Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics study of cascade damage at SiC/C interface

Wang Cheng-Long Wang Qing-Yu Zhang Yue Li Zhong-Yu Hong Bing Su Zhe Dong Liang

Citation:

Molecular dynamics study of cascade damage at SiC/C interface

Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Continuous silicon carbide (SiC) fiber-reinforced SiC (SiCf/SiC) composites have been considered to be used as structural materials in advanced nuclear reactors for its excellent properties. Their mechanical properties have been greatly improved during the last decade. But the radiation damage at the SiC and pyrolytic carbon interface would degrade the mechanical integrity of the composites, while the mechanism of degradation is remaining unknown at present. In this study, molecular dynamics simulations have been used to model the irradiation cascade of five SiC/C composite systems. According to the angle between the graphite layer and the interface, the models are marked as M0, M28, M56, M77 and M90, in which the number represents the angle. Forty primary knock-on atoms (PKAs) at different positions in each composite system are used to bombard the interface. In each run a collision cascade may be initiated by giving one of the 40 atoms 1.5 keV kinetic energy. The relationships between the distribution of defects and simulation time and PKA position are systematically studied, and compared with those in bulk SiC, which are marked as MW. Results show that the radiation damage resistance of SiC/C interface is significantly lower than bulk SiC, and the interface structure has an impact on the number of defects. Radial distribution function (RDF) is employed to examine the coordination of interfacial atoms. The results show that the higher the density of graphite atoms in the interface, the larger impact the irradiation on the RDF and coordination.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. HEUCFT1103, HEUCF131507).
    [1]
    [2]

    Yueh K, Carpenter D, Feinroth H 2010 Nucl. Eng. Intern. 55 14

    [3]
    [4]

    Snead L L, Katoh Y, Windes W, Smit K 2008 Trans. Ameri. Nucl. Soc. 98 1019

    [5]

    Forsberg C W, Peterson P F, Kochendarfer R A, Areva N P 2008 In Proc. 2008 International Congress on Advances in Nuclear Power Plants, Anaheim, June 8-12, 2008, p8026

    [6]
    [7]

    Charpentier L, Dawi K, Balat-Pichelin M, Bêche E, Audubert F 2012 Corros. Sci. 59 127

    [8]
    [9]
    [10]

    Giancarli L, Golfier H, Nishio S, Raffray R, Wong C, Yamada R 2002 Fusion Eng. Design 61 307

    [11]

    Kohyama A, Konishi S, Kimura A 2005 Nucl. Eng. Des. 37 423

    [12]
    [13]

    Li W T 2007 Introduction of nuclear material(Beijing: Chemical Industry Press) p446 (in Chinese) [李文埮 2007 核材料导论 (北京: 化学工业出版社) 第446 页]

    [14]
    [15]

    Nozawa T, Ozawa K, Kondo S, Hinoki T, Katoh Y, Snead L L, Kohyama A 2005 J. ASTM Int. 2 JAI12884

    [16]
    [17]

    Nozawa T, Katoh Y, Snead L L 2007 J. Nucl. Mater. 367 685

    [18]
    [19]
    [20]

    Bai X M, Voter A F, Hoagland R G, Nastasi M, Uberuaga B P 2010 Science 327 1631

    [21]
    [22]

    Ackland G 2010 Science 327 1587

    [23]

    Wallace J, Chen D, Wang J, Shao L 2013 Nucl. Instrum. Methods. Res. Sect. B 307 81

    [24]
    [25]
    [26]

    Li W N, Xue J M, Wang J X, Duan H L 2014 Chin. Phys. B 23 036101

    [27]
    [28]

    Katoh Y, Ozawa K, Shih C, Nozawa T, Shinavski R J, Hasegawa A, Snead L L 2014 J. Nucl. Mater. 448 448

    [29]
    [30]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [31]

    Zeigler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (Vol.1) (New York: Pergamon Press)

    [32]
    [33]
    [34]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [35]
    [36]

    Plimpton S 1995 J. Comp. Phys. 7 1

    [37]
    [38]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33

    [39]

    Li J 2003 Model. Simul. Mater. Sci. Eng. 11 173

    [40]
    [41]

    Alexander S 2010 Model. Simul. Mater. Sci. Eng. 18 015012

    [42]
    [43]

    Wang J W, Shang X C, Lv G C 2011 Mater. Eng. 10 005 (in Chinese) [王建伟, 尚新春, 吕国才 2011 材料工程 10 005]

    [44]
    [45]

    Yang L, Zu X T, Xiao H Y, Yang S Z, Liu K Z, Gao F 2005 Acta Phys. Sin. 54 4857 (in Chinese) [杨莉, 祖小涛, 肖海燕, 杨树政, 刘柯钊, Gao F 2005 物理学报 54 4857]

    [46]
    [47]

    Farrell D E 2008 Ph. D. Dissertation (Evanstone: Northwestern University) (in USA)

    [48]
    [49]
    [50]

    Liu H M, Fan Y S, Tian S H, Zhou W, Chen X 2012 Acta Phys. Sin. 61 062801 (in Chinese) [刘华敏, 范永胜, 田时海, 周维, 陈旭 2012 物理学报 61 062801]

    [51]

    Devanathan R, Rubia D T, Weber W J 1998 J. Nucl. Mater. 253 47

    [52]
    [53]

    Swaminathan N, Wojdyr M, Morgan D D, Szlufarska I 2012 J. Appl. Phys. 111 054918

    [54]
    [55]

    Naslain R R, Pailler R J F, Lamon J L 2010 Int. J. Appl. Ceram. Technol. 7 263

  • [1]
    [2]

    Yueh K, Carpenter D, Feinroth H 2010 Nucl. Eng. Intern. 55 14

    [3]
    [4]

    Snead L L, Katoh Y, Windes W, Smit K 2008 Trans. Ameri. Nucl. Soc. 98 1019

    [5]

    Forsberg C W, Peterson P F, Kochendarfer R A, Areva N P 2008 In Proc. 2008 International Congress on Advances in Nuclear Power Plants, Anaheim, June 8-12, 2008, p8026

    [6]
    [7]

    Charpentier L, Dawi K, Balat-Pichelin M, Bêche E, Audubert F 2012 Corros. Sci. 59 127

    [8]
    [9]
    [10]

    Giancarli L, Golfier H, Nishio S, Raffray R, Wong C, Yamada R 2002 Fusion Eng. Design 61 307

    [11]

    Kohyama A, Konishi S, Kimura A 2005 Nucl. Eng. Des. 37 423

    [12]
    [13]

    Li W T 2007 Introduction of nuclear material(Beijing: Chemical Industry Press) p446 (in Chinese) [李文埮 2007 核材料导论 (北京: 化学工业出版社) 第446 页]

    [14]
    [15]

    Nozawa T, Ozawa K, Kondo S, Hinoki T, Katoh Y, Snead L L, Kohyama A 2005 J. ASTM Int. 2 JAI12884

    [16]
    [17]

    Nozawa T, Katoh Y, Snead L L 2007 J. Nucl. Mater. 367 685

    [18]
    [19]
    [20]

    Bai X M, Voter A F, Hoagland R G, Nastasi M, Uberuaga B P 2010 Science 327 1631

    [21]
    [22]

    Ackland G 2010 Science 327 1587

    [23]

    Wallace J, Chen D, Wang J, Shao L 2013 Nucl. Instrum. Methods. Res. Sect. B 307 81

    [24]
    [25]
    [26]

    Li W N, Xue J M, Wang J X, Duan H L 2014 Chin. Phys. B 23 036101

    [27]
    [28]

    Katoh Y, Ozawa K, Shih C, Nozawa T, Shinavski R J, Hasegawa A, Snead L L 2014 J. Nucl. Mater. 448 448

    [29]
    [30]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [31]

    Zeigler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (Vol.1) (New York: Pergamon Press)

    [32]
    [33]
    [34]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [35]
    [36]

    Plimpton S 1995 J. Comp. Phys. 7 1

    [37]
    [38]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33

    [39]

    Li J 2003 Model. Simul. Mater. Sci. Eng. 11 173

    [40]
    [41]

    Alexander S 2010 Model. Simul. Mater. Sci. Eng. 18 015012

    [42]
    [43]

    Wang J W, Shang X C, Lv G C 2011 Mater. Eng. 10 005 (in Chinese) [王建伟, 尚新春, 吕国才 2011 材料工程 10 005]

    [44]
    [45]

    Yang L, Zu X T, Xiao H Y, Yang S Z, Liu K Z, Gao F 2005 Acta Phys. Sin. 54 4857 (in Chinese) [杨莉, 祖小涛, 肖海燕, 杨树政, 刘柯钊, Gao F 2005 物理学报 54 4857]

    [46]
    [47]

    Farrell D E 2008 Ph. D. Dissertation (Evanstone: Northwestern University) (in USA)

    [48]
    [49]
    [50]

    Liu H M, Fan Y S, Tian S H, Zhou W, Chen X 2012 Acta Phys. Sin. 61 062801 (in Chinese) [刘华敏, 范永胜, 田时海, 周维, 陈旭 2012 物理学报 61 062801]

    [51]

    Devanathan R, Rubia D T, Weber W J 1998 J. Nucl. Mater. 253 47

    [52]
    [53]

    Swaminathan N, Wojdyr M, Morgan D D, Szlufarska I 2012 J. Appl. Phys. 111 054918

    [54]
    [55]

    Naslain R R, Pailler R J F, Lamon J L 2010 Int. J. Appl. Ceram. Technol. 7 263

  • [1] Cheng Da-Zhao, Liu Cai-Yan, Zhang Chao-Ran, Qu Jia-Hui, Zhang Jing. Phase field simulation of intra/intergranular pore morphology evolution in neutron-irradiated austenitic stainless steel. Acta Physica Sinica, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [2] Sang Li-Xia, Li Zhi-Kang. Molecular dynamics simulation of thermal transport properties of phonons at interface of Au-TiO2 photoelectrode. Acta Physica Sinica, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [3] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [4] Li Fen-Fei, Zhou Xiao-Yan, Zhang Kui-Bao, Shi Zhao-Hua, Chen Jin-Zhan, Ye Xin, Wu Wei-Dong, Li Bo. Effects of neutron irradiation on optical characteristics of Yb-doped fiber materials. Acta Physica Sinica, 2021, 70(19): 190201. doi: 10.7498/aps.70.20210083
    [5] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [7] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [8] Yuan Wei, Peng Hai-Bo, Du Xin, Lü Peng, Shen Yang-Hao, Zhao Yan, Chen Liang, Wang Tie-Shan. Structure evalution of electron irradiated borosilicate glass simuluated by molecular dynamics. Acta Physica Sinica, 2017, 66(10): 106102. doi: 10.7498/aps.66.106102
    [9] Li Li-Li, Xia Zhen-Hai, Yang Yan-Qing, Han Ming. Molecular dynamics study on tensile behavior of SiC nanofiber/C/SiC nanocomposites. Acta Physica Sinica, 2015, 64(11): 117101. doi: 10.7498/aps.64.117101
    [10] Zhang Ming-Lan, Yang Rui-Xia, Li Zhuo-Xin, Cao Xing-Zhong, Wang Bao-Yi, Wang Xiao-Hui. Study on proton irradiation induced defects in GaN thick film. Acta Physica Sinica, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [11] Tang Cui-Ming, Zhao Feng, Chen Xiao-Xu, Chen Hua-Jun, Cheng Xin-Lu. Thermite reaction of Al and α-Fe2O3 at the nanometer interface:ab initio molecular dynamics study. Acta Physica Sinica, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [12] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [13] Yu Zong-Guang, Xiao Zhi-Qiang, Zhou Xin-Jie, Li Lei-Lei. Threshold voltage degradation mechanism of SOI SONOS EEPROM under total-dose irradiation. Acta Physica Sinica, 2011, 60(9): 098502. doi: 10.7498/aps.60.098502
    [14] Zhang Lin, Xiao Jian, Qiu Yang-Zhang, Cheng Hong-Liang. Radition effect on Ti/4H-SiC SBD of gamma-ray,electrons and neutrons. Acta Physica Sinica, 2011, 60(5): 056106. doi: 10.7498/aps.60.056106
    [15] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [16] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [17] Tang Chao, Ji Lu, Meng Li-Jun, Sun Li-Zhong, Zhang Kai-Wang, Zhong Jian-Xin. Growth of graphene structure on 6H-SiC(0001): Molecular dynamics study. Acta Physica Sinica, 2009, 58(11): 7815-7820. doi: 10.7498/aps.58.7815
    [18] Ma Ying, Chen Shang-Da, Xie Guo-Feng. Variable charge molecular dynamics simulations of the intergranular films in SiC. Acta Physica Sinica, 2009, 58(11): 7792-7796. doi: 10.7498/aps.58.7792
    [19] Peng Shao-Quan, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, He Liang, Chen Wei-Hua. Radiation degradation model of metal-oxide-semiconductor field effect transistor based on pre-irradiation 1/f noise. Acta Physica Sinica, 2008, 57(8): 5205-5211. doi: 10.7498/aps.57.5205
    [20] DAI YONG-BING, SHEN HE-SHENG, ZHANG ZHI-MING, HE XIAN-CHANG, HU XIAO-JUN, SUN FANG-HONG, XIN HAI-WEI. A MOLECULAR DYNAMICS SIMULATION OF DIAMOND/SILICON(001) INTERFACE. Acta Physica Sinica, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
Metrics
  • Abstract views:  7561
  • PDF Downloads:  933
  • Cited By: 0
Publishing process
  • Received Date:  31 December 2013
  • Accepted Date:  05 June 2014
  • Published Online:  05 August 2014

/

返回文章
返回