Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electric-field control of magnetic properties of Fe3O4 single-crystal film investigated by micro-magnetic simulation

Yang Zhi Zhang Yue Zhou Qian-Qian Wang Yu-Hua

Citation:

Electric-field control of magnetic properties of Fe3O4 single-crystal film investigated by micro-magnetic simulation

Yang Zhi, Zhang Yue, Zhou Qian-Qian, Wang Yu-Hua
cstr: 32037.14.aps.66.137501
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Control of magnetic properties by an applied electric field has significant potential applications in the field of novel magnetic information devices,with some advantages such as low dissipation and small sizes.Till now,many scientific and technical problems in this field have been widely investigated theoretically and experimentally.However,a lacuna still exists in the papers concerning the investigations performed by micromagnetic simulation which is a powerful tool for revealing magnetic behaviors in a complicated magnetic system.Based on the basic principle for electric-field manipulation of magnetic properties,we study the electric-field control of magnetic properties of a square-shaped singlecrystal Fe3O4 thin film formed on a single-crystal PZN-PT piezoelectric substrate by the micromagnetic simulation method via object oriented micro-magnetic frame (OOMMF),a software for micromagnetic simulation.The magnetic hysteresis loops are collected for the Fe3O4/PZN-PT composite system under magnetic fields applied in the[100]and[010]crystallographic directions of Fe3O4 and an electric field applied along the[001]axis of the PZN-PT substrate. The applied electric field acts as an stress anisotropy energy.The result of our simulation is similar to the reported result of an experimental investigation for the same system and is consistent with that of our theoretical analysis based on a thermodynamic route.The results reveal that the film exhibits typical soft-magnetic behavior without applying an electric field.When an electric field is applied to the PZN-PT substrate,the coercivity and squareness ratio of Fe3O4 is greatly affected.Under an external magnetic field along the[100]axis of Fe3O4,the applying of a positive electric field clearly enhances the coercivity and squareness ratio.On the other hand,when an external magnetic field is applied along the[010]direction of Fe3O4,the coercivity and squareness ratio is increased by applying a negative electric field.In both cases,the coercivity and squareness ratio reaches 1 when the absolute value of E is 0.6 MV/m or larger.This high coercivity and squareness ratio is vital to magnetic information memory.These results are attributed to the competition between an electric-field-induced uni-axial stress anisotropy energy and the intrinsic in-plane four-fold magnetocrystalline anisotropy energy of a Fe3O4 thin film.When the absolute value of E is sufficiently large (1 MV/m), the electric-field-induced stress anisotropic energy significantly overweighs the intrinsic magnetocrystalline anisotropy energy,and the Fe3O4 thin film exhibits an approximate uniaxial magnetic anisotropy energy.Under the electric fields of 1-MV/m and -1-MV/m,the effective easy axis is along the[100]and[010]direction of the Fe3O4 thin film,respectively. Additionally,we also find that applying a 1-MV/m (-1-MV/m) electric-field can cause the frequency for ferromagnetic resonance to increase (reduce) almost 1 GHz,offering the possibility of developing a microwave device with tunable frequency.
      Corresponding author: Wang Yu-Hua, wangyuhua@wust.edu.cn
    • Funds: Project supported by the Ph.D.Programs Foundation of City College,Wuhan University of Science and Technology,China (Grant No.2014CYBSKY003),and the National Natural Science Foundation of China (Grant No.11574096).
    [1]

    Hu J M, Ma J, Wang J, Li Z, Lin Y H, Nan C W 2011 J. Adv. Diel. 1 1

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [3]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15

    [4]

    Sun N X, Srinivasan G 2012 SPIN 2 1240004

    [5]

    Liu M, Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439

    [6]

    Luo M, Zhou P H, Liu Y F, Wang X, Xie J L 2017 Mater. Lett. 188 188

    [7]

    Liu M, Li S, Obi O, Lou J, Rand S, Sun N X 2011 Appl. Phys. Lett. 98 222509

    [8]

    Giang D T H, Thuc V N, Duc N H 2012 J. Magn. Magn. Mater. 324 2019

    [9]

    Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y, Han X F 2014 Adv. Mater. 26 4320

    [10]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W S, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [11]

    Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 012403

    [12]

    Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T, Uehara Y 2016 AIP Adv. 6 055816

    [13]

    Wang K L, Alzate J G, Khalili Amiri P 2013 J. Phys. D:Appl. Phys. 46 074003

    [14]

    Lin W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [15]

    Sekine A, Chiba T 2017 AIP Adv. 7 055902

    [16]

    Ibrahim F, Yang H X, Hallal A, Dieny B, Chshiev M 2016 Phys. Rev. B 93 014429

    [17]

    Park K W, Park J Y, Baek S H C, Kim D H, Seo S M, Chung S W, Park B G 2016 Appl. Phys. Lett. 109 012405

    [18]

    Liu Y, Hu F X, Zhang M, Wang J, Shen F R, Zuo W L, Zhang J, Sun J R, Shen B G 2017 Appl. Phys. Lett. 110 022401

    [19]

    Zhang X, Wang C, Liu Y, Zhang Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719

    [20]

    Zhu W, Xiao D, Liu Y, Gong S J, Duan C G 2014 Sci. Rep. 4 4117

    [21]

    Yang C C, Wang F L, Zhang C, Zhou C, Jiang C J 2015 J. Phys. D:Appl. Phys. 48 435001

    [22]

    Taniyama T 2015 J. Phys. Condens. Mat. 27 504001

    [23]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416

    [24]

    Li N, Liu M, Zhou Z Y, Sun N X, Murthy D V B, Srinivasan G, Klein T M, Petrov V M, Gupta A 2011 Appl. Phys. Lett. 99 192502

    [25]

    Lei N, Park S, Lecoeur P, Ravelosona D, Chappert C, Stelmakhovych O, Holy V 2011 Phys. Rev. B 84 012404

    [26]

    Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y, Wei F L 2015 Appl. Phys. Express 8 063006

    [27]

    Lebedev G A, Viala B, Lafont T, Zakharov D I, Cugat O, Delamare J 2011 Appl. Phys. Lett. 99 232502

    [28]

    Rizwan S, Yu G Q, Zhang S, Zhao Y G, Han X F 2012 J. Appl. Phys. 112 064120

    [29]

    Liu M, Obi O, Cai Z H, Lou J, Yang G M, Ziemer K S, Sun N X 2010 J. Appl. Phys. 107 073916

    [30]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [31]

    Zhang Y, Zhou Q Q, Ding J J, Yang Z, Zhu B P, Yang X F, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [32]

    Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G, Sun N X 2009 Adv. Funct. Mater. 19 1826

    [33]

    Zhu J G, Neal Bertram H 1988 J. Appl. Phys. 63 3248

  • [1]

    Hu J M, Ma J, Wang J, Li Z, Lin Y H, Nan C W 2011 J. Adv. Diel. 1 1

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [3]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15

    [4]

    Sun N X, Srinivasan G 2012 SPIN 2 1240004

    [5]

    Liu M, Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439

    [6]

    Luo M, Zhou P H, Liu Y F, Wang X, Xie J L 2017 Mater. Lett. 188 188

    [7]

    Liu M, Li S, Obi O, Lou J, Rand S, Sun N X 2011 Appl. Phys. Lett. 98 222509

    [8]

    Giang D T H, Thuc V N, Duc N H 2012 J. Magn. Magn. Mater. 324 2019

    [9]

    Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y, Han X F 2014 Adv. Mater. 26 4320

    [10]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W S, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [11]

    Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 012403

    [12]

    Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T, Uehara Y 2016 AIP Adv. 6 055816

    [13]

    Wang K L, Alzate J G, Khalili Amiri P 2013 J. Phys. D:Appl. Phys. 46 074003

    [14]

    Lin W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [15]

    Sekine A, Chiba T 2017 AIP Adv. 7 055902

    [16]

    Ibrahim F, Yang H X, Hallal A, Dieny B, Chshiev M 2016 Phys. Rev. B 93 014429

    [17]

    Park K W, Park J Y, Baek S H C, Kim D H, Seo S M, Chung S W, Park B G 2016 Appl. Phys. Lett. 109 012405

    [18]

    Liu Y, Hu F X, Zhang M, Wang J, Shen F R, Zuo W L, Zhang J, Sun J R, Shen B G 2017 Appl. Phys. Lett. 110 022401

    [19]

    Zhang X, Wang C, Liu Y, Zhang Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719

    [20]

    Zhu W, Xiao D, Liu Y, Gong S J, Duan C G 2014 Sci. Rep. 4 4117

    [21]

    Yang C C, Wang F L, Zhang C, Zhou C, Jiang C J 2015 J. Phys. D:Appl. Phys. 48 435001

    [22]

    Taniyama T 2015 J. Phys. Condens. Mat. 27 504001

    [23]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416

    [24]

    Li N, Liu M, Zhou Z Y, Sun N X, Murthy D V B, Srinivasan G, Klein T M, Petrov V M, Gupta A 2011 Appl. Phys. Lett. 99 192502

    [25]

    Lei N, Park S, Lecoeur P, Ravelosona D, Chappert C, Stelmakhovych O, Holy V 2011 Phys. Rev. B 84 012404

    [26]

    Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y, Wei F L 2015 Appl. Phys. Express 8 063006

    [27]

    Lebedev G A, Viala B, Lafont T, Zakharov D I, Cugat O, Delamare J 2011 Appl. Phys. Lett. 99 232502

    [28]

    Rizwan S, Yu G Q, Zhang S, Zhao Y G, Han X F 2012 J. Appl. Phys. 112 064120

    [29]

    Liu M, Obi O, Cai Z H, Lou J, Yang G M, Ziemer K S, Sun N X 2010 J. Appl. Phys. 107 073916

    [30]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [31]

    Zhang Y, Zhou Q Q, Ding J J, Yang Z, Zhu B P, Yang X F, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [32]

    Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G, Sun N X 2009 Adv. Funct. Mater. 19 1826

    [33]

    Zhu J G, Neal Bertram H 1988 J. Appl. Phys. 63 3248

Metrics
  • Abstract views:  9290
  • PDF Downloads:  354
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2017
  • Accepted Date:  24 April 2017
  • Published Online:  05 July 2017
  • /

    返回文章
    返回