Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics simulation of nanodroplet impacting on high-temperature plate wall

Feng Shan-Qing Gong Lu-Yuan Quan Sheng-Lin Guo Ya-Li Shen Sheng-Qiang

Citation:

Molecular dynamics simulation of nanodroplet impacting on high-temperature plate wall

Feng Shan-Qing, Gong Lu-Yuan, Quan Sheng-Lin, Guo Ya-Li, Shen Sheng-Qiang
PDF
HTML
Get Citation
  • The process of droplet impacting on a high-temperature wall is widely existent in daily life and industrial applications. Most of scholars mainly have focused on experimental and macroscopic research on this phenomenon. In this work, molecular dynamics simulation is conducted to investigate the evolution of droplet and the influence of surface temperature on its evolution, in order to explore the heat transfer mechanism of nanodroplet impacting on high-temperature surface. Droplet containing 10741 argon atoms impacts on the copper plates at temperatures of 85, 150, 200, 250 and 300 K, respectively. The number of droplet evaporation atoms is statistically obtained, the droplet barycenter displacement is analyzed, and the density distribution and temperature distribution inside the droplet are acquired. It is shown that the droplet exhibits different characteristics on the wall at different temperatures. The droplet finally stabilizes on the wall at 85 K as shown in Fig. (a), but when the temperature of the wall rises to 150 K, the droplet evaporates slowly and finally completely as shown in Fig. (b), and for the wall temperatures 200, 250 and 300 K, the Leidenfrost phenomenon is found: the droplet is suspended above the wall as displayed in Figs. (c)–(e). Fig. (f) shows the number of evaporated atoms at different wall temperatures. It also can be seen that the Leidenfrost phenomenon occurs at wall temperatures 200, 250 and 300 K, because for the three conditions there are rise steps and then the numbers of evaporated atoms almost keep constant. For the temperature conditions under which the Leidenfrost phenomenon can occur, the higher the wall temperature, the faster the droplet evaporates, the earlier the detachment occurs from the wall, the greater the droplet detaching velocity, and the larger the final suspending droplet volume. The analyses of the density distribution and temperature distribution of the droplet at the moment when it detaches from the wall show that the evaporation process is faster and a thicker vapor layer is generated due to the higher heat flux of the high-temperature wall, which will hinder the heat exchange, so that the average temperature of the droplet is lower and the average density is smaller.
      Corresponding author: Guo Ya-Li, ylguo@dlut.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51936002).
    [1]

    沈胜强, 张洁珊, 梁刚涛 2015 物理学报 64 134704Google Scholar

    Shen S Q, Zhang J S, Liang G T 2015 Acta Phys. Sin. 64 134704Google Scholar

    [2]

    Visaria M, Mudawar I 2009 IEEE Trans. Compon. Packaging Technol. 32 784Google Scholar

    [3]

    Shen S Q, Liang G T, Guo Y L, Liu R, Mu X S 2013 Desalin. Water Treat. 51 830Google Scholar

    [4]

    Moreira A L N, Moita A S, Panao M R 2010 Prog. Energy Combust. Sci. 36 54Google Scholar

    [5]

    刘晓华, 赵一鸣, 陈石, 沈胜强, 王斯琦 2017 热科学与技术 16 280Google Scholar

    Lui X H, Zhao Y M, Chen S, Shen S Q, Wang S Q 2017 J. Therm. Sci. Technol. 16 280Google Scholar

    [6]

    刘晓华, 陈晗, 王开珉, 陈石, 沈胜强 2018 热科学与技术 17 464Google Scholar

    Liu X H, Chen H, Wang K M, Chen S, Shen S Q 2018 J. Therm. Sci. Technol. 17 464Google Scholar

    [7]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [8]

    郭亚丽, 陈桂影, 沈胜强, 张京涛, 王明旭, 曹雪松, 郑周虎 2015 工程热物理学报 36 1547

    Guo Y L, Chen G Y, Shen S Q, Zhang J T, Wang M X, Cao X S, Zheng Z H 2015 J. Eng. Thermophys. 36 1547

    [9]

    Biance A L, Clanet C, Quéré D 2003 Phys. Fluids 15 1632Google Scholar

    [10]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [11]

    蔡畅, 刘红, 奚溪, Issam Mudawar 2021 工程热物理学报 42 732

    Cai C, Liu H, Xi X, Mudawar I 2021 J. Eng. Thermophys. 42 732

    [12]

    王均毅, 施红, 徐文冰, 胡亮春, 刘欢, 朱信龙 2020 航空计算技术 50 72

    Wang J Y, Shi H, Xu W B, Hu L C, Liu H, Zhu X L 2020 Aeronaut. Comput. Tech. 50 72

    [13]

    张瑜, 宁智, 吕明, 孙春华 2017 燃烧科学与技术 23 451

    Zhang Y, Ning Z, Lü M, Sun C H 2017 J. Combust. Sci. Technol. 23 451

    [14]

    Rony M D, Islam M A, Thakur M S H, Islam M, Hasan M N 2023 Int. J. Heat Mass Transfer 209 124107Google Scholar

    [15]

    Huang X N, Zhou L P, Du X Z 2023 J. Mol. Liq. 382 121982Google Scholar

    [16]

    Biryukov D A, Gerasimov D N, Yurin E I 2020 J. Phys. Conf. Ser. 1683 022007Google Scholar

    [17]

    Tuoliken A, Zhou L P, Bai P, Du X Z 2021 Int. J. Heat Mass Transfer. 172 121218Google Scholar

    [18]

    Feng R T, Zhao W J, Wu X D, Xue Q J 2012 J. Colloid Interface Sci. 367 450Google Scholar

    [19]

    Hashmi A, Xu Y H, Coder B, Osborne P A, Spafford J, Michael G E, Yu G, Xu J 2012 Sci. Rep. 2 797Google Scholar

    [20]

    Wells G G, Ledesmaaguilar R, Mchale G, Sefiane K 2015 Nat. Commun. 6 6390Google Scholar

    [21]

    Yarnell J L, Katz M J, Wenzel R G, Koenig S H 1973 Phys. Rev. A 7 2130Google Scholar

    [22]

    MullerPlathe F 1997 J. Chem. Phys. 106 6082Google Scholar

    [23]

    Haile J M 1997 Molecular Dynamics Simulation: Elementary Methods (New York: Wiley-Interscience) p489

    [24]

    王甜 2015 硕士学位论文 (大连: 大连理工大学)

    Wang T 2015 M. S. Thesis (Dalian: Dalian University of Technology

  • 图 1  液滴撞击高温壁面的物理模型

    Figure 1.  Physical model of a droplet hitting a high-temperature wall.

    图 2  径向分布函数比较图

    Figure 2.  Comparison of radial distribution functions.

    图 3  接触角获得过程 (a) 液滴铺展原子快照; (b) 液滴密度云图; (c) 等值线拟合

    Figure 3.  Contact angle acquisition process: (a) Droplet spreading atomic snapshot; (b) droplet density contours; (c) contour fitting.

    图 4  调节因子对润湿角的影响 (a) 本文模拟; (b) 对比模拟[24]

    Figure 4.  Effect of moderator on wetting angle: (a) Simulated in this paper; (b) comparative simulation[24].

    图 5  不同壁面温度下不同时刻的原子快照 (a) 85 K; (b) 150 K; (c) 200 K; (d) 250 K; (e) 300 K

    Figure 5.  Atomic snapshots with different wall temperatures at different moments: (a) 85 K; (b) 150 K; (c) 200 K; (d) 250 K; (e) 300 K.

    图 6  液滴蒸发原子数目

    Figure 6.  Number of atoms evaporated by the droplet.

    图 7  液滴的质心变化

    Figure 7.  Change in the center of mass of a droplet.

    图 8  液滴与不同温度壁面之间的热通量

    Figure 8.  Heat flux between the droplet and the wall at different temperatures.

    图 9  液滴脱离壁面前不同壁面温度下液滴的密度分布

    Figure 9.  Density distribution of droplets at different wall temperatures before droplets detach from the wall.

    图 10  液滴脱离壁面前不同壁面温度下的液滴温度分布

    Figure 10.  Droplet temperature distribution at different wall temperatures before the droplet detached from the wall.

    表 1  Lennard-Jones (12-6)各原子模拟参数

    Table 1.  Lennard-Jones (12-6) atomic simulation parameters.

    ε/eVσrc
    Cu0.520312.2972612
    Ar0.01043.40512
    Cu—Ar0.073562.8511312
    DownLoad: CSV

    表 2  物性参数对比

    Table 2.  Comparison of physical property parameters.

    本文模拟 实验测量 误差
    导热系数/(W⋅m–1·K–1) 0.128 0.132 3.03%
    黏度/(10–4 Pa–1·s–1) 2.92 2.8 –4.28%
    DownLoad: CSV

    表 3  不同壁面温度下蒸气层厚度、液滴厚度以及液滴平均密度的统计

    Table 3.  Statistics of vapor layer thickness, droplet thickness and average droplet density at different wall temperatures.

    壁面
    温度/K
    蒸气层
    厚度/Å
    液滴
    厚度/Å
    液滴密度/
    (g⋅cm–3)
    150 0 10 0.95
    200 14 50 1.15
    250 19 35 1.21
    300 23 24 1.29
    DownLoad: CSV

    表 4  不同壁面温度下液滴平均温度、上下温差以及温度梯度

    Table 4.  Average droplet temperature, the temperature difference between upper and lower temperatures, and the temperature gradient at different wall temperatures.

    壁面温度/K平均温度/K液滴上下
    温差/K
    温度梯度/
    (K·Å–1)
    15014050.5
    200121330.65
    250107411.17
    30098471.95
    DownLoad: CSV
  • [1]

    沈胜强, 张洁珊, 梁刚涛 2015 物理学报 64 134704Google Scholar

    Shen S Q, Zhang J S, Liang G T 2015 Acta Phys. Sin. 64 134704Google Scholar

    [2]

    Visaria M, Mudawar I 2009 IEEE Trans. Compon. Packaging Technol. 32 784Google Scholar

    [3]

    Shen S Q, Liang G T, Guo Y L, Liu R, Mu X S 2013 Desalin. Water Treat. 51 830Google Scholar

    [4]

    Moreira A L N, Moita A S, Panao M R 2010 Prog. Energy Combust. Sci. 36 54Google Scholar

    [5]

    刘晓华, 赵一鸣, 陈石, 沈胜强, 王斯琦 2017 热科学与技术 16 280Google Scholar

    Lui X H, Zhao Y M, Chen S, Shen S Q, Wang S Q 2017 J. Therm. Sci. Technol. 16 280Google Scholar

    [6]

    刘晓华, 陈晗, 王开珉, 陈石, 沈胜强 2018 热科学与技术 17 464Google Scholar

    Liu X H, Chen H, Wang K M, Chen S, Shen S Q 2018 J. Therm. Sci. Technol. 17 464Google Scholar

    [7]

    梁刚涛, 郭亚丽, 沈胜强 2013 物理学报 62 184703Google Scholar

    Liang G T, Guo Y L, Shen S Q 2013 Acta Phys. Sin. 62 184703Google Scholar

    [8]

    郭亚丽, 陈桂影, 沈胜强, 张京涛, 王明旭, 曹雪松, 郑周虎 2015 工程热物理学报 36 1547

    Guo Y L, Chen G Y, Shen S Q, Zhang J T, Wang M X, Cao X S, Zheng Z H 2015 J. Eng. Thermophys. 36 1547

    [9]

    Biance A L, Clanet C, Quéré D 2003 Phys. Fluids 15 1632Google Scholar

    [10]

    荣松, 沈世全, 王天友, 车志钊 2019 物理学报 68 154701Google Scholar

    Rong S, Shen S Q, Wang T Y, Che Z Z 2019 Acta Phys. Sin. 68 154701Google Scholar

    [11]

    蔡畅, 刘红, 奚溪, Issam Mudawar 2021 工程热物理学报 42 732

    Cai C, Liu H, Xi X, Mudawar I 2021 J. Eng. Thermophys. 42 732

    [12]

    王均毅, 施红, 徐文冰, 胡亮春, 刘欢, 朱信龙 2020 航空计算技术 50 72

    Wang J Y, Shi H, Xu W B, Hu L C, Liu H, Zhu X L 2020 Aeronaut. Comput. Tech. 50 72

    [13]

    张瑜, 宁智, 吕明, 孙春华 2017 燃烧科学与技术 23 451

    Zhang Y, Ning Z, Lü M, Sun C H 2017 J. Combust. Sci. Technol. 23 451

    [14]

    Rony M D, Islam M A, Thakur M S H, Islam M, Hasan M N 2023 Int. J. Heat Mass Transfer 209 124107Google Scholar

    [15]

    Huang X N, Zhou L P, Du X Z 2023 J. Mol. Liq. 382 121982Google Scholar

    [16]

    Biryukov D A, Gerasimov D N, Yurin E I 2020 J. Phys. Conf. Ser. 1683 022007Google Scholar

    [17]

    Tuoliken A, Zhou L P, Bai P, Du X Z 2021 Int. J. Heat Mass Transfer. 172 121218Google Scholar

    [18]

    Feng R T, Zhao W J, Wu X D, Xue Q J 2012 J. Colloid Interface Sci. 367 450Google Scholar

    [19]

    Hashmi A, Xu Y H, Coder B, Osborne P A, Spafford J, Michael G E, Yu G, Xu J 2012 Sci. Rep. 2 797Google Scholar

    [20]

    Wells G G, Ledesmaaguilar R, Mchale G, Sefiane K 2015 Nat. Commun. 6 6390Google Scholar

    [21]

    Yarnell J L, Katz M J, Wenzel R G, Koenig S H 1973 Phys. Rev. A 7 2130Google Scholar

    [22]

    MullerPlathe F 1997 J. Chem. Phys. 106 6082Google Scholar

    [23]

    Haile J M 1997 Molecular Dynamics Simulation: Elementary Methods (New York: Wiley-Interscience) p489

    [24]

    王甜 2015 硕士学位论文 (大连: 大连理工大学)

    Wang T 2015 M. S. Thesis (Dalian: Dalian University of Technology

  • [1] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] Liu He, Yang Ya-Jing, Tang Yu-Ning, Wei Yan-Ju. Dynamics of acoustically-induced droplet instability. Acta Physica Sinica, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [3] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [4] Qin Wei-Guang, Wang Jin, Ji Wen-Jie, Zhao Wen-Jing, Chen Cong, Lan Ding, Wang Yu-Ren. Spreading dynamics of liquid-liquid driving. Acta Physica Sinica, 2022, 71(6): 064701. doi: 10.7498/aps.71.20211682
    [5] Li Wen, Ma Xiao-Jing, Xu Jin-Liang, Wang Yan, Lei Jun-Peng. Effects of base angle and wettability of nanostructures on droplet wetting behaviors. Acta Physica Sinica, 2021, 70(12): 126101. doi: 10.7498/aps.70.20201584
    [6] Wei Yan-Ju, Zhang Jie, Deng Sheng-Cai, Zhang Ya-Jie, Yang Ya-Jing, Liu Sheng-Hua, Chen Hao. Phenomenon study on heat induced atomization of acoustic levitated methanol droplet. Acta Physica Sinica, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [7] Yang Ya-Jing, Mei Chen-Xi, Zhang Xu-Dong, Wei Yan-Ju, Liu Sheng-Hua. Kinematics and passing modes of a droplet impacting on a soap film. Acta Physica Sinica, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [8] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [9] Yin Ling-Kang, Xu Shun, Seongmin Jeong, Yongseok Jho, Wang Jian-Jun, Zhou Xin. Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation. Acta Physica Sinica, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [10] Liang Hong, Chai Zhen-Hua, Shi Bao-Chang. Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel. Acta Physica Sinica, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [11] Lin Lin, Yuan Ru-Qiang, Zhang Xin-Xin, Wang Xiao-Dong. Spreading dynamics of liquid droplet on gradient micro-structured surfaces. Acta Physica Sinica, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [12] Zhou Nan, Chen Shuo. The study of fluid with free surface by many-body dissipative particle dynamics. Acta Physica Sinica, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [13] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [14] Qiu Feng, Wang Meng, Zhou Hua-Guang, Zheng Xuan, Lin Xin, Huang Wei-Dong. Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate. Acta Physica Sinica, 2013, 62(12): 120203. doi: 10.7498/aps.62.120203
    [15] Su Tie-Xiong, Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong. A numerical analysis of drop impact on solid surfaces by using smoothed particle hydrodynamics method. Acta Physica Sinica, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [16] Ma Li-Qiang, Liu Mou-Bin, Chang Jian-Zhong, Su Tie-Xiong, Liu Han-Tao. Numerical simulation of droplet impact onto liquid films with smoothed particle hydrodynamics. Acta Physica Sinica, 2012, 61(24): 244701. doi: 10.7498/aps.61.244701
    [17] Ma Li-Qiang, Chang Jian-Zhong, Liu Han-Tao, Liu Mou-Bin. Numerical simulation of droplet impact on liquid with smoothed particle hydrodynamics method. Acta Physica Sinica, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [18] Guo Jia-Hong, Dai Shi-Qiang, Dai Qin. Experimental research on the droplet impacting on the liquid film. Acta Physica Sinica, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [19] Wang Xiao-Liang, Chen Shuo. Simulation of vapor-liquid coexistence using dissipative particle dynamics. Acta Physica Sinica, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [20] Wang Lei, Zhang Zhong-Qiang, Zhang Hong-Wu. Electrowetting in double-walled carbon nanotubes: molecular dynamics simulations. Acta Physica Sinica, 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
Metrics
  • Abstract views:  1461
  • PDF Downloads:  60
  • Cited By: 0
Publishing process
  • Received Date:  06 January 2024
  • Accepted Date:  19 March 2024
  • Available Online:  27 March 2024
  • Published Online:  20 May 2024

/

返回文章
返回