Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation

Yin Ling-Kang Xu Shun Seongmin Jeong Yongseok Jho Wang Jian-Jun Zhou Xin

Citation:

Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation

Yin Ling-Kang, Xu Shun, Seongmin Jeong, Yongseok Jho, Wang Jian-Jun, Zhou Xin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Exploring the atom-scale details such as morphology of coexisting phase during phase transitions is very important for understanding their microscopic mechanism.While most theories,such as the classic nucleation theory,usually over-simplify the character of the critical nucleus,like the shape,structure,and most current experiment techniques are hardly to capture the instantaneous microscopic details,the atomistic molecular dynamics (MD) or Monte Carlo (MC) simulation provides a promise to detect the intermediate process of phase transitions.However,the standard canonicalensemble MD/MC simulation technique can not sufficiently sample the instantaneous (unstable in thermodynamics) coexistent phase.Therefore,the MC in the general canonical ensemble,such as general isothermal-volume ensemble (gNVT),combined with the enhanced sampling techniques,such as the replica exchange (RE) method,was presented to stabilize then to sufficiently sample the atomic conformations of the phase coexistence.Due to the limit of the RE, the RE-MC simulation on gNVT is usually applied in smaller systems.In this paper,we first extend the gNVT-based MC simulation to the MD in the generalized isothermal-isobaric ensemble (gNPT) and very simply implement it in the standard atomic MD soft packages without modifying the code,so that we can use these packages in MD simulation of realistic systems.Then we simulate the vapour-liquid phase transition of all-atomic water model.At least at not very low pressures,we find that the individual gNPT simulation is already enough to reach equilibrium in any region of the phase transition,not only in the normal liquid and vapour regions,but in the super-saturation regions,and even in the vapour-liquid coexistent regions.The obtained energy-temperature curve in the cooling gNPT well matches with that in the heating procedure without any hysteresis.It indicates that it is not necessary to use the RE technique in the gNPT,and the intermediate states during phase transitions in larger systems can be effectively simulated by a series of independent individual gNPT-MD simulations in the standard soft packages.We also propose a method to accurately determine the interface between the two phases in the coexistence,then provide a quantitative measurement about the interface tension and the morphology of the coexistent phase in the larger all-atomic water at various temperatures and pressures.The results show that the liquid droplet (or vapour bubble) at the low pressure is close to a sphere due to the larger interface tension,as expectation of the classic nucleation theory of the first-order phase phase transition,but becomes more and more irregular as the decrease of the interfacial tension as increasing the pressure to approach to the critical pressure,where the phase transition is the second order one.
      Corresponding author: Zhou Xin, xzhou@ucas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11574310).
    [1]

    Erdemir D, Lee A Y 2009 Acc. Chem. Res. 42 621

    [2]

    Sleutel M, Lutsko J, van Driessche A E, Durán-Olivencia M A, Maes D 2014 Nat. Commun. 5 5598

    [3]

    Auer S, Frenkel D 2004 Annu. Rev. Phys. Chem. 55 333

    [4]

    Toxvaerd S 2015 J. Chem. Phys. 143 154705

    [5]

    Debenedetti P G 2006 Nature 441 168

    [6]

    Gasser U, Weeks E R, Schofield A, Pusey P N, Weitz D A 2001 Science 292 258

    [7]

    Yasuoka K, Matsumoto M 1998 J. Chem. Phys. 109 8451

    [8]

    Yasuoka K, Matsumoto M 1998 J. Chem. Phys. 109 8463

    [9]

    Myerson A S, Trout B L 2013 Science 341 855

    [10]

    Savage J R, Dinsmore A D 2009 Phys. Rev. Lett. 102 198302

    [11]

    Sleutel M, van Driessche A E 2014 Proc. Natl. Acad. Sci. 111 E546

    [12]

    de Yoreo J 2013 Nature Mater. 12 284

    [13]

    Yarom M, Marmur A 2015 Adv. Colloid Interface Sci. 222 743

    [14]

    Duöka M, Němec T, Hrubö J, Vinö V, Planková B 2015 EPJ Web Conf. 92 02013

    [15]

    Schenter G K, Kathmann S M, Garrett B C 1999 Phys. Rev. Lett. 82 3484

    [16]

    Reguera D, Reiss H 2004 Phys. Rev. Lett. 93 165701

    [17]

    Bhimalapuram P, Chakrabarty S, Bagchi B 2007 Phys. Rev. Lett. 98 206104

    [18]

    Rane K S, Murali S, Errington J R 2013 J. Chem. Theory Comput. 9 2552

    [19]

    Planková B, Vinö V, Hrubö J, Duöka M, Němec T, Celnö D 2015 EPJ Web Conf. 92 02071

    [20]

    McGrath M J, Kuo I F W, Ghogomu J N, Mundy C J, Siepmann J I 2011 J. Phys. Chem. B 105 11688

    [21]

    Malolepsza E, Kim J, Keyes T 2015 Phys. Rev. Lett. 114 170601

    [22]

    Kuo I F W, Mundy C J 2004 Science 303 658

    [23]

    Nagata Y, Usui K, Bonn M 2015 Phys. Rev. Lett. 115 236102

    [24]

    Zahn D 2004 Phys. Rev. Lett. 93 227801

    [25]

    Panagiotopoulos A Z 1987 Mol. Phys. 61 813

    [26]

    Mouöka F, Nezbeda I 2013 Fluid Phase Equilib. 360 472

    [27]

    Trejos V M, Gil-Villegas A, Martinez A 2013 J. Chem. Phys. 139 184505

    [28]

    Cho W J, Kim J, Lee J, Keyes T, Straub J E, Kim K S 2014 Phys. Rev. Lett. 112 157802

    [29]

    Kim J, Keyes T, Straub J E 2010 J. Chem. Phys. 132 224107

    [30]

    Maöolepsza E, Secor M, Keyes T 2015 J. Phys. Chem. B 119 13379

    [31]

    Lu Q, Kim J, Straub J E 2013 J. Chem. Phys. 138 104119

    [32]

    Xu S, Zhou X, Ouyang Z C 2012 Commun. Comput. Phys. 12 1293

    [33]

    Jeong S, Jho Y, Zhou X 2015 Sci. Rep. 5 15955

    [34]

    Gloor G J, Jackson G, Blas F J, de Miguel E 2005 J. Chem. Phys. 123 134703

    [35]

    Vega C, de Miguel E 2007 J. Chem. Phys. 126 154707

    [36]

    Kumar V S, Kumaran V 2005 J. Chem. Phys. 123 114501

    [37]

    Zhu H X, Thorpe S M, Windle A H 2001 Philos. Mag. A 81 2765

    [38]

    Oger L, Gervois A, Troadec J P, Rivier N 1996 Philos. Mag. B 74 177

    [39]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [40]

    Abascal J L, Vega C 2005 J. Chem. Phys. 123 234505

    [41]

    Vega C, Abascal J L F, Nezbeda I 2006 J. Chem. Phys. 125 034503

    [42]

    Beckers J V L, Lowe C P, de Leeuw S W 1998 Mol. Simul. 20 369

    [43]

    Nosé S 1984 J. Chem. Phys. 81 511

    [44]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [45]

    Alejandre J, Chapela G A 2010 J. Chem. Phys. 132 014701

  • [1]

    Erdemir D, Lee A Y 2009 Acc. Chem. Res. 42 621

    [2]

    Sleutel M, Lutsko J, van Driessche A E, Durán-Olivencia M A, Maes D 2014 Nat. Commun. 5 5598

    [3]

    Auer S, Frenkel D 2004 Annu. Rev. Phys. Chem. 55 333

    [4]

    Toxvaerd S 2015 J. Chem. Phys. 143 154705

    [5]

    Debenedetti P G 2006 Nature 441 168

    [6]

    Gasser U, Weeks E R, Schofield A, Pusey P N, Weitz D A 2001 Science 292 258

    [7]

    Yasuoka K, Matsumoto M 1998 J. Chem. Phys. 109 8451

    [8]

    Yasuoka K, Matsumoto M 1998 J. Chem. Phys. 109 8463

    [9]

    Myerson A S, Trout B L 2013 Science 341 855

    [10]

    Savage J R, Dinsmore A D 2009 Phys. Rev. Lett. 102 198302

    [11]

    Sleutel M, van Driessche A E 2014 Proc. Natl. Acad. Sci. 111 E546

    [12]

    de Yoreo J 2013 Nature Mater. 12 284

    [13]

    Yarom M, Marmur A 2015 Adv. Colloid Interface Sci. 222 743

    [14]

    Duöka M, Němec T, Hrubö J, Vinö V, Planková B 2015 EPJ Web Conf. 92 02013

    [15]

    Schenter G K, Kathmann S M, Garrett B C 1999 Phys. Rev. Lett. 82 3484

    [16]

    Reguera D, Reiss H 2004 Phys. Rev. Lett. 93 165701

    [17]

    Bhimalapuram P, Chakrabarty S, Bagchi B 2007 Phys. Rev. Lett. 98 206104

    [18]

    Rane K S, Murali S, Errington J R 2013 J. Chem. Theory Comput. 9 2552

    [19]

    Planková B, Vinö V, Hrubö J, Duöka M, Němec T, Celnö D 2015 EPJ Web Conf. 92 02071

    [20]

    McGrath M J, Kuo I F W, Ghogomu J N, Mundy C J, Siepmann J I 2011 J. Phys. Chem. B 105 11688

    [21]

    Malolepsza E, Kim J, Keyes T 2015 Phys. Rev. Lett. 114 170601

    [22]

    Kuo I F W, Mundy C J 2004 Science 303 658

    [23]

    Nagata Y, Usui K, Bonn M 2015 Phys. Rev. Lett. 115 236102

    [24]

    Zahn D 2004 Phys. Rev. Lett. 93 227801

    [25]

    Panagiotopoulos A Z 1987 Mol. Phys. 61 813

    [26]

    Mouöka F, Nezbeda I 2013 Fluid Phase Equilib. 360 472

    [27]

    Trejos V M, Gil-Villegas A, Martinez A 2013 J. Chem. Phys. 139 184505

    [28]

    Cho W J, Kim J, Lee J, Keyes T, Straub J E, Kim K S 2014 Phys. Rev. Lett. 112 157802

    [29]

    Kim J, Keyes T, Straub J E 2010 J. Chem. Phys. 132 224107

    [30]

    Maöolepsza E, Secor M, Keyes T 2015 J. Phys. Chem. B 119 13379

    [31]

    Lu Q, Kim J, Straub J E 2013 J. Chem. Phys. 138 104119

    [32]

    Xu S, Zhou X, Ouyang Z C 2012 Commun. Comput. Phys. 12 1293

    [33]

    Jeong S, Jho Y, Zhou X 2015 Sci. Rep. 5 15955

    [34]

    Gloor G J, Jackson G, Blas F J, de Miguel E 2005 J. Chem. Phys. 123 134703

    [35]

    Vega C, de Miguel E 2007 J. Chem. Phys. 126 154707

    [36]

    Kumar V S, Kumaran V 2005 J. Chem. Phys. 123 114501

    [37]

    Zhu H X, Thorpe S M, Windle A H 2001 Philos. Mag. A 81 2765

    [38]

    Oger L, Gervois A, Troadec J P, Rivier N 1996 Philos. Mag. B 74 177

    [39]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [40]

    Abascal J L, Vega C 2005 J. Chem. Phys. 123 234505

    [41]

    Vega C, Abascal J L F, Nezbeda I 2006 J. Chem. Phys. 125 034503

    [42]

    Beckers J V L, Lowe C P, de Leeuw S W 1998 Mol. Simul. 20 369

    [43]

    Nosé S 1984 J. Chem. Phys. 81 511

    [44]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [45]

    Alejandre J, Chapela G A 2010 J. Chem. Phys. 132 014701

  • [1] Qi Kai, Zhu Xing-Guang, Wang Jun, Xia Guo-Dong. Heat transfer characteristics of solid-liquid interface on nanostructure surface under external electric field. Acta Physica Sinica, 2024, 73(15): 156801. doi: 10.7498/aps.73.20240698
    [2] Feng Shan-Qing, Gong Lu-Yuan, Quan Sheng-Lin, Guo Ya-Li, Shen Sheng-Qiang. Molecular dynamics simulation of nanodroplet impacting on high-temperature plate wall. Acta Physica Sinica, 2024, 73(10): 103106. doi: 10.7498/aps.73.20240034
    [3] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [4] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [5] Sun Hui, Liu Jing-Nan, Zhang Li-Xin, Yang Qi-Guo, Gao Ming. Numerical analysis of boundary line between liquid-like zone and gas-like zone of supercritical CO2. Acta Physica Sinica, 2022, 71(4): 040201. doi: 10.7498/aps.71.20211464
    [6] Zhang Fu-Jian, Chen Yue, Gao Xiang, Liu Zhen, Zhang Zhong-Qiang. Uni-directional self-driving of water droplets on monolayer graphene-covered wedge-shaped copper substrate. Acta Physica Sinica, 2021, 70(20): 200202. doi: 10.7498/aps.70.20210905
    [7] Li Wen, Ma Xiao-Jing, Xu Jin-Liang, Wang Yan, Lei Jun-Peng. Effects of base angle and wettability of nanostructures on droplet wetting behaviors. Acta Physica Sinica, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [8] Numerical analysis of boundary of Supercritical CO2 liquid-gas like zone *. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211464
    [9] Zhao Zhong-Hua, Qu Guang-Hao, Yao Jia-Chi, Min Dao-Min, Zhai Peng-Fei, Liu Jie, Li Sheng-Tao. Molecular dynamics simulation of phase transition by thermal spikes in monoclinic ZrO2. Acta Physica Sinica, 2021, 70(13): 136101. doi: 10.7498/aps.70.20201861
    [10] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [11] Zhang Long-Yan, Xu Jin-Liang, Lei Jun-Peng. Size effect on boundary condition at solid-liquid interface in microchannel. Acta Physica Sinica, 2019, 68(2): 020201. doi: 10.7498/aps.68.20181876
    [12] Lin Chang-Peng, Liu Xin-Jian, Rao Zhong-Hao. Molecular dynamics simulation of the thermophysical properties and phase change behaviors of aluminum nanoparticles. Acta Physica Sinica, 2015, 64(8): 083601. doi: 10.7498/aps.64.083601
    [13] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [14] Qiu Chao, Zhang Hui-Chen. Molecular dynamics simulation on cavitation bubble formation in canonical ensemble. Acta Physica Sinica, 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [15] Rao Zhong-Hao, Wang Shuang-Feng, Zhang Yan-Lai, Peng Fei-Fei, Cai Song-Heng. Molecular dynamics simulation of the thermophysical properties of phase change material. Acta Physica Sinica, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [16] Qiu Feng, Wang Meng, Zhou Hua-Guang, Zheng Xuan, Lin Xin, Huang Wei-Dong. Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate. Acta Physica Sinica, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [17] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [18] Zhou Guang-Gang, Lu Gui-Wu, Jiao Yu-Qiu, Li Ying-Feng, Wang Kun, Yu Yang-Xin. A molecular simulation study on adsorption behavior of solid-liquid interface in KDP crystal. Acta Physica Sinica, 2012, 61(1): 010204. doi: 10.7498/aps.61.010204
    [19] Wang Zhi-Gang, Wu Liang, Zhang Yang, Wen Yu-Hua. Phase transition and coalescence behavior of fcc Fe nanoparticles: a molecular dynamics study. Acta Physica Sinica, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [20] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
Metrics
  • Abstract views:  6970
  • PDF Downloads:  286
  • Cited By: 0
Publishing process
  • Received Date:  29 March 2017
  • Accepted Date:  04 May 2017
  • Published Online:  05 July 2017

/

返回文章
返回