Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrodynamic theory of grains, water and air

Jiang Yi-Min Liu Mario

Han Yan-Chen, Li Yu-Dong, Li Wei. Relationship between coherent population trapping oscillation and Raman detuning. Acta Phys. Sin., 2024, 73(2): 024203. doi: 10.7498/aps.73.20231408
Citation: Han Yan-Chen, Li Yu-Dong, Li Wei. Relationship between coherent population trapping oscillation and Raman detuning. Acta Phys. Sin., 2024, 73(2): 024203. doi: 10.7498/aps.73.20231408

Hydrodynamic theory of grains, water and air

Jiang Yi-Min, Liu Mario
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Starting from the thermodynamic framework of a mixture, granular solid hydrodynamics (GSH), which has been developed in recent years, is generalized to the cases in which water and/or gas are present in the interstitials of a granular solid. A preliminary model for the free energy of the mixture is proposed. The three-phase system of grains, water and air is a material relevant to soil mechanics and rock engineering, especially geological catastrophies, for which the macroscopic physics has not been clarified as yet. The engineering theory used currently for analyzing this mixture contains the Darcys law of intersticial flow, the effective stress by Terzaghi, including its equation of motion (i.e., the constitutive relation). Comparing it with the theory of GSH, we clarify that Darcys equation represents mass diffusion, and the effective stress can be explained by the specific model of free energy that is volumetric filling.The usual engineering approach and GSH, a theory based on physics, are consistent, but we do find some discrepancies, especially on how to parameterize the model: the engineering appraoch employs varying constitutive relation, but the physical approach considers the free energy and the transport coefficients. Clarifying this, we believe, is important for eventually obtaining a unified continuous mechanical theory of soils,especially nonsaturated ones, which is complete and satisfying from physicss point of view.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274390).
    [1]

    Yan X, Shi Q, Hou M, Lu K 2003 Phys. Rev. Lett. 91 014302

    [2]

    Fiscina J E, G. Lumay G, Ludewig F, Vandewalle N 2010 Phys. Rev. Lett. 105 048001

    [3]

    Zheng X J, Bo T L 2009 Chin. Sci. Bull. 54 1488 (in Chinese) [郑晓静, 薄天利 2009 科学通报 54 1488]

    [4]

    Royer J R, Corwin E I, Eng P J, Jaeger H M 2007 Phys. Rev. Lett. 99 038003

    [5]

    Lifshitz E M, Landau L D 1987 Fluid Mechanics (New York: Pergamon Press)

    [6]

    Sun Q C, Hou M Y, Jin F 2011 Physics and Mechanics of Granular Matter (Beijing: Science Press) (in Chinese) [孙其诚, 厚美瑛, 金峰 2011 颗粒物质物理与力学(北京: 科学出版社)]

    [7]

    Shen Z J 2000 Theoretical Soil Mechanics (Beijing: China Water Power Press) (in Chinese) [沈珠江 2000 理论土力学(北京: 中国水利水电出版社)]

    [8]

    Martin P C, Parodi O, Pershan P S 1972 Phys. Rev. A 6 2401

    [9]

    Haff P K 1983 J. Fluid Mech. 134 401

    [10]

    Luding S 2009 Nonlinearity 22 R101

    [11]

    Zhao C G, Zhang X D 2008 Sci. China E 38 1453 (in Chinese) [赵成刚, 张雪东 2008 中国科学 E 38 1453]

    [12]

    Jiang Y M, Liu M 2010 Rock and Soil Mechanics 31 1729 (in Chinese) [蒋亦民, 刘佑 2010 岩土力学 31 1729]

    [13]

    Jiang Y M, Liu M 2010 Chin. Sci. Bull. 54 1504 (in Chinese) [蒋亦民, 刘佑 2009 科学通报 54 1504]

    [14]

    Komatsu T S, Inagaki S, Nakagawa N, Nasuno S 2001 Phys. Rev. Lett. 86 1757

    [15]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Physics 32 748 (in Chinese) [阎学群, 史庆藩, 厚美瑛, 陆坤权 2003 物理 32 748]

    [16]

    Peng Y J, Liu X S, Zhen Z, Jiang Z H 2011 Physics 40 672 (in Chinese) [彭亚晶, 刘小嵩, 甄珍, 姜泽辉 2011 物理 40 672]

    [17]

    Jiang Z H, Lu K Q, Hou M Y, Chen W, Chen X J 2003 Acta Phys. Sin. 52 2244 (in Chinese) [姜泽辉, 陆坤权, 厚美瑛, 陈唯, 陈相君 2003 物理学报 52 2244]

    [18]

    Gong X N 2011 Rock and Soil Mechanics 32 321 (in Chinese) [龚晓南 2011 岩土力学 32 321]

    期刊类型引用(12)

    1. 辛雨柯,邓庆田,宋学力,李新波. 加筋曲板结构抗弯承载能力分析. 塑性工程学报. 2024(02): 189-198 . 百度学术
    2. 毛军喜,欧立新,孔德睿,陈韬,张迅. 钢混加强圈对钢波纹板裸拱涵动力特性的影响研究. 施工技术(中英文). 2024(18): 32-37 . 百度学术
    3. 汤冬,马梓铜,张克澳,王汝鹏,辛松刚. 正交加筋板中板梁耦合动力特性. 中国舰船研究. 2023(04): 265-275 . 百度学术
    4. 马天兵,丁威海,周青,杜菲. 基于改进滑模变结构的加筋板振动控制研究. 安徽理工大学学报(自然科学版). 2021(01): 7-12 . 百度学术
    5. 孔德睿,张迅,刘子琦,游颖川,郑宁哲,周靖翔. 基于颗粒阻尼的U肋加劲板减振降噪初探. 噪声与振动控制. 2021(05): 38-44 . 百度学术
    6. 周海安,修孝廷,孟建兵. 基于有限元/边界元的双层周期加筋板声辐射分析. 山东理工大学学报(自然科学版). 2019(03): 31-36+42 . 百度学术
    7. ZHOU Haian,WANG Xiaoming,WU Huayong,MENG Jianbing,LI Lijun. Efficient semi-analytical methods for the vibration response of and acoustic radiation from a periodical orthogonally rib-stiffened plate. Chinese Journal of Acoustics. 2019(03): 309-330 . 必应学术
    8. 周海安,王晓明,吴化勇,孟建兵,李丽君. 高效半解析方法分析周期正交加筋板的振动-声辐射特性. 声学学报. 2018(02): 224-238 . 百度学术
    9. 张恺,纪刚,周其斗,李宗威. 基于统计能量法研究肋骨对双层圆柱壳声辐射特性的影响. 中国舰船研究. 2018(05): 46-52 . 百度学术
    10. 徐中明,赖诗洋,郭庆,贺岩松. 汽车车内中高频噪声模拟仿真分析. 重庆理工大学学报(自然科学). 2017(06): 1-7 . 百度学术
    11. 张武林,盛美萍. 不规则结构导纳参数建模方法研究. 噪声与振动控制. 2016(02): 27-30+45 . 百度学术
    12. 周俊,饶柱石,塔娜. 周期结构带隙的能效观点. 噪声与振动控制. 2016(02): 1-5+45 . 百度学术

    其他类型引用(18)

  • [1]

    Yan X, Shi Q, Hou M, Lu K 2003 Phys. Rev. Lett. 91 014302

    [2]

    Fiscina J E, G. Lumay G, Ludewig F, Vandewalle N 2010 Phys. Rev. Lett. 105 048001

    [3]

    Zheng X J, Bo T L 2009 Chin. Sci. Bull. 54 1488 (in Chinese) [郑晓静, 薄天利 2009 科学通报 54 1488]

    [4]

    Royer J R, Corwin E I, Eng P J, Jaeger H M 2007 Phys. Rev. Lett. 99 038003

    [5]

    Lifshitz E M, Landau L D 1987 Fluid Mechanics (New York: Pergamon Press)

    [6]

    Sun Q C, Hou M Y, Jin F 2011 Physics and Mechanics of Granular Matter (Beijing: Science Press) (in Chinese) [孙其诚, 厚美瑛, 金峰 2011 颗粒物质物理与力学(北京: 科学出版社)]

    [7]

    Shen Z J 2000 Theoretical Soil Mechanics (Beijing: China Water Power Press) (in Chinese) [沈珠江 2000 理论土力学(北京: 中国水利水电出版社)]

    [8]

    Martin P C, Parodi O, Pershan P S 1972 Phys. Rev. A 6 2401

    [9]

    Haff P K 1983 J. Fluid Mech. 134 401

    [10]

    Luding S 2009 Nonlinearity 22 R101

    [11]

    Zhao C G, Zhang X D 2008 Sci. China E 38 1453 (in Chinese) [赵成刚, 张雪东 2008 中国科学 E 38 1453]

    [12]

    Jiang Y M, Liu M 2010 Rock and Soil Mechanics 31 1729 (in Chinese) [蒋亦民, 刘佑 2010 岩土力学 31 1729]

    [13]

    Jiang Y M, Liu M 2010 Chin. Sci. Bull. 54 1504 (in Chinese) [蒋亦民, 刘佑 2009 科学通报 54 1504]

    [14]

    Komatsu T S, Inagaki S, Nakagawa N, Nasuno S 2001 Phys. Rev. Lett. 86 1757

    [15]

    Yan X Q, Shi Q F, Hou M Y, Lu K Q 2003 Physics 32 748 (in Chinese) [阎学群, 史庆藩, 厚美瑛, 陆坤权 2003 物理 32 748]

    [16]

    Peng Y J, Liu X S, Zhen Z, Jiang Z H 2011 Physics 40 672 (in Chinese) [彭亚晶, 刘小嵩, 甄珍, 姜泽辉 2011 物理 40 672]

    [17]

    Jiang Z H, Lu K Q, Hou M Y, Chen W, Chen X J 2003 Acta Phys. Sin. 52 2244 (in Chinese) [姜泽辉, 陆坤权, 厚美瑛, 陈唯, 陈相君 2003 物理学报 52 2244]

    [18]

    Gong X N 2011 Rock and Soil Mechanics 32 321 (in Chinese) [龚晓南 2011 岩土力学 32 321]

  • [1] WU Xiaoxia, LIAO Lingrui, CHENG Rui, KANG Wei, WANG Zhao, SHI Lulin, WANG Guodong, CHEN Yanhong, ZHOU Zexian, CHEN Liangwen, YANG Jie. Aardvark program predicted high-energy density matter induced by intense heavy ion beams at HIAF. Acta Physica Sinica, 2025, 74(9): 094701. doi: 10.7498/aps.74.20241553
    [2] Gu Jing-Xuan, Zheng Ting, Guo Ming-Shuai, Xia Dong-Sheng, Zhang Hui-Chen. Fluid dynamics simulation on water lubricating performance of micro-/nano-textured surfaces considering roughness structures. Acta Physica Sinica, 2024, 73(11): 114601. doi: 10.7498/aps.73.20240333
    [3] Zhou Yi-Xian. Analysis of the granular pressure and velocity field of hourglass flow based on the local constitutive law. Acta Physica Sinica, 2019, 68(13): 134701. doi: 10.7498/aps.68.20182205
    [4] Jiang Yi-Min, Liu Mario. A thermodynamic model of grain-grain contact force. Acta Physica Sinica, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [5] Chen Lei-Ming. Hydrodynamic theory of dry active matter. Acta Physica Sinica, 2016, 65(18): 186401. doi: 10.7498/aps.65.186401
    [6] He Fei-Fei, Peng Zheng, Yan Xi-Ping, Jiang Yi-Min. Energy dissipation and periodic segregation of vibrated binary granular mixtures. Acta Physica Sinica, 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [7] Zhou Hong-Qiang, Yu Ming, Sun Hai-Quan, He An-Min, Chen Da-Wei, Zhang Feng-Guo, Wang Pei, Shao Jian-Li. Calculation of equation of state of a material mixture. Acta Physica Sinica, 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [8] Mao Xiao-Li, Xiao Shao-Rong, Liu Qing-Quan, Li Min, Zhang Jia-Hong. Fluid dynamic analysis on solar heating error of radiosonde humidity measurement. Acta Physica Sinica, 2014, 63(14): 144701. doi: 10.7498/aps.63.144701
    [9] Li Zhi-Feng, Peng Zheng, Jiang Yi-Min. Measurements of granular pressure in silo:Janssen behaviour and deviation. Acta Physica Sinica, 2014, 63(10): 104503. doi: 10.7498/aps.63.104503
    [10] Feng Xu, Zhang Guo-Hua, Sun Qi-Cheng. Effects of size polydispersity on mechanical and geometrical properties of granular system. Acta Physica Sinica, 2013, 62(18): 184501. doi: 10.7498/aps.62.184501
    [11] He Ke-Jing, Zhang Jin-Cheng, Zhou Xiao-Qiang. Simulation of the projectile dynamics in granular media. Acta Physica Sinica, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [12] Peng Zheng, Li Xiang-Qun, Jiang Li, Fu Li-Ping, Jiang Yi-Min. Friction force between wall and granular matter for a silo with unsaturated stress. Acta Physica Sinica, 2009, 58(3): 2090-2096. doi: 10.7498/aps.58.2090
    [13] Liang Xuan-Wen, Li Liang-Sheng, Hou Zhao-Guo, Lü Zhen, Yang Lei, Sun Gang, Shi Qing-Fan. Cycle of segregation patterns in vertically vibrated binary granular mixtures. Acta Physica Sinica, 2008, 57(4): 2300-2305. doi: 10.7498/aps.57.2300
    [14] Zheng He-Peng, Jiang Yi-Min. A nonlinear elastic analysis of static stress and lateral pressure coefficient for granular Couette systems. Acta Physica Sinica, 2008, 57(12): 7919-7927. doi: 10.7498/aps.57.7919
    [15] Jiang Yi-Min, Zheng He-Peng. A silo of which the pressure on the bottom of granular matter does not go to saturation. Acta Physica Sinica, 2008, 57(11): 7360-7366. doi: 10.7498/aps.57.7360
    [16] Tao Yong-Mei, Jiang Qing, Cao Hai-Xia. Impact of stress on the thermodynamic properties of ferroelectric films within the transverse Ising model. Acta Physica Sinica, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [17] Jiang Ze-Hui, Li Bin, Zhao Hai-Fa, Wang Yun-Ying, Dai Zhi-Bin. Phenomena of impact bifurcations in vertically vibrated granular beds. Acta Physica Sinica, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [18] Hu Guo-Qi, Zhang Xun-Sheng, Bao De-Song, Tang Xiao-Wei. The molecular dynamics simulation of the effect of channel width on twodimensional granular flow. Acta Physica Sinica, 2004, 53(12): 4277-4281. doi: 10.7498/aps.53.4277
    [19] Jiang Ze-Hui, Lu Kun-Quan, Hou Mei-Ying, Chen Wei, Che n Xiang-Jun. Sandwich-like segregation in vertically vibrated binary granular mixtures. Acta Physica Sinica, 2003, 52(9): 2244-2248. doi: 10.7498/aps.52.2244
    [20] MENG XU-JUN, ZONG XIAO-PING, BAI YUN, SUN YONG-SHENG, ZHANG JING-LIN. SELF-CONSISTENT CALCULATION OF ATOMIC STRUCTURE FOR MIXTURE. Acta Physica Sinica, 2000, 49(11): 2133-2138. doi: 10.7498/aps.49.2133
  • 期刊类型引用(12)

    1. 辛雨柯,邓庆田,宋学力,李新波. 加筋曲板结构抗弯承载能力分析. 塑性工程学报. 2024(02): 189-198 . 百度学术
    2. 毛军喜,欧立新,孔德睿,陈韬,张迅. 钢混加强圈对钢波纹板裸拱涵动力特性的影响研究. 施工技术(中英文). 2024(18): 32-37 . 百度学术
    3. 汤冬,马梓铜,张克澳,王汝鹏,辛松刚. 正交加筋板中板梁耦合动力特性. 中国舰船研究. 2023(04): 265-275 . 百度学术
    4. 马天兵,丁威海,周青,杜菲. 基于改进滑模变结构的加筋板振动控制研究. 安徽理工大学学报(自然科学版). 2021(01): 7-12 . 百度学术
    5. 孔德睿,张迅,刘子琦,游颖川,郑宁哲,周靖翔. 基于颗粒阻尼的U肋加劲板减振降噪初探. 噪声与振动控制. 2021(05): 38-44 . 百度学术
    6. 周海安,修孝廷,孟建兵. 基于有限元/边界元的双层周期加筋板声辐射分析. 山东理工大学学报(自然科学版). 2019(03): 31-36+42 . 百度学术
    7. ZHOU Haian,WANG Xiaoming,WU Huayong,MENG Jianbing,LI Lijun. Efficient semi-analytical methods for the vibration response of and acoustic radiation from a periodical orthogonally rib-stiffened plate. Chinese Journal of Acoustics. 2019(03): 309-330 . 必应学术
    8. 周海安,王晓明,吴化勇,孟建兵,李丽君. 高效半解析方法分析周期正交加筋板的振动-声辐射特性. 声学学报. 2018(02): 224-238 . 百度学术
    9. 张恺,纪刚,周其斗,李宗威. 基于统计能量法研究肋骨对双层圆柱壳声辐射特性的影响. 中国舰船研究. 2018(05): 46-52 . 百度学术
    10. 徐中明,赖诗洋,郭庆,贺岩松. 汽车车内中高频噪声模拟仿真分析. 重庆理工大学学报(自然科学). 2017(06): 1-7 . 百度学术
    11. 张武林,盛美萍. 不规则结构导纳参数建模方法研究. 噪声与振动控制. 2016(02): 27-30+45 . 百度学术
    12. 周俊,饶柱石,塔娜. 周期结构带隙的能效观点. 噪声与振动控制. 2016(02): 1-5+45 . 百度学术

    其他类型引用(18)

Metrics
  • Abstract views:  7694
  • PDF Downloads:  664
  • Cited By: 30
Publishing process
  • Received Date:  10 May 2013
  • Accepted Date:  10 July 2013
  • Published Online:  05 October 2013

/

返回文章
返回