-
Rare earth-activated phosphors have shown great potential applications in various fields, such as lighting, displays, anti-counterfeiting, and optical thermometry. This study aims to synthesize a series of Dy3+-doped Ca7NaY(PO4)6 phosphors through high-temperature solid-state reaction, focusing on developing multifunctional optical materials for lighting and temperature sensing. The phase purity and morphological characteristics of the obtained samples are confirmed by X-ray diffraction and scanning electron microscopy. Luminescence properties and energy transfer mechanisms are systematically investigated through photoluminescence spectroscopy and fluorescence decay analysis. Under 350-nm near-ultraviolet excitation, the emission intensity of Ca7NaY(PO4)6: Dy3+ increases with Dy3+ concentration rising until reaching an optimal value at x = 0.07, beyond which concentration quenching occurs. This quenching behavior is attributed to enhanced non-radiative energy transfer at higher Dy3+ concentrations, leading to a corresponding decrease in fluorescence lifetime. The optimized Ca7NaY(PO4)6: 0.07Dy3+ phosphor displays remarkable thermal stability, retaining 86.9% of its initial emission intensity at 150 ℃. The white light emitting diode(LED) device fabricated using the obtained phosphor and near-UV LED chip shows excellent performance with a correlated color temperature of 5680 K, CIE coordinates of (0.3275, 0.3883) in the white light region and a color rendering index of 85. Furthermore, temperature-dependent fluorescence intensity ratio analysis reveals excellent optical thermometric performance, achieving a maximum relative sensitivity (Sr) of 1.72 %/K. These results indicate that the Ca7NaY(PO4)6: Dy3+ phosphor exhibits significant potential applications in single-matrix phosphor-converted white LEDs and high-precision optical optical thermometry.
-
Keywords:
- Dy3+ /
- phosphor /
- light emitting diodes /
- optical temperature sensing
-
图 4 (a) CNYP: xDy3+ (x = 0.01—0.11)的三维发射光谱(λex = 350 nm); (b) 积分发射强度与Dy3+浓度柱状图; (c) lg(I/x)与lg(x)的线性拟合关系图; (d) 480 nm与571 nm处的相对发光强度
Figure 4. (a) Photoluminescence emission spectra of CNYP: xDy3+ (x = 0.01–0.11) (λex = 350 nm); (b) the histogram between integrated emission intensity and Dy3+ concentration; (c) linear fitting diagram of lg(I/x) and lg(x); (d) relative luminescence intensity at 480 nm and 571 nm.
图 8 (a) CNYP: 0.07 Dy3+荧光粉在不同温度下的发射光谱; (b) 荧光强度3D图; (c) ln[(I0/I) – 1]与1/(kT)线性拟合关系; (d) 归一化发光强度随温度变化柱状图
Figure 8. (a) Emission spectra of CNYP: 0.07 Dy3+ phosphors at different temperatures; (b) 3D graph of fluorescence intensity; (c) the linear fitting relationship between ln[(I0/I) – 1] and 1/(kT); (d) bar chart of normalized luminous intensity varying with temperatures.
图 11 (a) CNYP: 0.07 Dy3+荧光粉在440—500 nm波段的发射光谱图 (298—448 K); (b) 452 nm (4I15/2→6H15/2)和480 nm (4F9/2→6H15/2)积分发射强度随温度变化关系; (c) 荧光强度比随温度变化关系; (d) 绝对灵敏度和相对灵敏度随温度变化关系
Figure 11. (a) Emission spectra of the CNYP: 0.07 Dy3+ phosphor in the wavelength range of 440–500 nm at different temperatures (298–448 K); (b) the luminous intensity changes of the 4I15/2→6H15/2 and 4F9/2→6H15/2; (c) fluorescence intensity ratio as a function of temperatures; (d) absolute sensitivity and relative sensitivity as a function of temperatures.
表 1 CNYP: xDy3+的色度坐标和CCT色温
Table 1. CNYP(Zhao, Lu et al. 2025): xDy3+ chromaticity coordinates and CCT color temperature.
No. Concentration x y CCT/K 1 0.01 0.3897 0.4375 4219 2 0.03 0.3846 0.4457 4130 3 0.05 0.3894 0.4510 4033 4 0.07 0.3905 0.4529 4015 5 0.09 0.3872 0.4483 4075 6 0.11 0.3865 0.4482 4093 表 2 以FIR技术为基础的温敏型Dy3+激活荧光粉的最大Sr值比较
Table 2. Comparison of maximum Sr values of temperature-sensitive Dy3+ activated phosphors based on FIR technique.
Sensing materials Temperature range/K Sr max/(%·K–1) References Ca7NaY (PO4)6: Dy3+ 298—448 1.72 This work Ca5(PO4)2SiO4: Dy3+ 296—1073 1.75 [2] KNaCa2(PO4)2: Dy3+ 90—230/250—500 2.57/0.74 [16] CaLa4(SiO4)3O: Dy3+ 298—548 1.67 [23] Sr3Ga2Ge4O14:Dy3+ 298—473 0.61 [32] GdPO4: Dy3+ 290—530 1.55 [44] Ca3LuAl3B4O15: Dy3+ 300—500 1.46 [45] -
[1] Hu J, Cui R R, Zhang J, Peng L H, Shi Y Z, Guo X 2024 J. Rare Earths. 42 1855
Google Scholar
[2] Yu Z Q, Li X D, Wang J, Zhang S 2023 Mater. Today Chem. 33 101739
Google Scholar
[3] Gu J Q, Xie F Y, Wang S Q, Xu D K, Zhang H, Xu H L, Zhong S L 2024 Ceram. Int. 50 14127
Google Scholar
[4] 谢吉焕 2022 博士学位论文 (吉林: 长春理工大学)
Xie J H 2022 Ph. D. Dissertation (Jilin: Changchun University Of Science And Technology
[5] Gao S F, Pan Y Y, Jia K Y, Han Pan, Xiong Y, Cheng S B 2024 ACS Appl. Nano Mater. 7 20094
Google Scholar
[6] Zhao R L, Guo X, Zhang J, Zhang C, Deng C Y, Cui R R 2023 Ceram. Int. 49 25795
Google Scholar
[7] 于小芳 2022 博士学位论文 (吉林: 长春理工大学)
Yu X F 2022 Ph. D. Thesis (Jilin: Changchun University Of Science And Technology
[8] Shi L Y, Zhao D, Zhang R J, Zhu S Y, Yu M H 2022 Dalton Trans. 51 3686
Google Scholar
[9] 赵芳仪2024 博士学位论文 (北京: 北京科技大学)
Zhao F Y 2024 Ph. D. Thesis (Beijing: University of Science and Technology Beijing
[10] Wani M A, Magray T F, Belekar R M 2023 Inorg. Chem. Commun. 158 111703
Google Scholar
[11] Gao M, Li K, Yan Y H, Xin S Y, Dai H, Zhu G, Wang C 2021 J. Mol. Struct. 1228 129471
Google Scholar
[12] Chen R J, Jiang X L, Zhang T Q, Zeng F M, Yang W L, Lin H, Liu L N, Li S S, Li C, Su Z M 2023 J. Alloys Compd. 966 171558
Google Scholar
[13] 王一航, 连雪珠, 徐华伟, 康晓娇, 吕伟 2022 发光学报 43 676
Google Scholar
Wang Y H, Lian X Z, Xu H W, Kang X J, Lv W 2022 Chin. J. Lumin. 43 676
Google Scholar
[14] Song R T, Tang H, Li J P, Niu Y F, Liu Y X, He J Y, Zhu J 2024 Opt. Mater. 148 114859
Google Scholar
[15] Liu C L, Zheng Y K, Qin Y, Liang L L, Yang S Q, Li H, Jiang H M, Zhao X Y, Liu S L, Zhang H Z, Zhu J 2024 Inorg. Chem. 63 6483
Google Scholar
[16] Jose J R, Jose T A, Ashok A J, Joseph C, Biju P R 2024 J. Alloys Compd. 1006 176304
Google Scholar
[17] Zhong C S, Zhang L, Xu Y H, Wu X D, Yin S W, Zhang X B, You H P 2022 Mater. Today Chem. 26 101233
Google Scholar
[18] Xia Z G, Liu Q L 2016 Prog. Mater Sci. 84 59
Google Scholar
[19] Zhang X, Cui R R, Zhang M, Pi Y W, Yin X X, Deng C Y 2024 J. Alloys Compd. 1002 175471
Google Scholar
[20] Wei C, Zhang J, Sun Z, Ran J Y, Guo L, Sun J Y 2024 J. Alloys Compd. 971 172686
Google Scholar
[21] 禄靖雯, 赵瑾, 张永春, 涂茹婷, 刘馥妮, 冷稚华 2024 物理学报 73 111
Lu J W, Zhao J, Zhang Y C, Tu R T, Liu F N, Leng Z H 2024 Acta Phys. Sin. 73 111
[22] 姜洪喜, 吕树臣 2021 物理学报 70 254
Jiang H X, Lv S C 2011 Acta Phys. Sin. 70 254
[23] Liu Q Y, Wu M H, Chen B L, Huang X M, Liu M Y, Liu Y F, Su K, Min X, Mi R Y, Huang Z H 2023 Ceram. Int. 49 4971
Google Scholar
[24] Xi Q, Yin T, Zhang Y, Zhao H C, Wu Z P, Zhang Q Q, Wang D W, Guan L, Wang C S, Li X 2025 J. Alloys Compd. 1018 179241
Google Scholar
[25] Tang H, Zhang X Y, Cheng L Q, Mi X Y, Liu Q S 2022 J. Alloys Compd. 898 162758
Google Scholar
[26] 王瑞阳 2024 博士学位论文 (吉林: 长春理工大学)
Wang R Y 2024 Ph. D. Thesis (Jilin: Changchun University Of Science And Technology
[27] Zhang Y, Miao S H, Liang Y J , Liang C, Chen D X, Shan X H, Sun K N, Wang X J 2022 Light Sci. Appl. 11 136.
[28] Wang Y Q, Li Y F, Du Y L, Liu G X, Liu S D, Wang J X, Dong X T 2025 J. Mol. Struct. 1324 140971
Google Scholar
[29] Min Z Y, Zeng Q, Chen S M, Qin Y, Yao C F 2022 J. Alloys Compd. 924 166497
Google Scholar
[30] Long S C, Tian M F, Zhang D, Luo X X, Xu W, Tian Y, Xin S Y 2024 J. Mater. Chem. C. 12 19536
Google Scholar
[31] Guo J, Li S C, Kong J Y, Li Y X, Zhou L, Lou L Y, Lv Q Y, Tang R, Zheng L L, Deng B, Yu R J 2022 Opt. Laser Technol. 155 108347
Google Scholar
[32] Wang Z Y, Ma L Y, Shao Y, Luo Y Z, Liao R C, Kong X M, Yang X Y 2025 Ceram. Int. 51 19535
Google Scholar
[33] 罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋 2023 物理学报 72 315
Luo J, Zhang Z Q, Xu J H, Qin Z T, Zhao Y S, He H, Li P N, Tang J F 2023 Acta Phys. Sin. 72 315
[34] Zhang Y H, Sun B, Liu J, Zhang Z Y, Liu H 2023 Dalton Trans. 52 13304
Google Scholar
[35] 官春艳, 郑启泾, 万正环, 杨锦瑜 2024 材料导报 38 87
Gong C Y, Zheng Q J, Wan Z H, Yang J Y 2024 MR 38 87
[36] Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252
Google Scholar
[37] Li Y T, Xu S, Chen J, Wang X K, Gong S, Zhang X J, Liu H S, Chi Y D, Sun X R, Mahadevan C K 2024 Ceram. Int. 50 25548
Google Scholar
[38] 王佳旭, 李忠辉, 赵炎, 蒋小康, 周恒为 2024 物理学报 73 187801
Google Scholar
Wang J X, Li Z H, Zhao Y, Jiang X K, Zhou H W 2024 Acta Phys. Sin. 73 187801
Google Scholar
[39] Zhou J, Wang T S, Zhang W T, Huang X, Wang X M 2022 Ceram. Int. 48 17053
Google Scholar
[40] 赵旺, 平兆艳, 郑庆华, 周薇薇 2018 物理学报 67 247801
Google Scholar
Zhao W, Ping Z Y, Zheng Q H, Zhou W W 2018 Acta Phys. Sin. 67 247801
Google Scholar
[41] Zhou L, Liu L, Yang R Q, Kong J Y, Li Y X, Zhao Y X, Du Y F, Li C L, Zou Z Q, Deng B, Yu R J 2023 Inorg. Chem. Commun. 148 110316
Google Scholar
[42] Song R T, Zhang Z H, Li H, Luo Z Y, Yang J Y, Ma J, Xiang X F, Zeng Q, Zhu J 2023 Ceram. Int. 49 6965
Google Scholar
[43] Chen S M, Zeng Q, Yao C F, Liu Y Y, Qin Y, Min Z Y 2022 J. Lumin. 244 118697
Google Scholar
[44] Abbas M T, Khan S A, Mao J, Khan N Z, Qiu L, Ahmed J, Wei X, Chen Y, Alshehri S M, Agathopoulos S 2022 J. Therm. Anal. Calorim. 147 11769
Google Scholar
[45] GaoF H, Khan W U, Khan W U, Ye Z Q, Zhang Y L 2023 Ceram. Int. 49 8039
Google Scholar
[46] Wade S A, Collins S F, Baxter G W 2003 J. Appl. Phys. 94 4743
Google Scholar
[47] 严涌飚, 李霜, 丁双双, 张冰雪, 孙浩, 鞠泉浩, 姚露 2024 物理学报 73 097801
Google Scholar
Yan Y B, Li S, Ding S S, Zhang B X, Sun H, Ju Q H, Yao L 2024 Acta Phys. Sin. 73 097801
Google Scholar
[48] Liao Z C, Cao B S, Li L P, Cong Y, He Y Y, Dong B 2023 Appl. Mater. Today 31 101765
Google Scholar
Metrics
- Abstract views: 801
- PDF Downloads: 4
- Cited By: 0