Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Prediction of High-Energy Density Matter Induced by Intense Heavy Ion Beams at HIAF Using Aardvark program

WU Xiaoxia LIAO Lingrui CHENG Rui KANG Wei WANG Zhao SHI Lulin WANG Guodong CHEN Yanhong ZHOU Zexian CHEN Liangwen YANG Jie

Citation:

Prediction of High-Energy Density Matter Induced by Intense Heavy Ion Beams at HIAF Using Aardvark program

WU Xiaoxia, LIAO Lingrui, CHENG Rui, KANG Wei, WANG Zhao, SHI Lulin, WANG Guodong, CHEN Yanhong, ZHOU Zexian, CHEN Liangwen, YANG Jie
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The unique properties of heavy-ion beam-driven high-energy density matter (HEDM)—characterized by macroscale uniformity, extended volumetric dimensions, and material diversity—present novel oppor-tunities for advancing high-energy density physics (HEDP). The High Intensity Heavy-Ion Accelerator Facility (HIAF), a cornerstone project initiated during China’ s 12th Five-Year Plan, is currently under accelerated construction. Upon completion, it will serve as a premier platform for experimental studies of HEDP phenomena induced by intense heavy-ion beams.
    This study employs the self-developed 1D radiation hydrodynamics code Aardvark to simulate the interaction dynamics between uranium ion beams (500 MeV/u) and cylindrical targets under HIAFrelevant beam parameters. The results demonstrate time-evolution images of specific energy deposition, temperature, pressure, and density of the target material with radial direction during heavy ion beam energy loading.Figures (a, c, e, g) illustrate the comparison of the state-of-matter parameters produced by the ion beam hitting the target at different beam intensities, revealing a noteworthy phenomenon: the formation of a plateau region of temperature and pressure near the axis. This observation indicates that a substantial homogeneous region is formed at the axis of the target material under the action of the heavy ion beam.This phenomenon further elucidates the salient characteristics of the heavy ion beam-driven high energy density material, i.e., its substantial volume and homogeneous state. As illustrated in Figures (b, d, f, h), the state parameters of the target material undergo significant alterations during the course of the process, particularly in the later stages, for a beam cluster length of 150 ns and a beam intensity of 4×1011ppp. These alterations are characterized by substantial changes in both the density and the pressure of the target material, which are often referred to as shock waves, as depicted in the shaded regions of the figures. The generation and propagation rate of these shock waves can be significantly controlled by adjusting the intensity of the ion beam.
    This study further constructs a systematic database that meticulously records the state parameters of target materials when uranium ion beams interact with various types of targets. The relevant simulation data provide important theoretical guidance for planning heavy-ion beam-driven high-energy density physics experiments at HIAF and offer crucial theoretical support for in-depth research on the generation, evolution, and properties of high-energy density matter. The study establishes database that meticulously documents the state parameters of target materials during interactions with uranium ion beams. These computational advances position HIAF as a transformative platform for probing extreme-state matter, with direct implications for inertial confinement fusion research and astrophysical plasma modeling.
  • [1]

    Zhao Y T, Zhang Z M, Cheng R, Hoffmann D, Ma B B, Wang Y N, Wang Y Y, Wang X, Deng Z G, Ren J R, Liu W, Qi W, Qi X, Su Y W, Du Y C, Li F L, Li J Y, Yang J, Yang J C, Yang L, Xiao G Q, Wu D, He B, Song Y H, Zhang X A, Zhang S Z, Zhang L, Zhang Y, Zhang Y N, Chen B Z, Chen Y H, Zhou Z, Zhou X M, Zhou W M, Zhao H W, Zhao Q T, Zhao Z Q, Zhao X Y, Hu Z H, Wan F, Li J X, Xu Z F, Gao F, Tang C X, Huang W H, Cao S C, Cao L F, Sheng L N, Kang W, Lei Y, Zhan W L 2020 Sci Sin-Phys Mech Astron 50112004(in Chinses) [赵永涛, 张子民, 程锐, HOFFMANN Dieter, 马步博, 王友年, 王瑜玉, 王兴, 邓志刚, 任洁茹, 刘巍, 齐伟, 齐新, 苏有武, 杜应超, 李福利, 李锦钰, 杨杰, 杨建成, 杨磊, 肖国青, 吴栋, 何斌, 宋远红, 张小安, 张世政, 张琳, 张雅, 张艳宁, 陈本正, 陈燕红, 周征, 周贤明, 周维民, 赵红卫, 赵全堂, 赵宗清, 赵晓莹, 胡章虎, 弯峰, 栗建兴, 徐忠锋, 高飞, 唐传祥, 黄文会, 曹树春, 曹磊峰, 盛丽娜, 康炜, 雷瑜, 詹文龙2020中国科学: 物理学力学天文学50112004]

    [2]

    Cheng R, Zhang S, Shen G D, Chen Y H, Zhang Y S, Chen L W, Zhang Z M, Zhao Q T, Yang J C, Wang Y Y, Lei Y, Lin P, Yang J, Yang L, Ma X W, Xiao G Q, Zhao H W, Zhan W L 2020 Sci Sin-Phys Mech Astron 50112011(in Chinses) [程锐, 张晟, 申国栋, 陈燕红, 张延师, 陈良文, 张子民, 赵全堂, 杨建成, 王瑜玉, 雷瑜, 林平, 杨杰, 杨磊, 马新文, 肖国青, 赵红卫, 詹文龙2020中国科学: 物理学力学天文学50112011]

    [3]

    Ren J R, Wang J L, Chen B Z, Xu H, Zhang Y N, Wei W q, Xu X, Ma B B, Hu Z M, Yin S, Feng J H, Song S S, Zhang S Z, Hoffmann D, Zhao Y 2021 High Power Laser and Particle Beams 33012005(in Chinses) [任洁茹, 王佳乐, 陈本正, 徐皓, 张艳宁, 魏文青, 徐星, 马步博, 胡忠敏, 尹帅, 冯建华, 宋莎莎, 张世政, Hoffmann Dieter, 赵永涛2021强激光与粒子束33012005]

    [4]

    Ren J R, Zhao Y T, Cheng R, Xu Z F, Xiao G Q 2017 Nucl. Instrum. Methods Phys. Res., Sect. B 406703

    [5]

    Wei Z H 2024 Mod. Phys. 3642(in Chinses) [赵红卫2024现代物理知识3642]

    [6]

    Sharkov B Y, Hoffmann D H, Golubev A A, Zhao Y T 2016 Matter Radiat. Extremes 128

    [7]

    Zhao H W, Xu H S, Xiao G Q, Xia J W, Yang J C, Zhou X H, Xu N, He Y, Ma X W, Yang L, Chen X R, Tang X D, Zhao Y T, Sun Z Y, Wang Z G, Hu Z G, Zhang J H, Ma L Z, Yuan Y J, Zhan W L 2020 Sci Sin-Phys Mech Astron 50112006(in Chinses) [赵红卫, 徐瑚珊, 肖国青, 夏佳文, 杨建成, 周小红, 许怒, 何源, 马新文, 杨磊, 陈旭荣, 唐晓东, 赵永涛, 孙志宇, 王志光, 胡正国, 张军辉, 马力祯, 原有进, 詹文龙2020中国科学: 物理学力学天文学50112011]

    [8]

    Hoffmann D H H, Fortov V E, Lomonosov I V, Mintsev V, Tahir N A, Varentsov D, Wieser J 2002 Phys. Plasmas 93651

    [9]

    Liao L R, Liu H, Yang Y L, Mo C J, Chen L W, Zhang S, Cheng R, Zhang P, Kang W 2024 Chin. J. Comput. Phys. 1(in chinese) [廖棱锐, 刘浩, 杨咏乐, 莫崇杰, 陈良文, 张晟, 程锐, 张平, 康炜2024计算物理1]

    [10]

    Peng H M 2008 Radiation transport in plasma and radiation hydrodynamics (Beijing: National Defense Industry Press (in chinese) [彭惠民2008等离子体中辐射输运和辐射流体力学(北京:国防工业出版社)])

    [11]

    Atzeni S, Meyer-ter Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, vol. 125(Oxford, UK: Oxford University Press)

    [12]

    Mihalas D, Weibel-Mihalas B 1999 Foundations of Radiation Hydrodynamics (Mineola, NY: Courier Corporation)

    [13]

    Wang Y N, Ma T C 1990 Chin. J. Comput. Phys. 7235(in Chinses) [王友年, 马腾才2020计算物理7 235]

    [14]

    Zhang Z M, Qi W, Cui B, Zhang B, Hong W, Zhou W M 2023 Chin. J. Comput. Phys. 40210(in Chinses) [张智猛, 齐伟, 崔波, 张博, 洪伟, 周维民2023计算物理40210]

    [15]

    Couillaud C, Deicas R, Nardin P, Beuve M A, Guihaumé J M, Renaud M, Cukier M, Deutsch C, Maynard G 1994 Phys. Rev. E 491545

    [16]

    Blöchl P E, Parrinello M 1992 Phys. Rev. B 459413

    [17]

    Zhang S, Wang H W, Kang W, Zhang P, He X T 2016 Phys. Plasmas 23042707

    [18]

    Cheng R, Lei Y, Zhou X M, Wang Y Y, Chen Y H, Zhao Y T, Ren J R, Sheng L N, Yang J C, Zhang Z M, Du Y C, Gai W, Ma X W, Xiao G Q 2018 Matter Radiat. Extremes 385

    [19]

    Fortov V, Goel B S, Munz C D, Ni A L, Shutov A, Vorobiev O Y 1996 Nucl. Sci. Eng. 123169

    [20]

    Tahir N A, Hoffmann D H H, Kozyreva A, Shutov A, Maruhn J A, Neuner U, Tauschwitz A, Spiller P, Bock R 2000 Phys. Rev. E 611975

    [21]

    Tahir N A, Lomonosov I V, Borm B, Piriz A R, Shutov A, Neumayer P, Bagnoud V, Piriz S A 2017 ApJS 2321

    [22]

    Tahir N A, Shutov A, Lomonosov I V, Piriz A R, Neumayer P, Bagnoud V, Piriz S A 2018 ApJS 23827

    [23]

    Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Deutsch C 2022 Eur. Phys. J. Plus 137273

    [24]

    Tahir N A, Shutov A, Lomonosov I V, Piriz A R, Wouchuk G, Deutsch C, Hoffmann D, Fortov V 2006 High Energy Density Phys. 221

    [25]

    Tahir N A, Stöhlker T, Shutov A, Lomonosov I V, Fortov V E, French M, Nettelmann N, Redmer R, Piriz A R, Deutsch C, Zhao Y, Zhang P, Xu H, Xiao G, Zhan W 2010 New J. Phys. 12073022

    [26]

    Tahir N A, Deutsch C, Fortov V E, Gryaznov V, Hoffmann D H H, Kulish M, Lomonosov I V, Mintsev V, Ni P, Nikolaev D, Piriz A R, Shilkin N, Spiller P, Shutov A, Temporal M, Ternovoi V, Udrea S, Varentsov D 2005 Phys. Rev. Lett. 95035001

    [27]

    Tahir N A, Shutov A, Neumayer P, Bagnoud V, Piriz A R, Lomonosov I V, Piriz S A 2021 Phys. Plasmas 28032712

    [28]

    Tahir N, Lomonosov I, Borm B, Piriz A, Neumayer P, Shutov A, Bagnoud V, Piriz S 2017 Contrib. Plasma Phys. 57493

    [29]

    Tahir N A, Adonin A, Deutsch C, Fortov V E, Grandjouan N, Geil B, Grayaznov V, Hoffmann D H H, Kulish M, Lomonosov I V 2005 Nucl. Instrum. Methods Phys. Res. A 54416

    [30]

    Tahir N A, Neumayer P, Lomonosov I V, Shutov A, Bagnoud V, Piriz A R, Piriz S A, Deutsch C 2020 Phys. Rev. E 101023202

  • [1] Gu Jing-Xuan, Zheng Ting, Guo Ming-Shuai, Xia Dong-Sheng, Zhang Hui-Chen. Fluid dynamics simulation on water lubricating performance of micro-/nano-textured surfaces considering roughness structures. Acta Physica Sinica, doi: 10.7498/aps.73.20240333
    [2] Xu Mo-Fei, Yu Xiang, Zhang Shi-Jian, Gennady Efimovich Remnev, Le Xiao-Yun. A method of real-time monitoring beam output stability of intense pulsed ion beam. Acta Physica Sinica, doi: 10.7498/aps.72.20230854
    [3] Yao Neng-Zhi, Wang Hao, Wang Bin, Wang Xue-Sheng. Venturi-effect rotating concentrators and nonreciprocity characteristics based on transformation hydrodynamics. Acta Physica Sinica, doi: 10.7498/aps.71.20212361
    [4] Tang Peng-Bo, Wang Guan-Qing, Wang Lu, Shi Zhong-Yu, Li Yuan, Xu Jiang-Rong. Experimental investigation on dynamic behavior of single droplet impcating normally on dry sphere. Acta Physica Sinica, doi: 10.7498/aps.69.20191141
    [5] Yang Jie, Liu Qing-Quan, Dai Wei, Mao Xiao-Li, Zhang Jia-Hong, Li Min. Fluid dynamic analysis and experimental study of a temperature sensor array used in meteorological observation. Acta Physica Sinica, doi: 10.7498/aps.65.094209
    [6] Dai Wei, Liu Qing-Quan, Yang Jie, Su Kai-Feng, Han Shang-Bang, Shi Jia-Chi. Computational fluid dynamics analysis and experimental study of sounding temperature sensor. Acta Physica Sinica, doi: 10.7498/aps.65.114701
    [7] Chen Lei-Ming. Hydrodynamic theory of dry active matter. Acta Physica Sinica, doi: 10.7498/aps.65.186401
    [8] Mao Xiao-Li, Xiao Shao-Rong, Liu Qing-Quan, Li Min, Zhang Jia-Hong. Fluid dynamic analysis on solar heating error of radiosonde humidity measurement. Acta Physica Sinica, doi: 10.7498/aps.63.144701
    [9] Jiang Yi-Min, Liu Mario. Hydrodynamic theory of grains, water and air. Acta Physica Sinica, doi: 10.7498/aps.62.204501
    [10] Du Meng, Jin Ning-De, Gao Zhong-Ke, Zhu Lei, Wang Zhen-Ya. Multiscale permutation entropy analysis of oil-in-water type two-phase flow pattern. Acta Physica Sinica, doi: 10.7498/aps.61.230507
    [11] Gao Zhong-Ke, Jin Ning-De, Yang Dan, Zhai Lu-Sheng, Du Meng. Complex networks from multivariate time series for characterizing nonlinear dynamics of two-phase flow patterns. Acta Physica Sinica, doi: 10.7498/aps.61.120510
    [12] Gong Ye, Zhang Jian-Hong, Wang Xiao-Dong, Wu Di, Liu Jin-Yuan, Liu Yue, Wang Xiao-Gang, Ma Teng-Cai. Numerical simulation on the energy deposition of double-layer target irradiated by intense pulsed ion beam. Acta Physica Sinica, doi: 10.7498/aps.57.5095
    [13] Wang Wei, Zhang Jie, Zhao Gang. Effect of a Planckian radiation field on population of bound-electrons. Acta Physica Sinica, doi: 10.7498/aps.57.1759
    [14] Liu Yuan-Fu, Han Jian-Min, Zhang Gu-Ling, Wang Jiu-Li, Chen Guang-Liang, Li Xue-Ming, Feng Wen-Ran, Fan Song-Hua, Liu Chi-Zi, Yang Si-Ze. Study on the microstructure and properties of (Ti, Al)N film deposited by pulsed high energy density plasma. Acta Physica Sinica, doi: 10.7498/aps.54.1301
    [15] Liu Yuan-Fu, Zhang Gu-Ling, Wang Jiu-Li, Liu Chi-Zi, Yang Si-Ze. Preparation of titanium nitride films by pulsed high-energy-density plasma and investigation of the tribological behavior of the film. Acta Physica Sinica, doi: 10.7498/aps.53.503
    [16] Yang Wu-Bao, Fan Song-Hua, Liu Chi-Zi, Zhang Gu-Ling, Wang Jiu-Li, Yang Si-Ze. Investigation of diamond-like-carbon films deposited on glass substrate by using a pulsed high energy density plasma gun. Acta Physica Sinica, doi: 10.7498/aps.52.140
    [17] XIA JIANG-FAN, ZHANG JUN, ZHANG JIE. MODELING THE ASTROPHYSICAL DYNAMICAL PROCESS WITH LASER-PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.50.994
    [18] KUANG GUANG-LI, G.WAIDMANN. THE PROPERTIES OF THE MHD OSCILLATIONS IN TEXTOR TOKAMAK PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.43.1466
    [19] TIAN REN-HE, ZHANG HUI-XING. BEAM TEMPERATURE AND ENERGY BROADENING OF A HIGH-CURRENT HEAVY-ION BEAM IN AN AXIALLY SYMMETRIC ELECTRIC-FIELD. Acta Physica Sinica, doi: 10.7498/aps.41.408
    [20] JIANG XING-LIU, CHEN KE-FAN, PIAO YU-BO. A NEW TYPE OF PULSED ELECTRON AND ION SOURCE WITH A DURATION OF NANOSECONDS. Acta Physica Sinica, doi: 10.7498/aps.32.1344
Metrics
  • Abstract views:  62
  • PDF Downloads:  5
  • Cited By: 0
Publishing process
  • Available Online:  07 March 2025

/

返回文章
返回