-
Friction resistance is the primary factor influencing the energy consumption and speed of underwater vehicles. Active air layer drag reduction is an active boundary layer control technique that reduces wall friction drag by injecting gas into the solid-liquid boundary layer. Compared with other drag reduction methods, which are often difficult to scale due to high costs and potential environmental concerns, this technology utilizes a simple auxiliary device. By employing inexpensive and environmentally friendly compressed air or combustion exhaust gases, it effectively lowers fluid resistance. Therefore, active drag reduction technology plays a crucial role in minimizing friction and enhancing overall performance. In this study, molecular dynamics simulations are used to construct a Couette flow shear model, with gas injected at the boundaries of a nanochannel. The flow characteristics and boundary drag reduction of Couette flow in a nanochannel is investigated in this work. The influence of gas injection on these characteristics is examined, along with the effects of surface wettability, shear velocity, and gas injection rate on boundary slip velocity and drag reduction. The results indicate that the gas adsorption on the solid surface in the form of discrete bubbles hinders liquid flowing and slipping near the wall, leading to the increase of drag. However, increasing surface hydrophobicity, shear rate, and gas injection rate facilitates the transverse spreading of bubbles, reduces flow obstruction, and enhances slip. Additionally, these factors promote the formation of a continuous gas layer from discrete bubbles, further improving drag reduction. Once the gas layer forms, shear stress decreases significantly, and slip velocity varies with surface wettability, shear velocity, and gas injection rate. These findings provide a theoretical foundation for developing the active gas layer drag reduction technology and optimizing the surface structures in ships and underwater vehicles.
-
Keywords:
- active drag reduction /
- boundary slip /
- Couette flow /
- molecular dynamic
-
图 6 形成气膜后不同剪切速度下, (a) 气体形态图和(b) 液体原子速度轮廓图(其中半透明的线条为对照的无气体通入时的液体原子速度)
Figure 6. (a) Gas morphology and (b) liquid atomic velocity profile under different shear velocities after the formation of gas layer. In panel (b), the translucent lines represent the liquid atomic velocity without gas injection for comparison.
表 1 三相相互作用势能参数
Table 1. Potential energy parameter of three-phase interaction.
两相类型 ε/(kBT)/(kcal·mol–1) σ/Å 固-固 1.2 3.4 液-液 1.2 3.4 气-气 0.4 5.0 固-液 0.7 3.4 固-气 1.0 4.2 液-气 0.4 4.488 -
[1] Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968
[2] Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11
Google Scholar
[3] Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183
Google Scholar
[4] 康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087
Google Scholar
Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Chin. J. Theor. Appl. Mech. 55 1087
Google Scholar
[5] 李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703
Google Scholar
Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703
Google Scholar
[6] 张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863
Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863
[7] Pakzad H, Liravi M, Moosavi A, Nouri B A, Najafkhani H 2020 Appl. Sur. Sci. 513 145754
Google Scholar
[8] Yue P P, Zhang M, Zhao T, Liu P, Peng F, Yang L Q 2024 Ind. Crop. Prod. 214 118523
Google Scholar
[9] Makiharju S A, Perlin M, Ceccio S L 2012 Int. J. Nav. Arch. Ocean 4 412
Google Scholar
[10] McCormick M E, Bhattacharyya R 1973 Nav. Eng. 85 11
[11] Kumagai I, Takahashi Y, Murai Y, 2015 Ocean Eng. 95 183
Google Scholar
[12] Gao Q D, Lu J S, Zhang G L, Zhang J W, Wu W F, Deng J J 2023 Ocean Eng. 272 113804
Google Scholar
[13] Zhao X J, Zong Z 2022 Ocean Eng. 251 111032
Google Scholar
[14] Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807
Google Scholar
[15] Samuel A, Jia W D, Ou M X, Wang P, Gong C 2019 Appl. Eng. Agric. 35 795
Google Scholar
[16] Dabbour M, He R H, Mintah B, Ma H L 2019 J. Food Process Eng. 42 e13084
Google Scholar
[17] Jiang Y, Li H, Hua L, Zhang D M 2020 Biosyst. Eng. 193 216
Google Scholar
[18] 张鹏, 张彦如, 张福建, 刘珍, 张忠强 2024 物理学报 73 154701
Google Scholar
Zhang P, Zhang Y R, Zhang F J, Liu Z, Zhang Z Q 2024 Acta Phys. Sin. 73 154701
Google Scholar
[19] 刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32
Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32
[20] Killian B, Alizée D, Thierry C, Paul L, Laurent V, Jean-François M 2025 Comput. Phys. Commun. 307 109427
Google Scholar
[21] Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501
Google Scholar
[22] Mustafa O, Sophia J, Ali B, Adam A W 2025 Int. Commun. Heat Mass 163 108658
Google Scholar
[23] Meng J Q, Wang J, Wang L J, Lyu C H, Lyu Y P, Nie B H 2024 Colloid. Surf. A 684 133126
Google Scholar
[24] Qiu H, Guo W L 2019 J. Phys. Chem. Lett. 10 6316.
Google Scholar
[25] Yang J H, Yuan Q Z, Zhao Y P 2019 Sci. China Phys. Mech. 62 124611
Google Scholar
[26] García-Magari ño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315
Google Scholar
[27] Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141
Google Scholar
[28] Tang S, Zhu Y, Yuan S 2023 J. Bionic Eng. 20 2797
Google Scholar
[29] Hu H, Wang D, Ren F, Bao L, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166
Google Scholar
[30] 吕鹏宇, 薛 亚辉, 段慧玲 2016 力学进展 46 179
Google Scholar
Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179
Google Scholar
Metrics
- Abstract views: 299
- PDF Downloads: 7
- Cited By: 0