-
Bubble nucleation plays a pivotal role in microscale heat conduction, boiling heat transfer, and liquid-vapor phase change processes, as it not only governs heat transfer efficiency but also strongly regulates bubble dynamics. The nucleation processes are highly sensitive to the surface morphology and wettability of solid substrates. However, due to the inherent limitations of conventional experiments in terms of spatial resolution and observation times, revealing the microscopic mechanisms of bubble nucleation at the nanoscale remains a significant challenge—particularly under conditions involving complex surface structures and diverse wettability states. In this study, molecular dynamics simulations were employed to systematically investigate the mechanisms by which surface roughness and wettability influence bubble nucleation behavior on nanostructured surfaces at the atomic scale. Five copper substrates featuring sinusoidal protrusions were designed to represent different degrees of surface roughness. The sinusoidal profile, characterized by mathematical continuity and smoothness, not only facilitates the observation of bubble coalescence and contact angle evolution but also ensures comparability among models by maintaining identical protrusion height and overall width, thereby keeping the protrusion volume constant. This design allows direct comparison of bubble growth rates and other physical quantities across different models. In addition, three distinct wettability conditions, namely hydrophobic, neutral, and hydrophilic, were achieved by modifying the interaction potential between oxygen and copper atoms. During the simulations, a constant heat flux was applied to the bottom copper substrate to trigger spontaneous bubble nucleation, local low-density regions were identified using density distribution analysis to track bubble nucleation sites; and a piston-like pressure control mechanism was introduced via the top copper plate, and the displacement of this plate over time was used to quantify bubble growth rates under varying roughness and wettability. Additionally, the Kapitza resistance between solid and liquid phases was calculated to evaluate interfacial heat transfer efficiency. The results demonstrate that increasing surface roughness significantly promotes the formation of local low-density cavities, thereby accelerating the bubble nucleation and subsequent growth. As the surface wettability transitions from hydrophobic to hydrophilic, the solid-liquid interfacial thermal resistance decreases, leading to earlier bubble nucleation. Moreover, under hydrophilic conditions, the contact angle of the bubbles increases significantly, indicating enhanced detachment and growth behavior. Overall, the findings of this work advance the fundamental understanding of the microscopic mechanisms of bubble nucleation and provide theoretical guidance and technical references for the design of high-efficiency heat transfer structures and tunable fluid-solid interfaces at the nanoscale.
-
Keywords:
- molecular dynamics /
- bubble /
- roughness /
- wetting condition
-
[1] Shahmardi A, Tammisolae O, Chinappi M, Brandt L 2021 Int. J. Therm. Sci 167 106980.
[2] Yuan H S, Tan S C, Du W A, Ding S H, Guo C 2018 Int. J. Heat Mass Transfer 122 1198
[3] Hu Y, Gao H T, Yan Y Y 2025 J. Ind. Eng. Chem 143 123
[4] Moiz M, Vadlamudi S R G, Srivastava A 2024 Int. J. Heat Mass Transfer 233 126006
[5] Arunkumar H.S, Hitesh N.M, Madhwesh N., Hegde A K, Karanth K.V 2023 Sol. Energy 266 112161
[6] Zhang Y L, Lu S L, Li D L, Duan H Y, Duan C W, Zhang J H, Liu S T 2023 Chin. J. Chem. Eng 62 168
[7] Zhang Y L, Duan H Y, Chen E J, Li M, Liu S T Langmuir 39 1629
[8] Javier R R, Sevilla A, Carlos M B, Gordillo J M 2015 Annu. Rev. Fluid Mech 47 405
[9] Hsiao C. T, Choi J. K., Singh S., Chahine G. L., Hay T. A., Ilinskii Yu. A., Zabolotskaya E. A., Hamilton M. F., Sankin G., Yuan F., Zhong P. J 2013 Fluid Mech 716 137
[10] Yuan H B, Wang Q, Yin X S, Li D, Yue X, Yang B J 2021 Nanosci. Nanotechnol 21 1315
[11] Alder J B, Wainwright E T 1959 J. Chem. Phys 31 459
[12] Frenkel D, Smit B, Ratner M A 2002 Phys. Today 50 66
[13] Wen R F, Li Q, Wang W, Latour B, Calvin H. L, Li C, Lee Y C, Yang R G 2017 Nano Energy 38 59
[14] Miao S S, Xia G D 2024 J. Mol. Liq 400 124457
[15] Liu H Q, Qin X Y, Ahmad S, Tong Q, Zhao J Y 2019 Int. J. Heat Mass Transfer 145 118799
[16] Zhang S W, Hao F, Chen H M, Yuan W, Tang Y, Chen X 2017 Appl. Therm. Eng 113 208
[17] Wang W R, Huang S H, Luo X S 2016 Int. J. Heat Mass Transfer 100 276
[18] Zhang L Y, Xu J L, Liu G L, Lei J P 2020 Int. J. Therm. Sci 152 106325
[19] Yang H C, Xu M D, Xing Y W, Gui X H, Cao Y J 2025 Acta Phys. Sin 74 024702 (in Chinese) [杨海昌, 徐梦迪, 邢耀文, 桂夏辉, 曹亦俊 2025 物理学报 74 024702]
[20] Bai P 2022 Molecular dynamics study of the effects of roughness and wettability on boiling Ph. D. Dissertation (Beijing: North China Electric Power University) (in Chinese) [白璞 2022 博士学位论文(北京:华北电力大学)]
[21] Yang H C, Jiang H Y, Cheng Y L, Xing Y W, Cao Y J, Gui X H 2024 J. Mol. Liq 411 125758
[22] Shahid M, Young K H 2022 J. Korean Phys. Soc 82 375
[23] Zhou W J, Zhang Y H, Wei J J 2022 Langmuir 38 1223
[24] Liu H Q, Deng W, Ding P, Zhao J Y 2021 Nucl. Eng. Des 382 111400
[25] Zhang X S, Fan Z Z, Tong Q L, Fu Y F 2024 Acta Phys. Sin 73 204701 (in Chinese) [张雪松, 范振忠, 仝其雷, 付沅峰 2024 物理学报73 204701]
[26] Vladislav A. Y, Guillaume A, Molinari J F 2014 Tribol. Lett 56 171
[27] Deng W, Ma S H, Li W M, Liu H Q, Zhao J Y 2022 Int. J. Heat Mass Transfer 191 122856
[28] Berendsen H. J.C., Grigera J.R., Straatsma T.P. 1987 J. Phys. Chem 91 6269
[29] Peter G. K, Igor M. S. 1994 Science 265 1219
[30] Ryckaert J P, Ciccotti G, Berendsen H J.C 1977 J. Comput. Phys 23 327
[31] Hockney R.W, Eastwood J.W 2021 Computer Simulation Using Particles 1st (Boca Raton: CRC Press) pp267-269
[32] Guo C, Ji C, Kong Y L, Liu Z G, Guo L Yang Y Y 2023 Materials 16 1984
[33] Schneider T., Stoll E 1978 Phys. Rev. B 17 1302
[34] Steve P 1995 J. Comput. Phys 117 1
[35] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng 18 015012
[36] Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graphics 14 33
[37] Tang Y Z, Wu L F, Ma L X, Feng S Y, He Y 2022 Int. J. Therm. Sci 171 107212
[38] Chen Y J, Yu B, Zou Y, Chen B N, Tao W Q 2020 Int. J. Heat Mass Transfer 158 119850
[39] Chen Y L, Guo L, Sun W C, Cai N N, Yan Y Y 2023 Int. J. Multiphase Flow 169 104613
[40] Zhang L Y, Xu J L, Lei J P 2018 Acta Phys. Sin 67 234702 (in Chinese) [张龙艳, 徐进良, 雷俊鹏 2018 物理学报 67 234702]
[41] Cao Q, Li Z R, Cui Z 2023 Langmuir 39 12754
[42] Fan X Y, Zhang Z W, Wang Y H, Liu Y S 2022 Chemical Engineering & Machinery 49 920 (in Chinese) [樊翔宇, 张周卫, 汪雅红, 刘要森 2022 化工机械 49 920]
[43] Ge S, Chen M 2013 Acta Phys. Sin 62 110204 (in Chinese) [葛宋, 陈民 2013 物理学报 62 110204]
[44] Liu Z Y, Liu Z Y, Liu R K 2023 Int. J. Therm. Sci 192 108424
Metrics
- Abstract views: 178
- PDF Downloads: 1
- Cited By: 0