Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation

Zhou Hua-Guang Lin Xin Wang Meng Huang Wei-Dong

Citation:

Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation

Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The growing and melting of crystal nuclei in liquid Cu are investigated by molecular dynamics simulation. The critical undercooling is proportional to the reciprocle of the nanoparticle radius. The Gibbs-Thomson coefficient of Cu is 1.12× 10-7 K·m. Then the crystal-melt interfacial free energy of Cu is 0.146 J/m2 estimated from the Gibbs-Thomson coefficient, and the Turnbull coefficient of Cu is 0.416. All the values by simulation are consistent with the experimental results of Turnbull.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50971102 and 50901061), the National Basic Research Program of China (Grant No. 2011CB610402), the Programme of Introducing Talents of Discipline to Universities (Grant No. 08040), and the fund of the State Key Laboratory of Solidification Processing in NWPU (Grant No. 02-TZ-2008).
    [1]

    Boettinger W J 2000 Acta Mater. 48 43

    [2]

    Asta M 2009 Acta Mater. 57 941

    [3]

    Turnbull D 1950 J. Appl. Phys. 21 1022

    [4]

    Turnbull D, Cech R E 1950 J. Appl. Phys. 21 804

    [5]

    Guo Y L, Wang J C, Wang Z J, Tang S, Zhou Y H 2012 Acta Phys. Sin. 61 146401 (in Chinese) [郭耀麟, 王锦程, 王志军, 唐赛, 周尧和 2012 物理学报 61 146401]

    [6]

    Chen M W, Wang Z D, Xu J J 2009 Chin. Phys. B 18 1691 (in Chinese) [陈明文, 王自东, 徐鉴君 2009 中国物理 B 18 1691]

    [7]

    Zhou S Q 2007 Chin. Phys. B 16 1167 (in Chinese) [周世琦 2007 中国物理B 16 1167]

    [8]

    Jones D R H 1974 J. Mater. Sci. 9 1

    [9]

    Schaefer R J, Glicksman M E, Ayers J D 1975 Philos. Mag. 32 725

    [10]

    Maraçli N, Keçlioglu K, Arslan B 2003 J. Crystal Growth 247 613

    [11]

    Wen Y H, Zhu T, Cao L X, Wang C Y, 2003 Acta Phys. Sin. 52 2520 (in Chinese) [文玉华, 朱弢, 曹立霞, 王崇愚 2003 物理学报 52 2520]

    [12]

    Zhang C, Lv H F, Zhang Q Y 2002 Acta Phys. Sin. 51 2329 (in Chinese) [张超, 吕海峰, 张庆瑜 2002 物理学报 51 2329]

    [13]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [14]

    Broughton J Q, Gilmer G H 1986 J. Chem. Phys. 84 5759

    [15]

    Davidchack R L, Laird B B 2000 Phys. Rev. Lett. 85 4751

    [16]

    Davidchack R L, Laird B B 2003 J. Chem. Phys. 118 7651

    [17]

    Hoyt J J, Asta M, Karma A 2001 Phys. Rev. Lett. 86 5530

    [18]

    Handel R, Davidchack R L, Anwar J, Brukhno A 2008 Phys. Rev. Lett. 100 036104

    [19]

    Apte P A, Zeng X C 2008 Appl. Phys. Lett. 92 221903

    [20]

    Laird B B, Davidchack R L, Yang Y, Asta M 2009 J. Chem. Phys. 131 114110

    [21]

    Laird B B, Davidchack R L 2010 J. Chem. Phys. 132 204101

    [22]

    Davidchack R L 2010 J. Chem. Phys. 133 234701

    [23]

    Frolov T, Mishin Y 2009 J. Chem. Phys. 131 054702

    [24]

    Morris J R 2002 Phys. Rev. B 66 144104

    [25]

    Morris J R, Lu Z Y, Ye Y Y, Ho K M 2002 Inter. Sci. 10 143

    [26]

    Hoyt J J, Asta M 2002 Phys. Rev. B 65 214106

    [27]

    Sun D Y, Asta M, Hoyt J J 2004 Phys. Rev. B 69 174103

    [28]

    Sun D Y, Asta M, Hoyt J J, Mendelev M I, Srolovitz D J 2004 Phys. Rev. B 69 020102

    [29]

    Hoyt J J, Asta M, Sun D Y 2006 Philos. Mag. 86 3651

    [30]

    Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J 2006 Phys. Rev. B 73 024116

    [31]

    Asta M, Hoyt J J, Karma A 2002 Phys. Rev. B 66 100101

    [32]

    Potter A A, Hoyt J J 2011 J. Crystal Growth 327 227

    [33]

    Davidchack R L, Morris J R, Laird B B 2006 J. Chem. Phys. 125 094710

    [34]

    Morris J R, Song X 2003 J. Chem. Phys. 119 3920

    [35]

    Bai X M, Li M 2006 J. Chem. Phys. 124 124707

    [36]

    Shibuta Y, Watanabe Y, Suzuki T 2009 Chem. Phys. Lett. 475 264

    [37]

    Watanabe Y, Shibuta Y, Suzuki T 2010 ISIJ Inter. 50 1158

    [38]

    Hashimoto R, Shibuta Y, Suzuki T 2011 ISIJ Inter. 51 1664

    [39]

    Luo S N, Ahrens T J, Çagin T, Strachan A, Goddard W A III 2003 Phys. Rev. B 68 134206

    [40]

    Berendsen H J C, Postma J P M, Gunsteren W F V, Dinola A, Haak J R 1984 J. Chem. Phys. 81 3684

    [41]

    Todorov I T, Smith W 2010 The DL_POLY4.01 user manual (STFC Daresbury Laboratory, Warrington WA44AD Cheshire, UK) p92-163

    [42]

    Kurz W, Fisher D J 1998 Fundamental of Solidification (4th revised edition) (Aedermannsdorf Switzerland: Trans Tech Publication) p21

  • [1]

    Boettinger W J 2000 Acta Mater. 48 43

    [2]

    Asta M 2009 Acta Mater. 57 941

    [3]

    Turnbull D 1950 J. Appl. Phys. 21 1022

    [4]

    Turnbull D, Cech R E 1950 J. Appl. Phys. 21 804

    [5]

    Guo Y L, Wang J C, Wang Z J, Tang S, Zhou Y H 2012 Acta Phys. Sin. 61 146401 (in Chinese) [郭耀麟, 王锦程, 王志军, 唐赛, 周尧和 2012 物理学报 61 146401]

    [6]

    Chen M W, Wang Z D, Xu J J 2009 Chin. Phys. B 18 1691 (in Chinese) [陈明文, 王自东, 徐鉴君 2009 中国物理 B 18 1691]

    [7]

    Zhou S Q 2007 Chin. Phys. B 16 1167 (in Chinese) [周世琦 2007 中国物理B 16 1167]

    [8]

    Jones D R H 1974 J. Mater. Sci. 9 1

    [9]

    Schaefer R J, Glicksman M E, Ayers J D 1975 Philos. Mag. 32 725

    [10]

    Maraçli N, Keçlioglu K, Arslan B 2003 J. Crystal Growth 247 613

    [11]

    Wen Y H, Zhu T, Cao L X, Wang C Y, 2003 Acta Phys. Sin. 52 2520 (in Chinese) [文玉华, 朱弢, 曹立霞, 王崇愚 2003 物理学报 52 2520]

    [12]

    Zhang C, Lv H F, Zhang Q Y 2002 Acta Phys. Sin. 51 2329 (in Chinese) [张超, 吕海峰, 张庆瑜 2002 物理学报 51 2329]

    [13]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景琳, 陈栋泉 2002 物理学报 51 2386]

    [14]

    Broughton J Q, Gilmer G H 1986 J. Chem. Phys. 84 5759

    [15]

    Davidchack R L, Laird B B 2000 Phys. Rev. Lett. 85 4751

    [16]

    Davidchack R L, Laird B B 2003 J. Chem. Phys. 118 7651

    [17]

    Hoyt J J, Asta M, Karma A 2001 Phys. Rev. Lett. 86 5530

    [18]

    Handel R, Davidchack R L, Anwar J, Brukhno A 2008 Phys. Rev. Lett. 100 036104

    [19]

    Apte P A, Zeng X C 2008 Appl. Phys. Lett. 92 221903

    [20]

    Laird B B, Davidchack R L, Yang Y, Asta M 2009 J. Chem. Phys. 131 114110

    [21]

    Laird B B, Davidchack R L 2010 J. Chem. Phys. 132 204101

    [22]

    Davidchack R L 2010 J. Chem. Phys. 133 234701

    [23]

    Frolov T, Mishin Y 2009 J. Chem. Phys. 131 054702

    [24]

    Morris J R 2002 Phys. Rev. B 66 144104

    [25]

    Morris J R, Lu Z Y, Ye Y Y, Ho K M 2002 Inter. Sci. 10 143

    [26]

    Hoyt J J, Asta M 2002 Phys. Rev. B 65 214106

    [27]

    Sun D Y, Asta M, Hoyt J J 2004 Phys. Rev. B 69 174103

    [28]

    Sun D Y, Asta M, Hoyt J J, Mendelev M I, Srolovitz D J 2004 Phys. Rev. B 69 020102

    [29]

    Hoyt J J, Asta M, Sun D Y 2006 Philos. Mag. 86 3651

    [30]

    Sun D Y, Mendelev M I, Becker C A, Kudin K, Haxhimali T, Asta M, Hoyt J J, Karma A, Srolovitz D J 2006 Phys. Rev. B 73 024116

    [31]

    Asta M, Hoyt J J, Karma A 2002 Phys. Rev. B 66 100101

    [32]

    Potter A A, Hoyt J J 2011 J. Crystal Growth 327 227

    [33]

    Davidchack R L, Morris J R, Laird B B 2006 J. Chem. Phys. 125 094710

    [34]

    Morris J R, Song X 2003 J. Chem. Phys. 119 3920

    [35]

    Bai X M, Li M 2006 J. Chem. Phys. 124 124707

    [36]

    Shibuta Y, Watanabe Y, Suzuki T 2009 Chem. Phys. Lett. 475 264

    [37]

    Watanabe Y, Shibuta Y, Suzuki T 2010 ISIJ Inter. 50 1158

    [38]

    Hashimoto R, Shibuta Y, Suzuki T 2011 ISIJ Inter. 51 1664

    [39]

    Luo S N, Ahrens T J, Çagin T, Strachan A, Goddard W A III 2003 Phys. Rev. B 68 134206

    [40]

    Berendsen H J C, Postma J P M, Gunsteren W F V, Dinola A, Haak J R 1984 J. Chem. Phys. 81 3684

    [41]

    Todorov I T, Smith W 2010 The DL_POLY4.01 user manual (STFC Daresbury Laboratory, Warrington WA44AD Cheshire, UK) p92-163

    [42]

    Kurz W, Fisher D J 1998 Fundamental of Solidification (4th revised edition) (Aedermannsdorf Switzerland: Trans Tech Publication) p21

  • [1] Feng Shan-Qing, Gong Lu-Yuan, Quan Sheng-Lin, Guo Ya-Li, Shen Sheng-Qiang. Molecular dynamics simulation of nanodroplet impacting on high-temperature plate wall. Acta Physica Sinica, 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [2] Sang Li-Xia, Li Zhi-Kang. Molecular dynamics simulation of thermal transport properties of phonons at interface of Au-TiO2 photoelectrode. Acta Physica Sinica, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [3] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [4] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [5] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] Liu Qiang, Guo Qiao-Neng, Qian Xiang-Fei, Wang Hai-Ning, Guo Rui-Lin, Xiao Zhi-Jie, Pei Hai-Jiao. Molecular dynamics simulation of void nucleation, growth and closure of nano-Cu/Al films under cyclic loading. Acta Physica Sinica, 2019, 68(13): 133101. doi: 10.7498/aps.68.20181901
    [7] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, 2019, 68(2): 026801. doi: 10.7498/aps.68.20181530
    [8] Li Rui, Liu Teng, Chen Xiang, Chen Si-Cong, Fu Yi-Hong, Liu Lin. Influence of interface structure on nanoindentation behavior of Cu/Ni multilayer film: Atomic scale simulation. Acta Physica Sinica, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [9] Yin Ling-Kang, Xu Shun, Seongmin Jeong, Yongseok Jho, Wang Jian-Jun, Zhou Xin. Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation. Acta Physica Sinica, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [10] Lu Tao, Wang Jin, Fu Xu, Xu Biao, Ye Fei-Hong, Mao Jin-Bin, Lu Yun-Qing, Xu Ji. Theoretical calculation of the birefringence of poly-methyl methacrylate by using the density functional theory and molecular dynamics method. Acta Physica Sinica, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [11] Chen Ji, Feng Ye-Xin, Li Xin-Zheng, Wang En-Ge. A fully quantum description of the free-energy in high pressure hydrogen. Acta Physica Sinica, 2015, 64(18): 183101. doi: 10.7498/aps.64.183101
    [12] Zhang Cheng-Bin, Cheng Qi-Kun, Chen Yong-Ping. Molecular dynamics simulation on thermal conductivity of nanocomposites embedded with fractal structure. Acta Physica Sinica, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [14] Wang Zhi-Gang, Huang Rao, Wen Yu-Hua. Molecular dynamics investigation of thermal stability of Pt-Au core-shell nanoparticle. Acta Physica Sinica, 2013, 62(12): 126101. doi: 10.7498/aps.62.126101
    [15] Tang Cui-Ming, Zhao Feng, Chen Xiao-Xu, Chen Hua-Jun, Cheng Xin-Lu. Thermite reaction of Al and α-Fe2O3 at the nanometer interface:ab initio molecular dynamics study. Acta Physica Sinica, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [16] Xiao Hong-Xing, Long Chong-Sheng. Molecular dynamics simulation of surface energy of low miller index surfaces in UO2. Acta Physica Sinica, 2013, 62(10): 103104. doi: 10.7498/aps.62.103104
    [17] Qiu Feng, Wang Meng, Zhou Hua-Guang, Zheng Xuan, Lin Xin, Huang Wei-Dong. Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate. Acta Physica Sinica, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [18] Yang Ping, Wu Yong-Sheng, Xu Hai-Feng, Xu Xian-Xin, Zhang Li-Qiang, Li Pei. Molecular dynamics simulation of thermal conductivity for the TiO2/ZnO nano-film interface. Acta Physica Sinica, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [19] Zhou Zong-Rong, Wang Yu, Xia Yuan-Ming. Molecular dynamics study of deformation mechanism of γ-TiAl intermetallics. Acta Physica Sinica, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [20] DAI YONG-BING, SHEN HE-SHENG, ZHANG ZHI-MING, HE XIAN-CHANG, HU XIAO-JUN, SUN FANG-HONG, XIN HAI-WEI. A MOLECULAR DYNAMICS SIMULATION OF DIAMOND/SILICON(001) INTERFACE. Acta Physica Sinica, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
Metrics
  • Abstract views:  9717
  • PDF Downloads:  7511
  • Cited By: 0
Publishing process
  • Received Date:  25 June 2012
  • Accepted Date:  11 September 2012
  • Published Online:  05 March 2013

/

返回文章
返回