Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice

Li Rui-Tao Tang Gang Xia Hui Xun Zhi-Peng Li Jia-Xiang Zhu Lei

Citation:

Numerical simulation of melting dynamic process and surface scale properties of two-dimensional honeycomb lattice

Li Rui-Tao, Tang Gang, Xia Hui, Xun Zhi-Peng, Li Jia-Xiang, Zhu Lei
PDF
HTML
Get Citation
  • Graphene and other materials have a typical two-dimensional (2D) honeycomb structure. The random fuse model is a statistical physics model that is very effective in studying the fracture dynamics of heterogeneous materials. In order to study the current fusing process and the properties of the fractured surface of 2D honeycomb structure materials such as graphene, in this paper we attempt to numerically simulate and analyze the fusing process and melting profile properties of the 2D honeycomb structure random fuse network. The results indicate that the surface width exhibits a good scaling behavior and has a linear relationship with the system size, and that the out-of-plane roughness exponent displays a global value of $\alpha = 0.911 \pm 0.005$ and a local value of ${\alpha _{{\rm{loc}}}} = 0.808 \pm 0.003$, approximate to those of the materials studied. The global and local roughness and their difference indicate that the fusing process and the fracture profile exhibit significant scale properties and have a strange scale. On the other hand, by analyzing the extreme values of the fused surface with different system sizes, the extreme heights can be collapsed very well, after a lot of trials and analysis, it is found that the extreme statistical distribution of the height of the fused surface can well satisfy the Asym2sig type distribution. The extreme height distributions of fracture surfaces can be fitted by Asym2Sig distribution, rather than the three kinds of usual extreme statistical distributions, i.e. Weibull, Gumbel, and Frechet distributions. The relative maximal and minimum height distribution of the fused surface at the same substrate size have a good symmetry.   In the simulation calculation process of this paper, the coefficient matrix is constructed by using the node analysis method, and the Cholesky decomposition is performed on the coefficient matrix, and then the Sherman-Morrison-Woodbury algorithm is used to quickly invert the coefficient matrix, which greatly optimizes the calculation process and calculation. The efficiency makes the numerical simulation calculation and analysis performed smoothly.  The research in this paper indicates that the random fuse model is a very effective theoretical model in the numerical analysis of the scaling properties of rough fracture surfaces, and it is also applicable to the current fusing process of the inhomogeneous material and the scaling surface analysis of the fusing surface. In this paper, it is found that materials with anisotropic structure can also find their fracture mode by energization, and the properties of fracture surface can provide reference for the study of mechanical properties of honeycomb structural materials. It is a very effective statistical physical model, and this will expand the field of applications of random fuse models.
      Corresponding author: Tang Gang, gangtang@cumt.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2015XKMS078).
    [1]

    Abergel D S L, Apalkov V, Berashevich J 2010 Adv. Phys. 59 261Google Scholar

    [2]

    Shin Y J, Gopinadhan K, Narayanapillai K 2013 Appl. Phys. Lett. 102 666

    [3]

    Lu Y H, Shi L, Zhang C, Feng Y P 2009 Phys. Rev. B 80 233410Google Scholar

    [4]

    Moura M J B, Marder M 2013 Phys. Rev. E 88 032405Google Scholar

    [5]

    Ghorbanfekr-Kalashami H, Neek-Amal M, Peeters F M 2016 Phys. Rev. B 93 174112Google Scholar

    [6]

    Alava M J, Nukala P K V V, Zapperi S 2006 Adv. Phys. 55 351

    [7]

    Garcimart'ın A, Guarino A, Bellon L, Ciliberto S 1997 Phys. Rev. Lett. 79 3202Google Scholar

    [8]

    Maes C, van Moffaert A, Frederix H, Strauven H 1998 Phys. Rev. B 57 4987

    [9]

    Petri A, Paparo G, Vespignani A, Alippi A, Costantini M 1994 Phys. Rev. Lett. 73 3423Google Scholar

    [10]

    Salminen L I, Tolvanen A I, Alava M J 2002 Phys. Rev. Lett. 89 185503Google Scholar

    [11]

    Arcangelis L, Redner S, Herrmann H J 1985 J. Phys. Lett. 46 585Google Scholar

    [12]

    Schramm O 2000 Israel J. Math. 118 221Google Scholar

    [13]

    Claudio M, Ashivni S, Nukala P K V V, Alava M J, Sethna J P, Zapperi S 2012 Phys. Rev. Lett. 108 065504Google Scholar

    [14]

    Duxbury P M, Beale P D, Leath P L 1986 Phys. Rev. Lett. 59 155

    [15]

    Nukala P K V V, Srdan S, Zapperi S 2004 J. Stat. Mech. 8 P08001

    [16]

    Toussaint R, Hansen A 2006 Phys. Rev. E 73 046103Google Scholar

    [17]

    Jan Øystein H B, Hansen A 2008 Phys. Rev. Lett. 100 045501Google Scholar

    [18]

    Davis T A, Hager W W 1999 Siam J. Matrix Anal. A 22 997

    [19]

    Family F, Vicsek T 1985 J. Phys. A 18 L75Google Scholar

    [20]

    Xun Z P, Tang G, Han K, Xia H, Hao D P, Li Y 2012 Phys. Rev. E 85 041126Google Scholar

    [21]

    寻之朋 2017 离散模型表面界面粗化的动力学标度性质(徐州: 中国矿业大学出版社) 第88页

    Xun Z P 2017 The Dynamic Scale Properties of the Surface Roughness of the Discrete Growth Model (Xuzhou: China Mining University Press) p88

    [22]

    Raychaudhuri S, Cranston M, Przybyla C, Shapir Y 2001 Phys. Rev. Lett. 87 136101Google Scholar

    [23]

    Foltin G, Oerding K, Racz Z, Workman R L, Zia R K P 1994 Phys. Rev. E 50 639Google Scholar

    [24]

    Majumdar S N, Comtet A 2004 Phys. Rev. Lett. 92 225501Google Scholar

    [25]

    Derrida B, Lebowitz J L 1998 Phys. Rev. Lett. 80 209Google Scholar

    [26]

    Majumdar S N, Comtet A 2005 Stat. Phys. 119 777Google Scholar

    [27]

    Fisher R A, Tippett L H C 1928 Proc. Cambridge Philos. Soc. 24 180Google Scholar

    [28]

    Bramwell S T, Christensen K, Fortin J, Holdsworth P C W, Jensen H J, Lise S, Lopez J M, Nicodemi M, Pinton J F, Sellitto M 2000 Phys. Rev. Lett. 84 3744Google Scholar

    [29]

    Antal T, Droz M, Gyorgyi G, Racz Z 2001 Phys. Rev. Lett. 87 240601Google Scholar

    [30]

    Lee D S 2005 Phys. Rev. Lett. 95 150601Google Scholar

    [31]

    Lee S B, Jeong H C, Kim J M 2008 J. Stat. Mech. 9 P12013

    [32]

    Wen R J, Tang G, Han K, Xia H, Hao D P, Xun Z P, Chen Y L 2011 Chin. J. Comput. Phys. 28 933

    [33]

    Cui L J, Zhang Y, Zhang M Y, Li W, Zhao X S, Li S G, Wang Y F 2012 J. Environ. Mont. 14 3037Google Scholar

    [34]

    Brar J 2011 M.S. Thesis (Ottawa: University of Ottawa) pp6-9

    [35]

    杨毅, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏 2014 物理学报 63 150501Google Scholar

    Yang Y, Tang G, Song L J, Xun Z P, Xia H, Hao D P 2014 Acta Phys. Sin. 63 150501Google Scholar

    [36]

    杨毅, 唐刚, 张哲, 寻之朋, 宋丽建, 韩奎 2015 物理学报 64 130501Google Scholar

    Yang Y, Tang G, Zhang Z, Xun Z P, Song L J, Han K 2015 Acta Phys. Sin. 64 130501Google Scholar

    [37]

    王晓芳, 杨小玲, 刘洋 2018 化学工程师 274 7

    Wang X F, Yang X L, Liu Y 2018 Chemical Engineer. Sum. 274 7

    [38]

    吴海华, 肖林楠, 王俊, 王亚迪 2018 激光与光电子学进展 55 011417

    Wu H H, Xiao L N, Wang J, Wang Y D 2018 Laser Opt. Prog. 55 011417

    [39]

    McGregor D J , Sameh T, William P K 2019 Addit. Manuf. 25 10Google Scholar

    [40]

    Gibson L J, Ashby M F 1997 Cellular Solids: Structure and Properties (2nd Ed.)(Cambridge: Cambridge University Press) (Cambridge: Cambridge University Press) pp13-19

    [41]

    Soriano J, Ramasco J J, Rodriguez M A, Hernandez-Machado A 2002 Phys. Rev. Lett. 89 026102Google Scholar

  • 图 1  石墨烯蜂巢结构随机电阻丝网络通电熔断示意图

    Figure 1.  Schematic diagram of random fuse model electric fuse in graphene honeycomb structure.

    图 2  2 × 2的正方格子电流流向示意图

    Figure 2.  2 × 2 square lattice current flow diagram.

    图 3  整体表面宽度$W$随系统尺寸$L$的对数-对数曲线

    Figure 3.  The log-logarithmic curve of the global surface width W with the system size L.

    图 4  局域表面宽度$w$随局域尺寸$l$的对数-对数曲线

    Figure 4.  The Log-logarithmic curve of local surface width w with local size l.

    图 5  不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面相对极大高度分布

    Figure 5.  Relative maximum height distribution of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.

    图 6  不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面相对极小高度分布

    Figure 6.  Relative minimum height distribution of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.

    图 7  不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面的相对极大高度的半对数分布

    Figure 7.  Semi-logarithmic distribution of the relative maximum height of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.

    图 8  不同系统尺寸下石墨烯蜂巢结构随机电阻丝网络熔断面的相对极小高度的半对数分布

    Figure 8.  Semi-logarithmic distribution of the relative minimum height of the fracture surface of random fuse model with graphene honeycomb structure under different system sizes.

    图 9  系统尺寸L = 384的熔断面的相对极大(小)高度分布

    Figure 9.  Relatively maximum (minimum) height distribution of fracture surface with system size L = 384.

    图 10  系统尺寸L = 512的熔断面的相对极大(小)高度分布

    Figure 10.  Relatively maximum (minimum) height distribution of fracture surface with system size L = 512.

    表 1  二维菱形、三角形及石墨烯蜂巢结构电阻丝网络熔断面整体与局域的粗糙度指数

    Table 1.  Roughness index of the global and local of the burnout surface of two-dimensional diamond, triangle and graphene honeycomb structures.

    模型$\alpha $${\alpha _{{\rm{loc}}}}$
    菱形0.752 ± 0.0080.758 ± 0.012
    三角形0.772 ± 0.0130.776 ± 0.003
    石墨烯蜂巢结构0.911 ± 0.0050.808 ± 0.003
    DownLoad: CSV

    表 2  系统尺寸为L = 384, 512, 768时Asym2sig函数拟合的参数

    Table 2.  Parameters of Asym2sig function fitting when the system size is L = 384, 512, 768.

    384 max&min512 max&min768 max&min
    y0–0.001 ± 0.012–0.002 ± 0.011–0.001 ± 0.010
    –0.004 ± 0.008–0.004 ± 0.007–0.008 ± 0.007
    xc–0.57 ± 0.02–0.58 ± 0.02–0.59 ± 0.02
    –0.70 ± 0.02–0.68 ± 0.02–0.72 ± 0.02
    A1.18 ± 0.121.15 ± 0.081.28 ± 0.11
    1.38 ± 0.131.38 ± 0.111.49 ± 0.15
    ${\omega _1}$0.85 ± 0.080.90 ± 0.060.80 ± 0.07
    0.65 ± 0.070.69 ± 0.060.58 ± 0.08
    ${\omega _2}$0.13 ± 0.020.11 ± 0.010.11 ± 0.01
    0.11 ± 0.010.10 ± 0.010.12 ± 0.01
    ${\omega _3}$0.25 ± 0.030.27 ± 0.030.32 ± 0.03
    0.28 ± 0.020.33 ± 0.020.30 ± 0.02
    DownLoad: CSV
  • [1]

    Abergel D S L, Apalkov V, Berashevich J 2010 Adv. Phys. 59 261Google Scholar

    [2]

    Shin Y J, Gopinadhan K, Narayanapillai K 2013 Appl. Phys. Lett. 102 666

    [3]

    Lu Y H, Shi L, Zhang C, Feng Y P 2009 Phys. Rev. B 80 233410Google Scholar

    [4]

    Moura M J B, Marder M 2013 Phys. Rev. E 88 032405Google Scholar

    [5]

    Ghorbanfekr-Kalashami H, Neek-Amal M, Peeters F M 2016 Phys. Rev. B 93 174112Google Scholar

    [6]

    Alava M J, Nukala P K V V, Zapperi S 2006 Adv. Phys. 55 351

    [7]

    Garcimart'ın A, Guarino A, Bellon L, Ciliberto S 1997 Phys. Rev. Lett. 79 3202Google Scholar

    [8]

    Maes C, van Moffaert A, Frederix H, Strauven H 1998 Phys. Rev. B 57 4987

    [9]

    Petri A, Paparo G, Vespignani A, Alippi A, Costantini M 1994 Phys. Rev. Lett. 73 3423Google Scholar

    [10]

    Salminen L I, Tolvanen A I, Alava M J 2002 Phys. Rev. Lett. 89 185503Google Scholar

    [11]

    Arcangelis L, Redner S, Herrmann H J 1985 J. Phys. Lett. 46 585Google Scholar

    [12]

    Schramm O 2000 Israel J. Math. 118 221Google Scholar

    [13]

    Claudio M, Ashivni S, Nukala P K V V, Alava M J, Sethna J P, Zapperi S 2012 Phys. Rev. Lett. 108 065504Google Scholar

    [14]

    Duxbury P M, Beale P D, Leath P L 1986 Phys. Rev. Lett. 59 155

    [15]

    Nukala P K V V, Srdan S, Zapperi S 2004 J. Stat. Mech. 8 P08001

    [16]

    Toussaint R, Hansen A 2006 Phys. Rev. E 73 046103Google Scholar

    [17]

    Jan Øystein H B, Hansen A 2008 Phys. Rev. Lett. 100 045501Google Scholar

    [18]

    Davis T A, Hager W W 1999 Siam J. Matrix Anal. A 22 997

    [19]

    Family F, Vicsek T 1985 J. Phys. A 18 L75Google Scholar

    [20]

    Xun Z P, Tang G, Han K, Xia H, Hao D P, Li Y 2012 Phys. Rev. E 85 041126Google Scholar

    [21]

    寻之朋 2017 离散模型表面界面粗化的动力学标度性质(徐州: 中国矿业大学出版社) 第88页

    Xun Z P 2017 The Dynamic Scale Properties of the Surface Roughness of the Discrete Growth Model (Xuzhou: China Mining University Press) p88

    [22]

    Raychaudhuri S, Cranston M, Przybyla C, Shapir Y 2001 Phys. Rev. Lett. 87 136101Google Scholar

    [23]

    Foltin G, Oerding K, Racz Z, Workman R L, Zia R K P 1994 Phys. Rev. E 50 639Google Scholar

    [24]

    Majumdar S N, Comtet A 2004 Phys. Rev. Lett. 92 225501Google Scholar

    [25]

    Derrida B, Lebowitz J L 1998 Phys. Rev. Lett. 80 209Google Scholar

    [26]

    Majumdar S N, Comtet A 2005 Stat. Phys. 119 777Google Scholar

    [27]

    Fisher R A, Tippett L H C 1928 Proc. Cambridge Philos. Soc. 24 180Google Scholar

    [28]

    Bramwell S T, Christensen K, Fortin J, Holdsworth P C W, Jensen H J, Lise S, Lopez J M, Nicodemi M, Pinton J F, Sellitto M 2000 Phys. Rev. Lett. 84 3744Google Scholar

    [29]

    Antal T, Droz M, Gyorgyi G, Racz Z 2001 Phys. Rev. Lett. 87 240601Google Scholar

    [30]

    Lee D S 2005 Phys. Rev. Lett. 95 150601Google Scholar

    [31]

    Lee S B, Jeong H C, Kim J M 2008 J. Stat. Mech. 9 P12013

    [32]

    Wen R J, Tang G, Han K, Xia H, Hao D P, Xun Z P, Chen Y L 2011 Chin. J. Comput. Phys. 28 933

    [33]

    Cui L J, Zhang Y, Zhang M Y, Li W, Zhao X S, Li S G, Wang Y F 2012 J. Environ. Mont. 14 3037Google Scholar

    [34]

    Brar J 2011 M.S. Thesis (Ottawa: University of Ottawa) pp6-9

    [35]

    杨毅, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏 2014 物理学报 63 150501Google Scholar

    Yang Y, Tang G, Song L J, Xun Z P, Xia H, Hao D P 2014 Acta Phys. Sin. 63 150501Google Scholar

    [36]

    杨毅, 唐刚, 张哲, 寻之朋, 宋丽建, 韩奎 2015 物理学报 64 130501Google Scholar

    Yang Y, Tang G, Zhang Z, Xun Z P, Song L J, Han K 2015 Acta Phys. Sin. 64 130501Google Scholar

    [37]

    王晓芳, 杨小玲, 刘洋 2018 化学工程师 274 7

    Wang X F, Yang X L, Liu Y 2018 Chemical Engineer. Sum. 274 7

    [38]

    吴海华, 肖林楠, 王俊, 王亚迪 2018 激光与光电子学进展 55 011417

    Wu H H, Xiao L N, Wang J, Wang Y D 2018 Laser Opt. Prog. 55 011417

    [39]

    McGregor D J , Sameh T, William P K 2019 Addit. Manuf. 25 10Google Scholar

    [40]

    Gibson L J, Ashby M F 1997 Cellular Solids: Structure and Properties (2nd Ed.)(Cambridge: Cambridge University Press) (Cambridge: Cambridge University Press) pp13-19

    [41]

    Soriano J, Ramasco J J, Rodriguez M A, Hernandez-Machado A 2002 Phys. Rev. Lett. 89 026102Google Scholar

  • [1] Gu Jing-Xuan, Zheng Ting, Guo Ming-Shuai, Xia Dong-Sheng, Zhang Hui-Chen. Fluid dynamics simulation on water lubricating performance of micro-/nano-textured surfaces considering roughness structures. Acta Physica Sinica, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [2] Liu Chen-Hao, Liu Tian-Yu, Huang Ren-Zhong, Gao Tian-Fu, Shu Yao-Gen. Transport performance of coupled Brownian particles in rough ratchet. Acta Physica Sinica, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [3] Mei Tao, Chen Zhan-Xiu, Yang Li, Wang Kun, Miao Rui-Can. Effect of rough inner wall of nanochannel on fluid flow behavior. Acta Physica Sinica, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [4] Wang Jian-Guo, Yang Song-Lin, Ye Yong-Hong. Effect of silver film roughness on imaging property of BaTiO3 microsphere. Acta Physica Sinica, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [5] Li Xia-Zhi, Zou De-Bin, Zhou Hong-Yu, Zhang Shi-Jie, Zhao Na, Yu De-Yao, Zhuo Hong-Bin. Effect of plasma grating roughness on high-order harmonic generation. Acta Physica Sinica, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [6] Song Yan-Song, Yang Jian-Feng, Li Fu, Ma Xiao-Long, Wang Hong. Method of controlling optical surface roughness based on stray light requirements. Acta Physica Sinica, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [7] Zhang Yong-Jian, Ye Fang-Xia, Dai Jun, He Bin-Feng, Zang Du-Yang. Influence of nano-scaled roughness on evaporation patterns of colloidal droplets. Acta Physica Sinica, 2017, 66(6): 066101. doi: 10.7498/aps.66.066101
    [8] Song Yong-Feng, Li Xiong-Bing, Shi Yi-Wei, Ni Pei-Jun. Effects of surface roughness on diffuse ultrasonic backscatter in the solids. Acta Physica Sinica, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [9] Chen Su-Ting, Hu Hai-Feng, Zhang Chuang. Surface roughness modeling based on laser speckle imaging. Acta Physica Sinica, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [10] Jiang Yue-Song, Nie Meng-Yao, Zhang Chong-Hui, Xin Can-Wei, Hua Hou-Qiang. Terahertz scattering property for the coated object of rough surface. Acta Physica Sinica, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [11] Zhang Cheng-Bin, Xu Zhao-Lin, Chen Yong-Ping. Molecular dynamics simulation on fluid flow and heat transfer in rough nanochannels. Acta Physica Sinica, 2014, 63(21): 214706. doi: 10.7498/aps.63.214706
    [12] Cao Hong, Huang Yong, Chen Su-Fen, Zhang Zhan-Wen, Wei Jian-Jun. Influence of pulse tapping technology on surface roughness of polyimide capsule. Acta Physica Sinica, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [13] Song Bao-Wei, Guo Yun-He, Luo Zhuang-Zhu, Xu Xiang-Hui, Wang Ying. Investigation about drag reduction annulus experiment of hydrophobic surface. Acta Physica Sinica, 2013, 62(15): 154701. doi: 10.7498/aps.62.154701
    [14] Zhang Bao-Ling, He Zhi-Bing, Wu Wei-Dong, Liu Xing-Hua, Yang Xiang-Dong. Influence of duty ratio on the fabrication of a-C:H film on microshell. Acta Physica Sinica, 2009, 58(9): 6436-6440. doi: 10.7498/aps.58.6436
    [15] Xue Wei, Xie Guo-Xin, Wang Quan, Zhang Miao, Zheng Bei-Rong. The surface energy and nano-adhesion behavior of some micro-component material in MEMS. Acta Physica Sinica, 2009, 58(4): 2518-2522. doi: 10.7498/aps.58.2518
    [16] Zhang Cheng-Bin, Chen Yong-Ping, Shi Ming-Heng, Fu Pan-Pan, Wu Jia-Feng. Fractal characteristics of surface roughness and its effect on laminar flow in microchannels. Acta Physica Sinica, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
    [17] Hao Peng-Fei, Yao Zhao-Hui, He Feng. Experimental study of flow characteristics in rough microchannels. Acta Physica Sinica, 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [18] Zhang Cui-Ling, Zheng Rui-Lun, Teng Jiao. Influence of NiFeNb seed layer on hysteresis loops of permalloy films. Acta Physica Sinica, 2005, 54(11): 5389-5394. doi: 10.7498/aps.54.5389
    [19] SUN XIA, WU ZI-QIN. FRACTAL AND MULTIFRACTAL DESCRIPTION OF SURFACE TOPOGRAPHY. Acta Physica Sinica, 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
    [20] CHENG LU, SIU GUEI-GU. "CORE RING-RATIO" METHOD FOR SURFACE ROUGHNESS MEASUREMENT WITH INCOHERENT LIGHT SOURCE. Acta Physica Sinica, 1990, 39(1): 10-17. doi: 10.7498/aps.39.10
Metrics
  • Abstract views:  6959
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  27 September 2018
  • Accepted Date:  24 November 2018
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回