Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular dynamics study on bubble nucleation on rough surfaces with sinusoidal protrusions under different wetting conditions

YU Mian LI Bingheng MENG Xiangwen WU Lianfeng MA Lianxiang TANG Yuanzheng

Citation:

Molecular dynamics study on bubble nucleation on rough surfaces with sinusoidal protrusions under different wetting conditions

YU Mian, LI Bingheng, MENG Xiangwen, WU Lianfeng, MA Lianxiang, TANG Yuanzheng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Bubble nucleation plays a pivotal role in microscale heat conduction, boiling heat transfer, and liquid–vapor phase change processes, because it not only governs heat transfer efficiency but also strongly regulates bubble dynamics. The nucleation processes are highly sensitive to the surface morphology and wettability of solid substrates. However, due to the inherent limitations of traditional experiments in terms of spatial resolution and observation times, revealing the microscopic mechanisms of bubble nucleation on a nanoscale remains a significant challenge—particularly under conditions involving complex surface structures and different wettability states. In this study, molecular dynamics simulations are employed to systematically investigate the mechanisms by which surface roughness and wettability influence bubble nucleation behavior on nanostructured surfaces on an atomic scale. Five copper substrates featuring sinusoidal protrusions are designed to represent different degrees of surface roughness. The sinusoidal profile, characterized by mathematical continuity and smoothness, not only facilitates the observation of bubble coalescence and contact angle evolution but also ensures comparability among models by maintaining identical protrusion height and overall width, thereby keeping the protrusion volume constant. This design allows for direct comparison of bubble growth rates and other physical quantities between different models. In addition, three different wettability conditions, namely hydrophobic, neutral, and hydrophilic, are achieved by modifying the interaction potential between oxygen and copper atoms. During the simulations, a constant heat flux is applied to the bottom copper substrate to trigger off spontaneous bubble nucleation, and local low-density regions are identified using density distribution analysis to track bubble nucleation sites; a piston-like pressure control mechanism is introduced through the top copper plate, and the displacement of this plate with time is used to quantify bubble growth rates under varying roughness and wettability. Additionally, the Kapitza resistance between solid and liquid phases is calculated to evaluate interfacial heat transfer efficiency. The results demonstrate that increasing surface roughness significantly promotes the formation of local low-density cavities, thereby accelerating the bubble nucleation and subsequent growth. As the surface wettability transitions from hydrophobic to hydrophilic, the solid–liquid interfacial thermal resistance decreases, leading to earlier bubble nucleation. Moreover, under hydrophilic conditions, the contact angle of the bubbles increases significantly, indicating enhanced detachment and growth behavior. Overall, the findings of this work advance the fundamental understanding of the microscopic mechanisms of bubble nucleation and provide theoretical guidance and technical references for designing high-efficiency heat transfer structures and tunable fluid–solid interfaces on a nanoscale.
  • 图 1  模拟系统结构 (a) 整体结构图; (b) 不同模型基底结构投影图; (c) 基底中Cu原子的功能分层示意图

    Figure 1.  Structure of the simulation system: (a) Overall structure diagram; (b) projection diagrams of substrate structures for different models; (c) schematic diagram of functional layering of Cu atoms in the substrate.

    图 2  模拟系统在中性润湿条件下的气泡成核快照 (a) 模型#1; (b) 模型#3; (c) 模型#5

    Figure 2.  Snapshots of bubble nucleation under neutral wetting condition in simulation systems: (a) Model #1; (b) Model #3; (c) Model #5.

    图 3  密度统计区域示意图

    Figure 3.  Schematic diagram of the density statistical region.

    图 4  各模型统计区域内H2O分子数密度随时间的变化图

    Figure 4.  Number density variation of H2O molecules over time in the statistical region for each model.

    图 5  各模型顶部铜板位移随时间变化图 (a)模型#5, 0.21 ns; (b)模型#5, 0.5 ns; (c)模型#5, 0.61 ns

    Figure 5.  Time evolution of the top Cu plate displacement for each model: (a) Model #5, 0.21 ns; (b) Model #5, 0.5 ns; (c) Model #5, 0.61 ns.

    图 6  各模型顶部Cu板高度相同时的密度分布图 (a) 模型#1, 0.75 ns; (b) 模型#3, 0.65 ns; (c) 模型#5, 0.54 ns

    Figure 6.  Density distribution maps of each model at the same top Cu plate height: (a) Model#1, 0.75 ns; (b) Model #3, 0.65 ns; (c) Model #5, 0.54 ns.

    图 7  0.5 ns时刻模型1#温度分布图

    Figure 7.  Temperature distribution of model #1 at 0.5 ns.

    图 8  统计区域内各模型H2O的温度随时间的变化

    Figure 8.  Temperature variation of H2O in the statistical region over time for each model.

    图 9  模型#1和#5在不同润湿条件下的气泡成核快照 模型#1: (a) 疏水条件; (b) 中性条件; (c) 亲水条件 模型#5: (d) 疏水条件; (e) 中性条件; (f) 亲水条件

    Figure 9.  Snapshots of bubble nucleation in Model #1 and #5 under different wettability conditions. Model #1: (a) Hydrophobic condition; (b) neutral condition; (c) hydrophilic condition. Model #5: (d) Hydrophobic condition; (e) neutral condition; (f) hydrophilic condition.

    图 10  模型#1和#5在不同润湿条件下统计区域内H2O分子数密度随时间的变化图

    Figure 10.  Temporal evolution of H2O molecular number density in the sampling region for Model #1 and #5 with different wettability conditions.

    图 11  模型#1在不同润湿条件下气泡成核时刻的密度分布图 (a) 疏水条件, 1.12 ns; (b) 中性条件, 0.77 ns; (c) 亲水条件, #0.67 ns

    Figure 11.  Density distribution diagram at the moment of bubble nucleation in Model #1 under different wettability conditions: (a) Hydrophobic condition, 1.12 ns; (b) neutral condition, 0.77 ns; (c) hydrophilic condition, 0.67 ns.

    图 12  模型#1在不同润湿条件下气泡接触角随时间变化图

    Figure 12.  Temporal evolution of bubble contact angle for Model #1 under different wettability conditions.

    图 13  模型#1和#5在不同润湿条件下顶板的位移随时间的变化图

    Figure 13.  Displacement of the top copper plate over time in model #1 and #5 under different wettability conditions.

    图 14  模型#1和#5在不同润湿条件下统计区域内H2O的温度随时间的变化图

    Figure 14.  Temperature variation of H2O in the sampling region over time for model #1 and #5 under different wettability conditions.

    图 15  模型#1和#5在不同润湿条件下的Kapitza热阻随时间的变化图

    Figure 15.  Variation of Kapitza resistance over time for model #1 and #5 under different wettability conditions.

    图 16  不同粗糙度和润湿条件下的稳定气泡形成时间

    Figure 16.  Stable bubble formation time under different roughness and wetting conditions.

    表 1  L-J势函数参数

    Table 1.  L-J potential parameters.

    Atom pairs σ/nm ε/meV
    Cu—Cu 0.2377 409.300
    O—O 0.3166 6.739
    O—Cu (疏水) 0.3380 3.685
    O—Cu (中性) 0.3190 7.370
    O—Cu (亲水) 0.3011 14.740
    DownLoad: CSV

    表 2  各模型的表面粗糙度

    Table 2.  The surface roughness of each model.

    模型#1#2#3#4#5
    粗糙度1.041.161.321.491.67
    DownLoad: CSV
  • [1]

    Shahmardi A, Tammisolae O, Chinappi M, Brandt L 2021 Int. J. Therm. Sci. 167 106980Google Scholar

    [2]

    Yuan H S, Tan S C, Du W A, Ding S H, Guo C 2018 Int. J. Heat Mass Transfer 122 1198Google Scholar

    [3]

    Hu Y, Gao H T, Yan Y Y 2025 J. Ind. Eng. Chem. 143 123Google Scholar

    [4]

    Moiz M, Vadlamudi S R G, Srivastava A 2024 Int. J. Heat Mass Transfer 233 126006Google Scholar

    [5]

    Arunkumar H S, Hitesh N M, Madhwesh N, Hegde A K, Karanth K V 2023 Sol. Energy 266 112161Google Scholar

    [6]

    Zhang Y L, Lu S L, Li D L, Duan H Y, Duan C W, Zhang J H, Liu S T 2023 Chin. J. Chem. Eng. 62 168Google Scholar

    [7]

    Zhang Y L, Duan H Y, Chen E J, Li M, Liu S T Langmuir 39 1629

    [8]

    Javier R R, Sevilla A, Carlos M B, Gordillo J M 2015 Annu. Rev. Fluid Mech. 47 405Google Scholar

    [9]

    Hsiao C T, Choi J K, Singh S, Chahine G L, Hay T A, Ilinskii Y A, Zabolotskaya E A, Hamilton M F, Sankin G, Yuan F, Zhong P 2013 J. Fluid Mech 716 137Google Scholar

    [10]

    Yuan H B, Wang Q, Yin X S, Li D, Yue X, Yang B J 2021 Nanosci. Nanotechnol. 21 1315

    [11]

    Alder J B, Wainwright E T 1959 J. Chem. Phys. 31 459Google Scholar

    [12]

    Frenkel D, Smit B, Ratner M A 2002 Phys. Today 50 66

    [13]

    Wen R F, Li Q, Wang W, Latour B, Calvin H. L, Li C, Lee Y C, Yang R G 2017 Nano Energy 38 59Google Scholar

    [14]

    Miao S S, Xia G D 2024 J. Mol. Liq. 400 124457Google Scholar

    [15]

    Liu H Q, Qin X Y, Ahmad S, Tong Q, Zhao J Y 2019 Int. J. Heat Mass Transfer 145 118799Google Scholar

    [16]

    Zhang S W, Hao F, Chen H M, Yuan W, Tang Y, Chen X 2017 Appl. Therm. Eng. 113 208Google Scholar

    [17]

    Wang W R, Huang S H, Luo X S 2016 Int. J. Heat Mass Transfer 100 276Google Scholar

    [18]

    Zhang L Y, Xu J L, Liu G L, Lei J P 2020 Int. J. Therm. Sci. 152 106325Google Scholar

    [19]

    杨海昌, 徐梦迪, 邢耀文, 桂夏辉, 曹亦俊 2025 物理学报 74 024702Google Scholar

    Yang H C, Xu M D, Xing Y W, Gui X H, Cao Y J 2025 Acta Phys. Sin 74 024702Google Scholar

    [20]

    白璞 2022 博士学位论文(北京: 华北电力大学)

    Bai P 2022 Ph. D. Dissertation (Beijing: North China Electric Power University

    [21]

    Yang H C, Jiang H Y, Cheng Y L, Xing Y W, Cao Y J, Gui X H 2024 J. Mol. Liq. 411 125758Google Scholar

    [22]

    Shahid M, Young K H 2022 J. Korean Phys. Soc. 82 375

    [23]

    Zhou W J, Zhang Y H, Wei J J 2022 Langmuir 38 1223Google Scholar

    [24]

    Liu H Q, Deng W, Ding P, Zhao J Y 2021 Nucl. Eng. Des. 382 111400Google Scholar

    [25]

    张雪松, 范振忠, 仝其雷, 付沅峰 2024 物理学报 73 204701Google Scholar

    Zhang X S, Fan Z Z, Tong Q L, Fu Y F 2024 Acta Phys. Sin. 73 204701Google Scholar

    [26]

    Vladislav A Y, Guillaume A, Molinari J F 2014 Tribol. Lett. 56 171Google Scholar

    [27]

    Deng W, Ma S H, Li W M, Liu H Q, Zhao J Y 2022 Int. J. Heat Mass Transfer 191 122856Google Scholar

    [28]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269Google Scholar

    [29]

    Peter G K, Igor M S 1994 Science 265 1219Google Scholar

    [30]

    Ryckaert J P, Ciccotti G, Berendsen H J C 1977 J. Comput. Phys. 23 327Google Scholar

    [31]

    Hockney R W, Eastwood J W 2021 Computer Simulation Using Particles 1st (Boca Raton: CRC Press) pp267–269

    [32]

    Guo C, Ji C, Kong Y L, Liu Z G, Guo L, Yang Y Y 2023 Materials 16 1984Google Scholar

    [33]

    Schneider T, Stoll E 1978 Phys. Rev. B 17 1302

    [34]

    Steve P 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [36]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33Google Scholar

    [37]

    Tang Y Z, Wu L F, Ma L X, Feng S Y, He Y 2022 Int. J. Therm. Sci. 171 107212Google Scholar

    [38]

    Chen Y J, Yu B, Zou Y, Chen B N, Tao W Q 2020 Int. J. Heat Mass Transfer 158 119850Google Scholar

    [39]

    Chen Y L, Guo L, Sun W C, Cai N N, Yan Y Y 2023 Int. J. Multiphase Flow 169 104613Google Scholar

    [40]

    张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 234702Google Scholar

    Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin. 67 234702Google Scholar

    [41]

    Cao Q, Li Z R, Cui Z 2023 Langmuir 39 12754Google Scholar

    [42]

    樊翔宇, 张周卫, 汪雅红, 刘要森 2022 化工机械 49 920

    Fan X Y, Zhang Z W, Wang Y H, Liu Y S 2022 Chem. Eng. Mach. 49 920

    [43]

    葛宋, 陈民 2013 物理学报 62 110204Google Scholar

    Ge S, Chen M 2013 Acta Phys. Sin. 62 110204Google Scholar

    [44]

    Liu Z Y, Liu Z Y, Liu R K 2023 Int. J. Therm. Sci. 192 108424Google Scholar

  • [1] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, doi: 10.7498/aps.73.20232026
    [2] Gu Jing-Xuan, Zheng Ting, Guo Ming-Shuai, Xia Dong-Sheng, Zhang Hui-Chen. Fluid dynamics simulation on water lubricating performance of micro-/nano-textured surfaces considering roughness structures. Acta Physica Sinica, doi: 10.7498/aps.73.20240333
    [3] Zeng Qi-Yu, Chen Bo, Kang Dong-Dong, Dai Jia-Yu. Large scale and quantum accurate molecular dynamics simulation: Liquid iron under extreme condition. Acta Physica Sinica, doi: 10.7498/aps.72.20231258
    [4] Zhao Chang, Ji Xian-Bing, Yang Yu-Hao, Meng Yu-Hang, Xu Jin-Liang, Peng Jia-Lue. Behavior characteristics of Janus particles impacting bubbles. Acta Physica Sinica, doi: 10.7498/aps.71.20220632
    [5] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, doi: 10.7498/aps.70.20210058
    [6] Liu Chen-Hao, Liu Tian-Yu, Huang Ren-Zhong, Gao Tian-Fu, Shu Yao-Gen. Transport performance of coupled Brownian particles in rough ratchet. Acta Physica Sinica, doi: 10.7498/aps.68.20191203
    [7] Li Rui-Tao, Tang Gang, Xia Hui, Xun Zhi-Peng, Li Jia-Xiang, Zhu Lei. Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice. Acta Physica Sinica, doi: 10.7498/aps.68.20181774
    [8] Mei Tao, Chen Zhan-Xiu, Yang Li, Wang Kun, Miao Rui-Can. Effect of rough inner wall of nanochannel on fluid flow behavior. Acta Physica Sinica, doi: 10.7498/aps.68.20181956
    [9] Zhang Yong-Jian, Ye Fang-Xia, Dai Jun, He Bin-Feng, Zang Du-Yang. Influence of nano-scaled roughness on evaporation patterns of colloidal droplets. Acta Physica Sinica, doi: 10.7498/aps.66.066101
    [10] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, doi: 10.7498/aps.64.024101
    [11] Qiu Chao, Zhang Hui-Chen. Molecular dynamics simulation on cavitation bubble formation in canonical ensemble. Acta Physica Sinica, doi: 10.7498/aps.64.033401
    [12] Wang Shu-Shan, Li Mei, Ma Feng. Dynamics of the interaction between explosion bubble and free surface. Acta Physica Sinica, doi: 10.7498/aps.63.194703
    [13] Zhang Cheng-Bin, Xu Zhao-Lin, Chen Yong-Ping. Molecular dynamics simulation on fluid flow and heat transfer in rough nanochannels. Acta Physica Sinica, doi: 10.7498/aps.63.214706
    [14] Qiu Feng, Wang Meng, Zhou Hua-Guang, Zheng Xuan, Lin Xin, Huang Wei-Dong. Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate. Acta Physica Sinica, doi: 10.7498/aps.62.120203
    [15] Liu Yun-Long, Zhang A-Man, Wang Shi-Ping, Tian Zhao-Li. Study on bubble dynamics near plate with hole based on boundary element method. Acta Physica Sinica, doi: 10.7498/aps.62.144703
    [16] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, doi: 10.7498/aps.58.7050
    [17] Zhang A-Man, Yao Xiong-Liang. The law of the bubble motion near the wall. Acta Physica Sinica, doi: 10.7498/aps.57.1662
    [18] Hao Peng-Fei, Yao Zhao-Hui, He Feng. Experimental study of flow characteristics in rough microchannels. Acta Physica Sinica, doi: 10.7498/aps.56.4728
    [19] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, doi: 10.7498/aps.54.3278
    [20] Zhang Lin, Wang Shao-Qing, Ye Heng-Qiang. Molecular dynamics study of the structure changes in a high-angle Cu grain boundary by heating and quenching. Acta Physica Sinica, doi: 10.7498/aps.53.2497
Metrics
  • Abstract views:  328
  • PDF Downloads:  2
  • Cited By: 0
Publishing process
  • Received Date:  04 June 2025
  • Accepted Date:  03 September 2025
  • Available Online:  04 September 2025
  • /

    返回文章
    返回