Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electric-field control of magnetic properties of Fe3O4 single-crystal film investigated by micro-magnetic simulation

Yang Zhi Zhang Yue Zhou Qian-Qian Wang Yu-Hua

Citation:

Electric-field control of magnetic properties of Fe3O4 single-crystal film investigated by micro-magnetic simulation

Yang Zhi, Zhang Yue, Zhou Qian-Qian, Wang Yu-Hua
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Control of magnetic properties by an applied electric field has significant potential applications in the field of novel magnetic information devices,with some advantages such as low dissipation and small sizes.Till now,many scientific and technical problems in this field have been widely investigated theoretically and experimentally.However,a lacuna still exists in the papers concerning the investigations performed by micromagnetic simulation which is a powerful tool for revealing magnetic behaviors in a complicated magnetic system.Based on the basic principle for electric-field manipulation of magnetic properties,we study the electric-field control of magnetic properties of a square-shaped singlecrystal Fe3O4 thin film formed on a single-crystal PZN-PT piezoelectric substrate by the micromagnetic simulation method via object oriented micro-magnetic frame (OOMMF),a software for micromagnetic simulation.The magnetic hysteresis loops are collected for the Fe3O4/PZN-PT composite system under magnetic fields applied in the[100]and[010]crystallographic directions of Fe3O4 and an electric field applied along the[001]axis of the PZN-PT substrate. The applied electric field acts as an stress anisotropy energy.The result of our simulation is similar to the reported result of an experimental investigation for the same system and is consistent with that of our theoretical analysis based on a thermodynamic route.The results reveal that the film exhibits typical soft-magnetic behavior without applying an electric field.When an electric field is applied to the PZN-PT substrate,the coercivity and squareness ratio of Fe3O4 is greatly affected.Under an external magnetic field along the[100]axis of Fe3O4,the applying of a positive electric field clearly enhances the coercivity and squareness ratio.On the other hand,when an external magnetic field is applied along the[010]direction of Fe3O4,the coercivity and squareness ratio is increased by applying a negative electric field.In both cases,the coercivity and squareness ratio reaches 1 when the absolute value of E is 0.6 MV/m or larger.This high coercivity and squareness ratio is vital to magnetic information memory.These results are attributed to the competition between an electric-field-induced uni-axial stress anisotropy energy and the intrinsic in-plane four-fold magnetocrystalline anisotropy energy of a Fe3O4 thin film.When the absolute value of E is sufficiently large (1 MV/m), the electric-field-induced stress anisotropic energy significantly overweighs the intrinsic magnetocrystalline anisotropy energy,and the Fe3O4 thin film exhibits an approximate uniaxial magnetic anisotropy energy.Under the electric fields of 1-MV/m and -1-MV/m,the effective easy axis is along the[100]and[010]direction of the Fe3O4 thin film,respectively. Additionally,we also find that applying a 1-MV/m (-1-MV/m) electric-field can cause the frequency for ferromagnetic resonance to increase (reduce) almost 1 GHz,offering the possibility of developing a microwave device with tunable frequency.
      Corresponding author: Wang Yu-Hua, wangyuhua@wust.edu.cn
    • Funds: Project supported by the Ph.D.Programs Foundation of City College,Wuhan University of Science and Technology,China (Grant No.2014CYBSKY003),and the National Natural Science Foundation of China (Grant No.11574096).
    [1]

    Hu J M, Ma J, Wang J, Li Z, Lin Y H, Nan C W 2011 J. Adv. Diel. 1 1

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [3]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15

    [4]

    Sun N X, Srinivasan G 2012 SPIN 2 1240004

    [5]

    Liu M, Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439

    [6]

    Luo M, Zhou P H, Liu Y F, Wang X, Xie J L 2017 Mater. Lett. 188 188

    [7]

    Liu M, Li S, Obi O, Lou J, Rand S, Sun N X 2011 Appl. Phys. Lett. 98 222509

    [8]

    Giang D T H, Thuc V N, Duc N H 2012 J. Magn. Magn. Mater. 324 2019

    [9]

    Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y, Han X F 2014 Adv. Mater. 26 4320

    [10]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W S, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [11]

    Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 012403

    [12]

    Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T, Uehara Y 2016 AIP Adv. 6 055816

    [13]

    Wang K L, Alzate J G, Khalili Amiri P 2013 J. Phys. D:Appl. Phys. 46 074003

    [14]

    Lin W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [15]

    Sekine A, Chiba T 2017 AIP Adv. 7 055902

    [16]

    Ibrahim F, Yang H X, Hallal A, Dieny B, Chshiev M 2016 Phys. Rev. B 93 014429

    [17]

    Park K W, Park J Y, Baek S H C, Kim D H, Seo S M, Chung S W, Park B G 2016 Appl. Phys. Lett. 109 012405

    [18]

    Liu Y, Hu F X, Zhang M, Wang J, Shen F R, Zuo W L, Zhang J, Sun J R, Shen B G 2017 Appl. Phys. Lett. 110 022401

    [19]

    Zhang X, Wang C, Liu Y, Zhang Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719

    [20]

    Zhu W, Xiao D, Liu Y, Gong S J, Duan C G 2014 Sci. Rep. 4 4117

    [21]

    Yang C C, Wang F L, Zhang C, Zhou C, Jiang C J 2015 J. Phys. D:Appl. Phys. 48 435001

    [22]

    Taniyama T 2015 J. Phys. Condens. Mat. 27 504001

    [23]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416

    [24]

    Li N, Liu M, Zhou Z Y, Sun N X, Murthy D V B, Srinivasan G, Klein T M, Petrov V M, Gupta A 2011 Appl. Phys. Lett. 99 192502

    [25]

    Lei N, Park S, Lecoeur P, Ravelosona D, Chappert C, Stelmakhovych O, Holy V 2011 Phys. Rev. B 84 012404

    [26]

    Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y, Wei F L 2015 Appl. Phys. Express 8 063006

    [27]

    Lebedev G A, Viala B, Lafont T, Zakharov D I, Cugat O, Delamare J 2011 Appl. Phys. Lett. 99 232502

    [28]

    Rizwan S, Yu G Q, Zhang S, Zhao Y G, Han X F 2012 J. Appl. Phys. 112 064120

    [29]

    Liu M, Obi O, Cai Z H, Lou J, Yang G M, Ziemer K S, Sun N X 2010 J. Appl. Phys. 107 073916

    [30]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [31]

    Zhang Y, Zhou Q Q, Ding J J, Yang Z, Zhu B P, Yang X F, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [32]

    Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G, Sun N X 2009 Adv. Funct. Mater. 19 1826

    [33]

    Zhu J G, Neal Bertram H 1988 J. Appl. Phys. 63 3248

  • [1]

    Hu J M, Ma J, Wang J, Li Z, Lin Y H, Nan C W 2011 J. Adv. Diel. 1 1

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [3]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15

    [4]

    Sun N X, Srinivasan G 2012 SPIN 2 1240004

    [5]

    Liu M, Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439

    [6]

    Luo M, Zhou P H, Liu Y F, Wang X, Xie J L 2017 Mater. Lett. 188 188

    [7]

    Liu M, Li S, Obi O, Lou J, Rand S, Sun N X 2011 Appl. Phys. Lett. 98 222509

    [8]

    Giang D T H, Thuc V N, Duc N H 2012 J. Magn. Magn. Mater. 324 2019

    [9]

    Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y, Han X F 2014 Adv. Mater. 26 4320

    [10]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W S, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [11]

    Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 012403

    [12]

    Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T, Uehara Y 2016 AIP Adv. 6 055816

    [13]

    Wang K L, Alzate J G, Khalili Amiri P 2013 J. Phys. D:Appl. Phys. 46 074003

    [14]

    Lin W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [15]

    Sekine A, Chiba T 2017 AIP Adv. 7 055902

    [16]

    Ibrahim F, Yang H X, Hallal A, Dieny B, Chshiev M 2016 Phys. Rev. B 93 014429

    [17]

    Park K W, Park J Y, Baek S H C, Kim D H, Seo S M, Chung S W, Park B G 2016 Appl. Phys. Lett. 109 012405

    [18]

    Liu Y, Hu F X, Zhang M, Wang J, Shen F R, Zuo W L, Zhang J, Sun J R, Shen B G 2017 Appl. Phys. Lett. 110 022401

    [19]

    Zhang X, Wang C, Liu Y, Zhang Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719

    [20]

    Zhu W, Xiao D, Liu Y, Gong S J, Duan C G 2014 Sci. Rep. 4 4117

    [21]

    Yang C C, Wang F L, Zhang C, Zhou C, Jiang C J 2015 J. Phys. D:Appl. Phys. 48 435001

    [22]

    Taniyama T 2015 J. Phys. Condens. Mat. 27 504001

    [23]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416

    [24]

    Li N, Liu M, Zhou Z Y, Sun N X, Murthy D V B, Srinivasan G, Klein T M, Petrov V M, Gupta A 2011 Appl. Phys. Lett. 99 192502

    [25]

    Lei N, Park S, Lecoeur P, Ravelosona D, Chappert C, Stelmakhovych O, Holy V 2011 Phys. Rev. B 84 012404

    [26]

    Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y, Wei F L 2015 Appl. Phys. Express 8 063006

    [27]

    Lebedev G A, Viala B, Lafont T, Zakharov D I, Cugat O, Delamare J 2011 Appl. Phys. Lett. 99 232502

    [28]

    Rizwan S, Yu G Q, Zhang S, Zhao Y G, Han X F 2012 J. Appl. Phys. 112 064120

    [29]

    Liu M, Obi O, Cai Z H, Lou J, Yang G M, Ziemer K S, Sun N X 2010 J. Appl. Phys. 107 073916

    [30]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [31]

    Zhang Y, Zhou Q Q, Ding J J, Yang Z, Zhu B P, Yang X F, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [32]

    Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G, Sun N X 2009 Adv. Funct. Mater. 19 1826

    [33]

    Zhu J G, Neal Bertram H 1988 J. Appl. Phys. 63 3248

  • [1] Yu Bao-Qing, Xia Bing, Yang Xiao-Yan, Wan Bao-Quan, Zha Jun-Wei. Electric field regulation of polypropylene insulation for high voltage DC cables. Acta Physica Sinica, 2023, 72(6): 068402. doi: 10.7498/aps.72.20222320
    [2] Wang Shao-Xia, Zhao Xu-Cai, Pan Duo-Qiao, Pang Guo-Wang, Liu Chen-Xi, Shi Lei-Qian, Liu Gui-An, Lei Bo-Cheng, Huang Yi-Neng, Zhang Li-Li. First principle study of influence of transition metal (Cr, Mn, Fe, Co) doping on magnetism of TiO2. Acta Physica Sinica, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [3] Wang Xin, Li Hua, Dong Zheng-Chao, Zhong Chong-Gui. Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect. Acta Physica Sinica, 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [4] Li Lei, Zhang Cheng-Bin. Mechanism for regulation and control of emulsion droplet generation in co-flow microfluidic device via electric field. Acta Physica Sinica, 2018, 67(17): 176801. doi: 10.7498/aps.67.20180616
    [5] Yang Hong, Qi Wei-Hua, Ji Deng-Hui, Shang Zhi-Feng, Zhang Xiao-Yun, Xu Jing, Lang Li-Li, Tang Gui-De. Structure and magnetic properties of perovskite manganites La2/3Sr1/3FexMn1-xO 3. Acta Physica Sinica, 2014, 63(8): 087503. doi: 10.7498/aps.63.087503
    [6] Zhang Song-Bo, Wang Fang-Biao, Li Fa-Ming, Wen Ge-Hui. HPHT synthesis and magnetic property of -Fe2O3@C core-shell nanorods. Acta Physica Sinica, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [7] Wan Su-Lei, He Li-Min, Xiang Jun-You, Wang Zhi-Guo, Xing Ru, Zhang Xue-Feng, Lu Yi, Zhao Jian-Jun. Magnetic and transport properties of bilayered perovskite manganites (La0.8Eu0.2)4/3Sr5/3Mn2O7. Acta Physica Sinica, 2014, 63(23): 237501. doi: 10.7498/aps.63.237501
    [8] He Li-Min, Ji Yu, Lu Yi, Wu Hong-Ye, Zhang Xue-Feng, Zhao Jian-Jun. Magnetic and transport properties of layered perovskite manganites (La1-xEu x)4/3Sr5/3Mn2O7(x=0, 0.15). Acta Physica Sinica, 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [9] Li Cheng-Di, Zhao Jing-Long, Zhong Chong-Gui, Dong Zheng-Chao, Fang Jing-Huai. First-principles study of magnetic ground state of quantum paraelectric EuTiO3 material. Acta Physica Sinica, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [10] Wang Dong-Dong, Gao Hui. Synthesis and magnetic properties of three-dimensional self-assembly Eu3+-graphene composite material. Acta Physica Sinica, 2013, 62(18): 188102. doi: 10.7498/aps.62.188102
    [11] Gao Tan-Hua, Lu Dao-Ming, Wu Shun-Qing, Zhu Zi-Zhong. First-principles calculations of magnetism of Fe atomic sheet. Acta Physica Sinica, 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [12] Lv Qing-Rong, Fang Qing-Qing, Liu Yan-Mei. Magnetic properties and exchange bias effect of nano-structure Co x Fe3-x O4 porous microspheres. Acta Physica Sinica, 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [13] Xu Ben-Fu, Yang Chuan-Lu, Tong Xiao-Fei, Wang Mei-Shan, Ma Xiao-Guang, Wang De-Hua. Geometry, electronic properties and magnetism of FenO+m(n+m=4) clusters. Acta Physica Sinica, 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [14] Liu Jin-Hong, Zhang Ling-Fei, Tian Geng-Fang, Li Ji-Chen, Li Fa-Shen. Structure and magnetic properties of NiFe2O4 nanoparticles prepared by low-temperature solid-state reaction. Acta Physica Sinica, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [15] Zhang Jia-Hong, Ma Rong, Liu Su, Liu Mei. First-principles calculations on the superconductivity and magnetism of doping MgCNi3. Acta Physica Sinica, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [16] Pang Li-Jia, Sun Guang-Fei, Chen Ju-Fang, Qiang Wen-Jiang, Zhang Jin-Biao, Li Wen-An. Study of magnetic properties of Pr2Fe14B/α-Fe nanocomposite magnets. Acta Physica Sinica, 2006, 55(6): 3049-3053. doi: 10.7498/aps.55.3049
    [17] Fu Xiu-Li, Wang Yi, Li Pei-Gang, Chen Lei-Ming, Zhang Hai-Ying, Tu Qing-Yun, L. H. Li, Tang Wei-Hua. Large-scale fabrication and magnetic properties of Ni8080Fe20 20 nanowire arrays. Acta Physica Sinica, 2005, 54(4): 1693-1696. doi: 10.7498/aps.54.1693
    [18] Guo Hong-Yong, Liu Bao-Dan, Tang Ning, Luo Hong-Zhi, Li Yang-Xian, Yang Fu-Ming, Wu Guang-Heng. The effect of Co substitution and stabilizing element on the structure and magnetic properties of Nd3(Fe,Co,M)29(M=Ti,V,Cr) compounds. Acta Physica Sinica, 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [19] Wang Jin-Zhi, Fang Qing-Qing. Structure phase transition and magnetic properties of nanocrystalline Zn0.6CoxFe2.4-xO4. Acta Physica Sinica, 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
    [20] Lu Yi, Li Qing-An, Di Nai-Li, Cheng Zhao-Hua, Xue Yan-Jie, Zhang Li, Chen Na, Xiao Hong-Wen, Zhang Bai-Sheng, Chen Dong-Feng. Structure and magnetic properties of Nd0.5Sr0.4Pb0.1MnO3 manganites. Acta Physica Sinica, 2003, 52(8): 2057-2060. doi: 10.7498/aps.52.2057
Metrics
  • Abstract views:  6731
  • PDF Downloads:  335
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2017
  • Accepted Date:  24 April 2017
  • Published Online:  05 July 2017

/

返回文章
返回