-
How surface wettability affects boiling heat transfer of thin liquid film on a nanoscale remains a challenging research topic. In this work, the effects of wettability on the nanoscale boiling heat transfer for a thin liquid film on hydrophilic surface and hydrophobic surface are investigated by molecular dynamics simulation. Results demonstrate that the hydrophilic surface has better heat transfer performance than the hydrophobic surface. It has a shorter boiling onset time, higher temperature, heat flux, interfacial thermal conductance, and weakened interfacial thermal resistance. The hydrophilic surface throughout has higher critical heat flux than the hydrophobic surface in both macro-system and nanoscale system. Besides, a two-dimensional surface potential energy is proposed to reveal the mechanism of wettability affecting the boiling heat transfer. The absolute value of potential energy in one regular unit of hydrophilicity (–0.34 eV) is much higher than that of hydrophobicity (–0.09 eV). That is the crucial reason why the heat transfer enhancement via improving surface wettability should be primarily the powerful surface potential energy. In addition, the interaction energy is calculated to further address the nucleation mechanism and heat transfer performance for liquid film on different wettability surfaces. The interaction energy values are ordered as Iphi (1.57 eV/nm2) > Iwater (0.48 eV/nm2) > Ipho (0.26 eV/nm2), indicating that the better heat transfer performance of hydrophilic surface is because of the large interaction energy at the solid/liquid interface. Besides, the bubble nucleation on a hydrophilic surface needs absorbing more energy and occurs inside the thin liquid film, while it needs absorbing less energy and triggering off at the solid/liquid interface with hydrophobicity. Those uncover the principal mechanisms of how wettability influences the bubble nucleation and boiling heat transfer performance on a nanoscale.
-
Keywords:
- wettability /
- surface potential energy /
- interaction energy /
- thin liquid film boiling /
- molecular dynamics
[1] 曹春蕾, 何孝天, 马骁婧, 徐进良 2021 物理学报 70 134703Google Scholar
Cao C L, He X T, M X J, Xu J L 2021 Acta Phys. Sin. 70 134703Google Scholar
[2] 刘飞龙, 程彦锟, 张境恒, 唐彪, 周国富 2023 物理学报 72 208501Google Scholar
Liu F L, Cheng Y K, Zhang J H, Tang B, Zhou G F 2023 Acta Phys. Sin. 72 208501Google Scholar
[3] Xiong K N, Luo Y H, Hu Y X, Wang S F 2024 Int. J. Therm. Sci. 196 108719Google Scholar
[4] Hu H T, Zhao Y X, Lai Z C, Hu C Y 2021 Int. J. Therm. Sci. 168 107096Google Scholar
[5] Zhang L, Wang T, Kim S, Tan S, Jiang Y Y 2019 Appl. Phys. Lett. 115 103701Google Scholar
[6] Zhang L, Wang T, Jiang Y Y, Kim S, Guo C H 2018 Int. J. Heat Mass Transfer. 122 775Google Scholar
[7] Lee S W, Park S D, Bang I C 2012 Int. J. Heat Mass Transfer 55 6908Google Scholar
[8] Jo H J, Kim S, Park H S, Kim M H 2014 Int. J. Multiphase Flow 62 101Google Scholar
[9] 张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 234702Google Scholar
Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin. 67 234702Google Scholar
[10] Wang Y H, Wang S Y, Lu G, Wang X D 2019 Int. J. Heat Mass Transfer 132 1277Google Scholar
[11] Cao Q, Cui Z 2019 Numer. Heat Transfer, Part A 75 533Google Scholar
[12] Hens A, Agarwal R, Biswas G 2014 Int. J. Heat Mass Transfer 71 303Google Scholar
[13] Chen Y J, Chen B N, Yu B, Tao W Q, Zou Y 2020 Langmuir 36 5336Google Scholar
[14] Yin X Y, Hu C Z, Bai M L, Lü J Z 2019 Int. Commun. Heat Mass Transfer 109 104390Google Scholar
[15] Wang Z, Li L 2 0122 Int. J. Heat Mass Transfer 183 122059Google Scholar
[16] Tian P, Ge W X, Li S S, Gao L, Jiang J H, Xu Y D 2023 Chin. Phys. Lett. 40 067802Google Scholar
[17] 曹炳阳, 张梓彤 2022 物理学报 71 014401Google Scholar
Cao B Y, Zhang Z T 2022 Acta Phys. Sin. 71 014401Google Scholar
[18] 张龙艳, 徐进良, 雷俊鹏 2019 物理学报 68 020201Google Scholar
Zhang L Y, Xu J L, Lei J P 2019 Acta Phys. Sin. 68 020201Google Scholar
[19] Mao Y J, Zhang Y W 2014 Appl. Therm. Eng. 62 607Google Scholar
[20] 曹炳阳, 陈民, 过增元 2005 高等学校化学学报 26 277Google Scholar
Cao B Y, Chen M, Guo Z Y 2005 Chem. J. Chin. Univ. 26 277Google Scholar
[21] Zhong X G, Liu Y S, Yao Y C, He B, Wen B H 2023 Chin. Phys. B 32 054701Google Scholar
[22] Li Y Y, Li Y, Jiao W, Chen X Q, Lu G 2021 Int. J. Heat Mass Transfer 170 120996Google Scholar
[23] Dang K, Chen J, Rodgers B, Fensin S 2023 Comput. Phys. Commun. 286 108667Google Scholar
[24] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[25] Deng W, Ma S H, Li W M, Liu H Q, Zhao J Y 2022 Int. J. Heat Mass Transfer 191 122856Google Scholar
[26] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋 2023 物理学报 19 196801Google Scholar
Tang X X, Chen H Y, Wang J J, Wang Z J, Zang D Y 2023 Acta Phys. Sin. 19 196801Google Scholar
[27] Yin X Y, Hu C Z, Bai M L, Lü J Z 2020 Int. J. Heat Mass Transfer 162 120338Google Scholar
[28] Wang W R, Huang S H, Luo X S 2016 Int. J. Heat Mass Transfer 100 276Google Scholar
[29] Cai J J, Gong Z Q, Tan B 2023 Int. J. Therm. Sci. 184 107966Google Scholar
[30] Surblys D, Kawagoe Y, Shibahara M, Ohara T J 2019 J. Chem. Phys. 150 114705Google Scholar
[31] Chen Y J, Yu B, Zou Y, Chen B N, Tao W Q 2020 Int. J. Heat Mass Transfer 158 119850Google Scholar
[32] Wang B B, Xu Z M, Wang X D, Yan W M 2018 Int. J. Heat Mass Transfer 125 756Google Scholar
[33] Hu H, Sun Y 2016 Int. J. Heat Mass Transfer 101 878Google Scholar
[34] 胡剑, 张森, 娄钦 2023 物理学报 72 176401Google Scholar
Hu J, Zhang S, Lou Q 2023 Acta Phys. Sin. 72 176401Google Scholar
[35] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略 2022 物理学报 71 214701Google Scholar
Zhao C, Ji X B, Yang Y H, Meng Y H, Xu J L Peng J L 2022 Acta Phys. Sin. 71 214701Google Scholar
-
表 1 原子间作用势能参数
Table 1. Potential energy and related parameters between particles.
粒子 i, j qe/e σij/Å εij/eV H-H +0.52 0.00 0.0000 O-O –1.04 3.165 0.006998 Cu-Cu — 2.33 0.4096 Cu-H — 0.00 0.0000 Cu-O(亲水) — 2.75 0.034 Cu-O(疏水) — 2.75 0.009 -
[1] 曹春蕾, 何孝天, 马骁婧, 徐进良 2021 物理学报 70 134703Google Scholar
Cao C L, He X T, M X J, Xu J L 2021 Acta Phys. Sin. 70 134703Google Scholar
[2] 刘飞龙, 程彦锟, 张境恒, 唐彪, 周国富 2023 物理学报 72 208501Google Scholar
Liu F L, Cheng Y K, Zhang J H, Tang B, Zhou G F 2023 Acta Phys. Sin. 72 208501Google Scholar
[3] Xiong K N, Luo Y H, Hu Y X, Wang S F 2024 Int. J. Therm. Sci. 196 108719Google Scholar
[4] Hu H T, Zhao Y X, Lai Z C, Hu C Y 2021 Int. J. Therm. Sci. 168 107096Google Scholar
[5] Zhang L, Wang T, Kim S, Tan S, Jiang Y Y 2019 Appl. Phys. Lett. 115 103701Google Scholar
[6] Zhang L, Wang T, Jiang Y Y, Kim S, Guo C H 2018 Int. J. Heat Mass Transfer. 122 775Google Scholar
[7] Lee S W, Park S D, Bang I C 2012 Int. J. Heat Mass Transfer 55 6908Google Scholar
[8] Jo H J, Kim S, Park H S, Kim M H 2014 Int. J. Multiphase Flow 62 101Google Scholar
[9] 张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 234702Google Scholar
Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin. 67 234702Google Scholar
[10] Wang Y H, Wang S Y, Lu G, Wang X D 2019 Int. J. Heat Mass Transfer 132 1277Google Scholar
[11] Cao Q, Cui Z 2019 Numer. Heat Transfer, Part A 75 533Google Scholar
[12] Hens A, Agarwal R, Biswas G 2014 Int. J. Heat Mass Transfer 71 303Google Scholar
[13] Chen Y J, Chen B N, Yu B, Tao W Q, Zou Y 2020 Langmuir 36 5336Google Scholar
[14] Yin X Y, Hu C Z, Bai M L, Lü J Z 2019 Int. Commun. Heat Mass Transfer 109 104390Google Scholar
[15] Wang Z, Li L 2 0122 Int. J. Heat Mass Transfer 183 122059Google Scholar
[16] Tian P, Ge W X, Li S S, Gao L, Jiang J H, Xu Y D 2023 Chin. Phys. Lett. 40 067802Google Scholar
[17] 曹炳阳, 张梓彤 2022 物理学报 71 014401Google Scholar
Cao B Y, Zhang Z T 2022 Acta Phys. Sin. 71 014401Google Scholar
[18] 张龙艳, 徐进良, 雷俊鹏 2019 物理学报 68 020201Google Scholar
Zhang L Y, Xu J L, Lei J P 2019 Acta Phys. Sin. 68 020201Google Scholar
[19] Mao Y J, Zhang Y W 2014 Appl. Therm. Eng. 62 607Google Scholar
[20] 曹炳阳, 陈民, 过增元 2005 高等学校化学学报 26 277Google Scholar
Cao B Y, Chen M, Guo Z Y 2005 Chem. J. Chin. Univ. 26 277Google Scholar
[21] Zhong X G, Liu Y S, Yao Y C, He B, Wen B H 2023 Chin. Phys. B 32 054701Google Scholar
[22] Li Y Y, Li Y, Jiao W, Chen X Q, Lu G 2021 Int. J. Heat Mass Transfer 170 120996Google Scholar
[23] Dang K, Chen J, Rodgers B, Fensin S 2023 Comput. Phys. Commun. 286 108667Google Scholar
[24] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[25] Deng W, Ma S H, Li W M, Liu H Q, Zhao J Y 2022 Int. J. Heat Mass Transfer 191 122856Google Scholar
[26] 唐修行, 陈泓樾, 王婧婧, 王志军, 臧渡洋 2023 物理学报 19 196801Google Scholar
Tang X X, Chen H Y, Wang J J, Wang Z J, Zang D Y 2023 Acta Phys. Sin. 19 196801Google Scholar
[27] Yin X Y, Hu C Z, Bai M L, Lü J Z 2020 Int. J. Heat Mass Transfer 162 120338Google Scholar
[28] Wang W R, Huang S H, Luo X S 2016 Int. J. Heat Mass Transfer 100 276Google Scholar
[29] Cai J J, Gong Z Q, Tan B 2023 Int. J. Therm. Sci. 184 107966Google Scholar
[30] Surblys D, Kawagoe Y, Shibahara M, Ohara T J 2019 J. Chem. Phys. 150 114705Google Scholar
[31] Chen Y J, Yu B, Zou Y, Chen B N, Tao W Q 2020 Int. J. Heat Mass Transfer 158 119850Google Scholar
[32] Wang B B, Xu Z M, Wang X D, Yan W M 2018 Int. J. Heat Mass Transfer 125 756Google Scholar
[33] Hu H, Sun Y 2016 Int. J. Heat Mass Transfer 101 878Google Scholar
[34] 胡剑, 张森, 娄钦 2023 物理学报 72 176401Google Scholar
Hu J, Zhang S, Lou Q 2023 Acta Phys. Sin. 72 176401Google Scholar
[35] 赵昶, 纪献兵, 杨聿昊, 孟宇航, 徐进良, 彭家略 2022 物理学报 71 214701Google Scholar
Zhao C, Ji X B, Yang Y H, Meng Y H, Xu J L Peng J L 2022 Acta Phys. Sin. 71 214701Google Scholar
Catalog
Metrics
- Abstract views: 1950
- PDF Downloads: 236
- Cited By: 0