice-Flores A 2016 Phys. Chem. Chem. Phys. 18 12414Google Scholar

    [23]

    Cai K, Wan J, Wei N, Qin Q H 2016 Nanotechnology 27 275701Google Scholar

    [24]

    Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665Google Scholar

    [25]

    Ryckaert J P, Ciccotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327Google Scholar

    [26]

    Cai K, Liu L, Jiao S, Qin Q H 2017 Mater. Des. 121 406Google Scholar

    [27]

    Zhang H W, Ye H F, Zheng Y G, Zhang Z 2011 Microfluid. Nanofluid. 10 403Google Scholar

    [28]

    Thompson P A, Troian S M 1997 Nature 63 360

    [29]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar

    [30]

    Zhang H W, Zhang Z Q, Zheng Y G, Wang L, Wang J B 2010 Phys. Rev. E 81 066303Google Scholar

    [31]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [32]

    Koplik J, Banavar J R, Willemsen J F 1988 Phys. Rev. Lett. 60 1282Google Scholar

  • [1] Sang Li-Xia, Li Zhi-Kang. Molecular dynamics simulation of thermal transport properties of phonons at interface of Au-TiO2 photoelectrode. Acta Physica Sinica, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [2] Huang Shen-Yang, Zhang Guo-Wei, Wang Fan-Jie, Lei Yu-Chen, Yan Hu-Gen. Optical properties of two-dimensional black phosphorus. Acta Physica Sinica, 2021, 70(2): 027802. doi: 10.7498/aps.70.20201497
    [3] Ding Yan, Zhong Yue-Hua, Guo Jun-Qing, Lu Yi, Luo Hao-Yu, Shen Yun, Deng Xiao-Hua. Anisotropic Raman characterization and electrical properties of black phosphorus. Acta Physica Sinica, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] Dong Da-Xing, Liu You-Wen, Fu Yang-Yang, Fei Yue. Enhancement of Faraday rotation of black phosphorus by extraordinary optical transmission of the metal grating. Acta Physica Sinica, 2020, 69(23): 237802. doi: 10.7498/aps.69.20201056
    [5] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] Meng Da, Cong Xin, Leng Yu-Chen, Lin Miao-Ling, Wang Jia-Hong, Yu Bin-Lu, Liu Xue-Lu, Yu Xue-Feng, Tan Ping-Heng. Resonant Multi-phonon Raman scattering of black phosphorus. Acta Physica Sinica, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [7] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [8] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [9] Lu Min, Huang Hui-Lian, Yu Dong-Hai, Liu Wei-Qing, Wei Wang-He. Anisotropy of melting of Ag nanocrystal with different crystallographic planes at high temperature. Acta Physica Sinica, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [10] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [11] Tang Cui-Ming, Zhao Feng, Chen Xiao-Xu, Chen Hua-Jun, Cheng Xin-Lu. Thermite reaction of Al and α-Fe2O3 at the nanometer interface:ab initio molecular dynamics study. Acta Physica Sinica, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [12] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [13] Zhang Yun-Peng, Lin Xin, Wei Lei, Wang Meng, Peng Dong-Jian, Huang Wei-Dong. Effect of surface tension anisotropy on the growth patterns of cellulars in directional solidification. Acta Physica Sinica, 2012, 61(22): 228106. doi: 10.7498/aps.61.228106
    [14] Zeng Xiang-Ming, Yan Hui-Jun, Ouyang Chu-Ying. First principles investigation of dynamic performance in the process of lithium intercalation into black phosphorus. Acta Physica Sinica, 2012, 61(24): 247101. doi: 10.7498/aps.61.247101
    [15] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [16] Chen Min. Molecular dynamics study of small helium cluster diffusion in titanium. Acta Physica Sinica, 2011, 60(12): 126602. doi: 10.7498/aps.60.126602
    [17] He An-Min, Qin Cheng-Sen, Shao Jian-Li, Wang Pei. Molecular dynamics simulation of the anisotropy of surface melting of metal Al. Acta Physica Sinica, 2009, 58(4): 2667-2674. doi: 10.7498/aps.58.2667
    [18] Wang Zhi-Jun, Wang Jin-Cheng, Yang Gen-Cang. The asymptotic analysis of interfacial stability with surface tension anisotropy for directional solidification of alloys. Acta Physica Sinica, 2008, 57(2): 1246-1253. doi: 10.7498/aps.57.1246
    [19] Li An-Hua, Dong Sheng-Zhi, Li Wei. . Acta Physica Sinica, 2002, 51(10): 2320-2324. doi: 10.7498/aps.51.2320
    [20] DAI YONG-BING, SHEN HE-SHENG, ZHANG ZHI-MING, HE XIAN-CHANG, HU XIAO-JUN, SUN FANG-HONG, XIN HAI-WEI. A MOLECULAR DYNAMICS SIMULATION OF DIAMOND/SILICON(001) INTERFACE. Acta Physica Sinica, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
Metrics
  • Abstract views:  13398
  • PDF Downloads:  71
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2019
  • Accepted Date:  14 June 2019
  • Available Online:  01 September 2019
  • Published Online:  05 September 2019

/

返回文章
返回