Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fluid dynamics simulation on the water lubricating performance of surface micro-/nano-textured surfaces considering roughness structures

GU Jing-Xuan ZHENG Ting Guo Ming-Shuai Xia Dong-Sheng ZHANG Hui-Chen

Citation:

Fluid dynamics simulation on the water lubricating performance of surface micro-/nano-textured surfaces considering roughness structures

GU Jing-Xuan, ZHENG Ting, Guo Ming-Shuai, Xia Dong-Sheng, ZHANG Hui-Chen
PDF
Get Citation
  • With the development of surface precision machining technology and numerous studies on lubrication and friction reduction, the application of surface textures to achieve friction reduction has attracted extensive attention, but few studies have considered the influence of surface roughness on lubrication characteristics. By employing the computational fluid dynamics (CFD) simulation method, the lubrication models with rectangular textures and the introduction of rough asperity structures at the same time were established. The effects of the corresponding structure parameters on the lubrication performance of textured and roughed surfaces were studied under water lubrication conditions. Our results suggest that the adjustment of geometric parameters on the micro-/nano-structured surfaces could influence the bearing capacity of the water lubrication film, thus affecting the hydrodynamic lubrication performance on the surface. In addition, the generation of vortex in the micro-textures could bring changes in vorticity, which causes energy dissipation and affects frictional forces. In the lubrication model with rectangular textures, optimal hydrodynamic lubrication performance was obtained under the appropriate depth ratio at H=0.6. Meanwhile, the corresponding lubrication performance could be enhanced by increasing the width ratio (W) of surface textures. After introducing random asperity structures on the micro-textured surfaces with a standard deviation value of δ=0.5, the carrying capacity increased by 44%, and the friction coefficient decreased by 30.9%. Moreover, the introduction of half-sine rough asperity structures could only result in relatively minor differences in the lubrication performance, i.e., the changes in the bearing capacity and friction coefficient are less than 10%. However, the introduction of compound hierarchical structures consisting of random asperity structures and half-sine rough asperity structures could result in an increase in the corresponding bearing capacity by 42% and a reduction in friction coefficient (31.1%), which implies a significant enhancement in the hydrodynamic lubrication performance.
  • [1]

    Hamilton D B, Walowit J A, Allen C M 1966 J. Fluids Eng. 88 177.

    [2]

    Zhong Y, Zheng L, Gao Y, Liu Z 2019 Tribol. Int. 129 151.

    [3]

    Mourier L, Mazuyer D, Ninove F P, Lubrecht A A 2010 Proc. Inst. Mech. Eng., Part J:J. Eng. Tribol. 224 697.

    [4]

    Zhang J, Meng Y 2012 Tribol. Lett. 46 147.

    [5]

    Gropper D, Wang L, Harvey T J 2016 Tribol. Int. 94 509.

    [6]

    Braun D, Greiner C, Schneider J, Gumbsch P 2014 Tribol. Int. 77 142.

    [7]

    Hsu S M, Jing Y, Hua D, Zhang H 2014 J. Phys. D:Appl. Phys. 47 335307.

    [8]

    An S D, Wang X Y, Chen X, Wang Y W, Wang X B, Zhao Y Q 2015 Acta Phys. Sin. 64 166801(in Chinese)[安书董,王晓燕,陈仙,王炎武,王晓波,赵玉清, 物理学报 2015 64 036801]

    [9]

    Rosenkranz A, Szurdak A, Gachot C, Hirt G, Mücklich F 2016 Tribol. Int. 95 290.

    [10]

    Ji J H, Guan C W, Fu H, Hua X J, Fu Y H 2018 Lubr. Eng. 43 20(in Chinese)[纪敬虎,管采薇,符昊,华希俊,符永宏, 润滑与密封 2018, 43 20]

    [11]

    Qiu Y, Khonsari M M 2011 J. Tribol. 133 021704.

    [12]

    Lahayne O, Pichler B, Reihsner R, Eberhardsteiner J, Suh J, Kim D, Nam S, Paek H, Lorenz B, Persson B N J 2016 Tribol. Lett. 62 17.

    [13]

    Feng D, Shen M xue, Peng X dong, Meng X kai 2017 Tribol. Lett. 65 1.

    [14]

    Sedlaček M, Podgornik B, Vižintin J 2009 Wear 266 482.

    [15]

    Menezes P L, Kishore, Kailas S V., Lovell M R 2011 Tribol. Lett. 41 1.

    [16]

    Rasp W, Wichern C M 2002 J. Mater. Process. Technol. 125 379.

    [17]

    Wang Y, Liu Y, Huang W, Guo F, Wang Y 2016 Tribology 36 520.

    [18]

    Rosenkranz A, Costa H L, Profito F, Gachot C, Medina S, Dini D 2019 Tribol. Int. 134 190.

    [19]

    Brajdic-Mitidieri P, Gosman A D, Ioannides E, Spikes H A 2005 J. Tribol. 127 803.

    [20]

    Sahlin F, Glavatskih S B, Almqvist T, Larsson R 2005 J. Tribol. 127 96.

    [21]

    Vilhena L, Sedlaček M, Podgornik B, Rek Z,Žun I 2018 Lubricants 6 15.

    [22]

    Zhang L, Luo J, Yuan R B, He M 2012 Procedia Eng. 31 220.

    [23]

    Lu X M, Wang Q D, Xiao J M, Yang Z C 2016 Lubr. Eng. 41 70(in Chinese)[禄晓敏,王权岱,肖继明,杨振朝, 润滑与密封 2016 41 70]

    [24]

    Mao Y, Zeng L, Lu Y 2016 Tribol. Int. 104 212.

    [25]

    Ma X 2023 Lubricants 11 270.

    [26]

    Li Q, Zhang S, Wang Y, Xu W W, Wang Z 2019 Ind. Lubr. Tribol. 71 109.

    [27]

    He T, Li J, Deng H, Wang C, Shi R, Chen G, Li Z 2021 AIP Adv. 11 015222.

    [28]

    Singhal A K, Athavale M M, Li H, Jiang Y 2002 ASME J. Fluids Eng. 124 617.

    [29]

    Pellone C, Franc J P, Perrin M 2004 C.R. Math. 332 827.

    [30]

    Singhal A K, Athavale M M, Li H, Jiang Y 2002 ASME J. Fluids Eng. 124 617.

    [31]

    Buscaglia G C, El Alaoui Talibi M, Jai M 2015 Math. Comput. Simul 118 130.

    [32]

    Wei Y, Tomkowski R, Archenti A 2020 Metals 10 361.

    [33]

    Wang W, He Y, Li Y, Wei B, Hu Y, Luo J 2018 Ind. Lubr. Tribol. 70 754.

    [34]

    Podgornik B, Vilhena L M, Sedlaček M, Rek Z,Žun I 2012 Meccanica 47 1613.

    [35]

    Gao G, Yin Z, Jiang D, Zhang X 2014 Tribol. Int. 75 31.

    [36]

    Shankar P N, Deshpande M D 2000 Annu. Rev. Fluid Mech. 32 93.

    [37]

    Sahlin F, Almqvist A, Larsson R, Glavatskih S 2007 Tribol. Int. 40 1294.

    [38]

    Ausas R, Ragot P, Leiva J, Jai M, Bayada G, Buscaglia G C 2007 J. Tribol. 129 868.

    [39]

    Wahl R, Schneider J, Gumbsch P 2012 Tribol. Int. 55 81.

    [40]

    Liu T X, Li J, Lu X, Jiang Z B 2023 Lubr. Eng. 48 74(in Chinese)[刘天霞,李靖,卢星,江志波, 润滑与密封 2023 48 74]

    [41]

    Babu P V, Ismail S, Ben B S 2021 Proc. Inst. Mech. Eng., Part J:J. Eng. Tribol. 235 360.

    [42]

    Wos S, Koszela W, Pawlus P 2020 Tribol. Int. 146 106205.

    [43]

    Wang J, Yan Z, Fang X, Shen Z, Pan X 2020 Lubr. Sci. 32 404.

    [44]

    Venkateswara Babu P, Syed I, Benbeera S 2020 Mater. Today Proc. 24 1112.

    [45]

    Fan Z M, Ma R L, Jiang F 2021 Lubr. Eng. 46 44(in Chinese)[樊智敏,马瑞磷,江峰, 润滑与密封 2021 46 44]

    [46]

    Ji J H, Zhou J P, Wang M Y, Wang W, Fu Y H 2019 Surf. Technol. 48 139(in Chinese)[纪敬虎,周加鹏,王沫阳,王伟,符永宏, 表面技术 2019 48 139]

    [47]

    Jiang Y, Yan Z, Zhang S, Shen Z, Sun H 2022 Sci. Rep. 12 13455.

    [48]

    Zhang L, Luo J, Yuan R B, He M 2012 Procedia Eng. 31 220.

    [49]

    Wang Y, Jacobs G, König F, Zhang S, von Goeldel S 2023 Lubricants 11 20.

    [50]

    Huang J, Guan Y, Ramakrishna S 2021 Tribol. Int. 162 107115.

  • [1] Tang Peng-Bo, Wang Guan-Qing, Wang Lu, Shi Zhong-Yu, Li Yuan, Xu Jiang-Rong. Experimental investigation on dynamic behavior of single droplet impcating normally on dry sphere. Acta Physica Sinica, doi: 10.7498/aps.69.20191141
    [2] Liu Chen-Hao, Liu Tian-Yu, Huang Ren-Zhong, Gao Tian-Fu, Shu Yao-Gen. Transport performance of coupled Brownian particles in rough ratchet. Acta Physica Sinica, doi: 10.7498/aps.68.20191203
    [3] Li Rui-Tao, Tang Gang, Xia Hui, Xun Zhi-Peng, Li Jia-Xiang, Zhu Lei. Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice. Acta Physica Sinica, doi: 10.7498/aps.68.20181774
    [4] Mei Tao, Chen Zhan-Xiu, Yang Li, Wang Kun, Miao Rui-Can. Effect of rough inner wall of nanochannel on fluid flow behavior. Acta Physica Sinica, doi: 10.7498/aps.68.20181956
    [5] Zhang Yong-Jian, Ye Fang-Xia, Dai Jun, He Bin-Feng, Zang Du-Yang. Influence of nano-scaled roughness on evaporation patterns of colloidal droplets. Acta Physica Sinica, doi: 10.7498/aps.66.066101
    [6] Chen Lei-Ming. Hydrodynamic theory of dry active matter. Acta Physica Sinica, doi: 10.7498/aps.65.186401
    [7] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, doi: 10.7498/aps.64.024101
    [8] Mao Xiao-Li, Xiao Shao-Rong, Liu Qing-Quan, Li Min, Zhang Jia-Hong. Fluid dynamic analysis on solar heating error of radiosonde humidity measurement. Acta Physica Sinica, doi: 10.7498/aps.63.144701
    [9] Zhang Cheng-Bin, Xu Zhao-Lin, Chen Yong-Ping. Molecular dynamics simulation on fluid flow and heat transfer in rough nanochannels. Acta Physica Sinica, doi: 10.7498/aps.63.214706
    [10] Song Bao-Wei, Guo Yun-He, Luo Zhuang-Zhu, Xu Xiang-Hui, Wang Ying. Investigation about drag reduction annulus experiment of hydrophobic surface. Acta Physica Sinica, doi: 10.7498/aps.62.154701
    [11] Jiang Yi-Min, Liu Mario. Hydrodynamic theory of grains, water and air. Acta Physica Sinica, doi: 10.7498/aps.62.204501
    [12] Du Meng, Jin Ning-De, Gao Zhong-Ke, Zhu Lei, Wang Zhen-Ya. Multiscale permutation entropy analysis of oil-in-water type two-phase flow pattern. Acta Physica Sinica, doi: 10.7498/aps.61.230507
    [13] Gao Zhong-Ke, Jin Ning-De, Yang Dan, Zhai Lu-Sheng, Du Meng. Complex networks from multivariate time series for characterizing nonlinear dynamics of two-phase flow patterns. Acta Physica Sinica, doi: 10.7498/aps.61.120510
    [14] Xue Wei, Xie Guo-Xin, Wang Quan, Zhang Miao, Zheng Bei-Rong. The surface energy and nano-adhesion behavior of some micro-component material in MEMS. Acta Physica Sinica, doi: 10.7498/aps.58.2518
    [15] Zhang Bao-Ling, He Zhi-Bing, Wu Wei-Dong, Liu Xing-Hua, Yang Xiang-Dong. Influence of duty ratio on the fabrication of a-C:H film on microshell. Acta Physica Sinica, doi: 10.7498/aps.58.6436
    [16] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, doi: 10.7498/aps.58.7050
    [17] Wang Wei, Zhang Jie, Zhao Gang. Effect of a Planckian radiation field on population of bound-electrons. Acta Physica Sinica, doi: 10.7498/aps.57.1759
    [18] Hao Peng-Fei, Yao Zhao-Hui, He Feng. Experimental study of flow characteristics in rough microchannels. Acta Physica Sinica, doi: 10.7498/aps.56.4728
    [19] Zhang Cui-Ling, Zheng Rui-Lun, Teng Jiao. Influence of NiFeNb seed layer on hysteresis loops of permalloy films. Acta Physica Sinica, doi: 10.7498/aps.54.5389
    [20] XIA JIANG-FAN, ZHANG JUN, ZHANG JIE. MODELING THE ASTROPHYSICAL DYNAMICAL PROCESS WITH LASER-PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.50.994
Metrics
  • Abstract views:  156
  • PDF Downloads:  3
  • Cited By: 0
Publishing process
  • Available Online:  23 April 2024

/

返回文章
返回