Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

White light illumination and temperature sensing characteristics of Dy3+-doped Ca7NaY(PO4)6 single-matrix phosphor

ZHAO Jin TU Ruting LIU Funi LU Jingwen FU Yongcheng WANG Yu LI Tingzheng LENG Zhihua

Citation:

White light illumination and temperature sensing characteristics of Dy3+-doped Ca7NaY(PO4)6 single-matrix phosphor

ZHAO Jin, TU Ruting, LIU Funi, LU Jingwen, FU Yongcheng, WANG Yu, LI Tingzheng, LENG Zhihua
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Rare earth-activated phosphors have shown great potential applications in various fields, such as lighting, displays, anti-counterfeiting, and optical thermometry. This study aims to synthesize a series of Dy3+-doped Ca7NaY(PO4)6 phosphors through high-temperature solid-state reaction, focusing on developing multifunctional optical materials for lighting and temperature sensing. The phase purity and morphological characteristics of the obtained samples are confirmed by X-ray diffraction and scanning electron microscopy. Luminescence properties and energy transfer mechanisms are systematically investigated through photoluminescence spectroscopy and fluorescence decay analysis. Under 350-nm near-ultraviolet excitation, the emission intensity of Ca7NaY(PO4)6: Dy3+ increases with Dy3+ concentration rising until reaching an optimal value at x = 0.07, beyond which concentration quenching occurs. This quenching behavior is attributed to enhanced non-radiative energy transfer at higher Dy3+ concentrations, leading to a corresponding decrease in fluorescence lifetime. The optimized Ca7NaY(PO4)6: 0.07Dy3+ phosphor displays remarkable thermal stability, retaining 86.9% of its initial emission intensity at 150 ℃. The white light emitting diode(LED) device fabricated using the obtained phosphor and near-UV LED chip shows excellent performance with a correlated color temperature of 5680 K, CIE coordinates of (0.3275, 0.3883) in the white light region and a color rendering index of 85. Furthermore, temperature-dependent fluorescence intensity ratio analysis reveals excellent optical thermometric performance, achieving a maximum relative sensitivity (Sr) of 1.72 %/K. These results indicate that the Ca7NaY(PO4)6: Dy3+ phosphor exhibits significant potential applications in single-matrix phosphor-converted white LEDs and high-precision optical optical thermometry.
  • 图 1  (a) CNYP: xDy3+ (x = 0.03, 0.07, 0.11)的XRD图样与标准卡对比图; (b) CNYP: 0.07 Dy3+的精修图谱; (c) 晶体结构图

    Figure 1.  (a) XRD pattern of CNYP: xDy3+ (x = 0.03, 0.07, 0.11) compared with standard card; (b) Rietveld refinement of CNYP: 0.07 Dy3+; (c) crystal structure of host.

    图 2  CNYP: 0.07 Dy3+的形态分析 (a)—(f)元素分布图; (g), (h) SEM图; (i) EDS光谱

    Figure 2.  Morphology analysis of CNYP: 0.07 Dy3+: (a)–(f) Elemental distribution map; (g), (h) SEM images; (i) EDS spectrum.

    图 3  CNYP: xDy3+ (x = 0.01—0.11)样品的荧光光谱 (a) 激发光谱; (b) 发射光谱; (c) 发射光谱对应的等高线图

    Figure 3.  Fluorescence spectra of CNYO: xDy3+ (x = 0.01–0.11) samples: (a) Excitation spectra; (b) emission spectra; (c) contour plot corresponding to the emission spectra.

    图 4  (a) CNYP: xDy3+ (x = 0.01—0.11)的三维发射光谱(λex = 350 nm); (b) 积分发射强度与Dy3+浓度柱状图; (c) lg(I/x)与lg(x)的线性拟合关系图; (d) 480 nm与571 nm处的相对发光强度

    Figure 4.  (a) Photoluminescence emission spectra of CNYP: xDy3+ (x = 0.01–0.11) (λex = 350 nm); (b) the histogram between integrated emission intensity and Dy3+ concentration; (c) linear fitting diagram of lg(I/x) and lg(x); (d) relative luminescence intensity at 480 nm and 571 nm.

    图 5  (a) CNYP: xDy3+ (x = 0.01—0.11)荧光衰减曲线; (b) 荧光寿命与Dy3+掺杂浓度的关系

    Figure 5.  (a) Lifetime decay curves of CNYP: xDy3+ (x = 0.01–0.11); (b) dependence of the lifetime on the Dy3+ concentration.

    图 6  (a) Dy3+的能级跃迁图; (b) 彩色光谱图

    Figure 6.  (a) Energy level diagram of Dy3+; (b) color spectrum diagram.

    图 7  (a) CNYP: xDy3+ (x = 0.01—0.11)的CIE坐标; (b) 不同浓度样品的色度坐标值

    Figure 7.  (a) CIE coordinates of CNYP: xDy3+ (x = 0.01–0.11); (b) colorimetric coordinate values of different concentrations.

    图 8  (a) CNYP: 0.07 Dy3+荧光粉在不同温度下的发射光谱; (b) 荧光强度3D图; (c) ln[(I0/I) – 1]与1/(kT)线性拟合关系; (d) 归一化发光强度随温度变化柱状图

    Figure 8.  (a) Emission spectra of CNYP: 0.07 Dy3+ phosphors at different temperatures; (b) 3D graph of fluorescence intensity; (c) the linear fitting relationship between ln[(I0/I) – 1] and 1/(kT); (d) bar chart of normalized luminous intensity varying with temperatures.

    图 9  CNYP: 0.07 Dy3+的量子效率, 插图为部分放大图

    Figure 9.  Quantum efficiency of CNYP: 0.07 Dy3+, the illustration is a partial enlarged graph.

    图 10  采用365 nm芯片和CNYP: 0.07 Dy3+荧光粉封装的W-LED器件

    Figure 10.  W-LED device encapsulated with 365 nm chip and CNYP: 0.07 Dy3+ phosphor.

    图 11  (a) CNYP: 0.07 Dy3+荧光粉在440—500 nm波段的发射光谱图 (298—448 K); (b) 452 nm (4I15/26H15/2)和480 nm (4F9/26H15/2)积分发射强度随温度变化关系; (c) 荧光强度比随温度变化关系; (d) 绝对灵敏度和相对灵敏度随温度变化关系

    Figure 11.  (a) Emission spectra of the CNYP: 0.07 Dy3+ phosphor in the wavelength range of 440–500 nm at different temperatures (298–448 K); (b) the luminous intensity changes of the 4I15/26H15/2 and 4F9/26H15/2; (c) fluorescence intensity ratio as a function of temperatures; (d) absolute sensitivity and relative sensitivity as a function of temperatures.

    表 1  CNYP: xDy3+的色度坐标和CCT色温

    Table 1.  CNYP(Zhao, Lu et al. 2025): xDy3+ chromaticity coordinates and CCT color temperature.

    No.ConcentrationxyCCT/K
    10.010.38970.43754219
    20.030.38460.44574130
    30.050.38940.45104033
    40.070.39050.45294015
    50.090.38720.44834075
    60.110.38650.44824093
    DownLoad: CSV

    表 2  以FIR技术为基础的温敏型Dy3+激活荧光粉的最大Sr值比较

    Table 2.  Comparison of maximum Sr values of temperature-sensitive Dy3+ activated phosphors based on FIR technique.

    Sensing materials Temperature range/K Sr max/(%·K–1) References
    Ca7NaY (PO4)6: Dy3+ 298—448 1.72 This work
    Ca5(PO4)2SiO4: Dy3+ 296—1073 1.75 [2]
    KNaCa2(PO4)2: Dy3+ 90—230/250—500 2.57/0.74 [16]
    CaLa4(SiO4)3O: Dy3+ 298—548 1.67 [23]
    Sr3Ga2Ge4O14:Dy3+ 298—473 0.61 [32]
    GdPO4: Dy3+ 290—530 1.55 [44]
    Ca3LuAl3B4O15: Dy3+ 300—500 1.46 [45]
    DownLoad: CSV
  • [1]

    Hu J, Cui R R, Zhang J, Peng L H, Shi Y Z, Guo X 2024 J. Rare Earths. 42 1855Google Scholar

    [2]

    Yu Z Q, Li X D, Wang J, Zhang S 2023 Mater. Today Chem. 33 101739Google Scholar

    [3]

    Gu J Q, Xie F Y, Wang S Q, Xu D K, Zhang H, Xu H L, Zhong S L 2024 Ceram. Int. 50 14127Google Scholar

    [4]

    谢吉焕 2022 博士学位论文 (吉林: 长春理工大学)

    Xie J H 2022 Ph. D. Dissertation (Jilin: Changchun University Of Science And Technology

    [5]

    Gao S F, Pan Y Y, Jia K Y, Han Pan, Xiong Y, Cheng S B 2024 ACS Appl. Nano Mater. 7 20094Google Scholar

    [6]

    Zhao R L, Guo X, Zhang J, Zhang C, Deng C Y, Cui R R 2023 Ceram. Int. 49 25795Google Scholar

    [7]

    于小芳 2022 博士学位论文 (吉林: 长春理工大学)

    Yu X F 2022 Ph. D. Thesis (Jilin: Changchun University Of Science And Technology

    [8]

    Shi L Y, Zhao D, Zhang R J, Zhu S Y, Yu M H 2022 Dalton Trans. 51 3686Google Scholar

    [9]

    赵芳仪2024 博士学位论文 (北京: 北京科技大学)

    Zhao F Y 2024 Ph. D. Thesis (Beijing: University of Science and Technology Beijing

    [10]

    Wani M A, Magray T F, Belekar R M 2023 Inorg. Chem. Commun. 158 111703Google Scholar

    [11]

    Gao M, Li K, Yan Y H, Xin S Y, Dai H, Zhu G, Wang C 2021 J. Mol. Struct. 1228 129471Google Scholar

    [12]

    Chen R J, Jiang X L, Zhang T Q, Zeng F M, Yang W L, Lin H, Liu L N, Li S S, Li C, Su Z M 2023 J. Alloys Compd. 966 171558Google Scholar

    [13]

    王一航, 连雪珠, 徐华伟, 康晓娇, 吕伟 2022 发光学报 43 676Google Scholar

    Wang Y H, Lian X Z, Xu H W, Kang X J, Lv W 2022 Chin. J. Lumin. 43 676Google Scholar

    [14]

    Song R T, Tang H, Li J P, Niu Y F, Liu Y X, He J Y, Zhu J 2024 Opt. Mater. 148 114859Google Scholar

    [15]

    Liu C L, Zheng Y K, Qin Y, Liang L L, Yang S Q, Li H, Jiang H M, Zhao X Y, Liu S L, Zhang H Z, Zhu J 2024 Inorg. Chem. 63 6483Google Scholar

    [16]

    Jose J R, Jose T A, Ashok A J, Joseph C, Biju P R 2024 J. Alloys Compd. 1006 176304Google Scholar

    [17]

    Zhong C S, Zhang L, Xu Y H, Wu X D, Yin S W, Zhang X B, You H P 2022 Mater. Today Chem. 26 101233Google Scholar

    [18]

    Xia Z G, Liu Q L 2016 Prog. Mater Sci. 84 59Google Scholar

    [19]

    Zhang X, Cui R R, Zhang M, Pi Y W, Yin X X, Deng C Y 2024 J. Alloys Compd. 1002 175471Google Scholar

    [20]

    Wei C, Zhang J, Sun Z, Ran J Y, Guo L, Sun J Y 2024 J. Alloys Compd. 971 172686Google Scholar

    [21]

    禄靖雯, 赵瑾, 张永春, 涂茹婷, 刘馥妮, 冷稚华 2024 物理学报 73 111

    Lu J W, Zhao J, Zhang Y C, Tu R T, Liu F N, Leng Z H 2024 Acta Phys. Sin. 73 111

    [22]

    姜洪喜, 吕树臣 2021 物理学报 70 254

    Jiang H X, Lv S C 2011 Acta Phys. Sin. 70 254

    [23]

    Liu Q Y, Wu M H, Chen B L, Huang X M, Liu M Y, Liu Y F, Su K, Min X, Mi R Y, Huang Z H 2023 Ceram. Int. 49 4971Google Scholar

    [24]

    Xi Q, Yin T, Zhang Y, Zhao H C, Wu Z P, Zhang Q Q, Wang D W, Guan L, Wang C S, Li X 2025 J. Alloys Compd. 1018 179241Google Scholar

    [25]

    Tang H, Zhang X Y, Cheng L Q, Mi X Y, Liu Q S 2022 J. Alloys Compd. 898 162758Google Scholar

    [26]

    王瑞阳 2024 博士学位论文 (吉林: 长春理工大学)

    Wang R Y 2024 Ph. D. Thesis (Jilin: Changchun University Of Science And Technology

    [27]

    Zhang Y, Miao S H, Liang Y J , Liang C, Chen D X, Shan X H, Sun K N, Wang X J 2022 Light Sci. Appl. 11 136.

    [28]

    Wang Y Q, Li Y F, Du Y L, Liu G X, Liu S D, Wang J X, Dong X T 2025 J. Mol. Struct. 1324 140971Google Scholar

    [29]

    Min Z Y, Zeng Q, Chen S M, Qin Y, Yao C F 2022 J. Alloys Compd. 924 166497Google Scholar

    [30]

    Long S C, Tian M F, Zhang D, Luo X X, Xu W, Tian Y, Xin S Y 2024 J. Mater. Chem. C. 12 19536Google Scholar

    [31]

    Guo J, Li S C, Kong J Y, Li Y X, Zhou L, Lou L Y, Lv Q Y, Tang R, Zheng L L, Deng B, Yu R J 2022 Opt. Laser Technol. 155 108347Google Scholar

    [32]

    Wang Z Y, Ma L Y, Shao Y, Luo Y Z, Liao R C, Kong X M, Yang X Y 2025 Ceram. Int. 51 19535Google Scholar

    [33]

    罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋 2023 物理学报 72 315

    Luo J, Zhang Z Q, Xu J H, Qin Z T, Zhao Y S, He H, Li P N, Tang J F 2023 Acta Phys. Sin. 72 315

    [34]

    Zhang Y H, Sun B, Liu J, Zhang Z Y, Liu H 2023 Dalton Trans. 52 13304Google Scholar

    [35]

    官春艳, 郑启泾, 万正环, 杨锦瑜 2024 材料导报 38 87

    Gong C Y, Zheng Q J, Wan Z H, Yang J Y 2024 MR 38 87

    [36]

    Chen J X, He D M, Wang W X, Li S L, Zou Z Q, Liu J H, Wang Y, Chen X Y, Zheng L L, Xie S A, Yu R J 2024 J. Lumin. 265 120252Google Scholar

    [37]

    Li Y T, Xu S, Chen J, Wang X K, Gong S, Zhang X J, Liu H S, Chi Y D, Sun X R, Mahadevan C K 2024 Ceram. Int. 50 25548Google Scholar

    [38]

    王佳旭, 李忠辉, 赵炎, 蒋小康, 周恒为 2024 物理学报 73 187801Google Scholar

    Wang J X, Li Z H, Zhao Y, Jiang X K, Zhou H W 2024 Acta Phys. Sin. 73 187801Google Scholar

    [39]

    Zhou J, Wang T S, Zhang W T, Huang X, Wang X M 2022 Ceram. Int. 48 17053Google Scholar

    [40]

    赵旺, 平兆艳, 郑庆华, 周薇薇 2018 物理学报 67 247801Google Scholar

    Zhao W, Ping Z Y, Zheng Q H, Zhou W W 2018 Acta Phys. Sin. 67 247801Google Scholar

    [41]

    Zhou L, Liu L, Yang R Q, Kong J Y, Li Y X, Zhao Y X, Du Y F, Li C L, Zou Z Q, Deng B, Yu R J 2023 Inorg. Chem. Commun. 148 110316Google Scholar

    [42]

    Song R T, Zhang Z H, Li H, Luo Z Y, Yang J Y, Ma J, Xiang X F, Zeng Q, Zhu J 2023 Ceram. Int. 49 6965Google Scholar

    [43]

    Chen S M, Zeng Q, Yao C F, Liu Y Y, Qin Y, Min Z Y 2022 J. Lumin. 244 118697Google Scholar

    [44]

    Abbas M T, Khan S A, Mao J, Khan N Z, Qiu L, Ahmed J, Wei X, Chen Y, Alshehri S M, Agathopoulos S 2022 J. Therm. Anal. Calorim. 147 11769Google Scholar

    [45]

    GaoF H, Khan W U, Khan W U, Ye Z Q, Zhang Y L 2023 Ceram. Int. 49 8039Google Scholar

    [46]

    Wade S A, Collins S F, Baxter G W 2003 J. Appl. Phys. 94 4743Google Scholar

    [47]

    严涌飚, 李霜, 丁双双, 张冰雪, 孙浩, 鞠泉浩, 姚露 2024 物理学报 73 097801Google Scholar

    Yan Y B, Li S, Ding S S, Zhang B X, Sun H, Ju Q H, Yao L 2024 Acta Phys. Sin. 73 097801Google Scholar

    [48]

    Liao Z C, Cao B S, Li L P, Cong Y, He Y Y, Dong B 2023 Appl. Mater. Today 31 101765Google Scholar

  • [1] Lu Jing-Wen, Zhao Jin, Zhang Yong-Chun, Tu Ru-Ting, Liu Fu-Ni, Leng Zhi-Hua. Structure and luminescence properties of Li2Gd4(MoO4)7:Sm3+ orange-red phosphor for solid-state lighting. Acta Physica Sinica, doi: 10.7498/aps.73.20241017
    [2] Luo Jie, Zhang Zi-Qiu, Xu Jun-Hao, Qin Zhao-Ting, Zhao Yuan-Shuai, He Hong, Li Guan-Nan, Tang Jian-Feng. Synthesis and luminescent properties of rare earths doped Gd2Te4O11 tellurite phosphors. Acta Physica Sinica, doi: 10.7498/aps.72.20221341
    [3] Qu Zi-Han, Chu Ze-Ma, Zhang Xing-Wang, You Jing-Bi. Research progress of efficient green perovskite light emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.68.20190647
    [4] Peng Ling-Ling, Cao Shi-Xiu, Zhao Cong, Liu Bi-Tao, Han Tao, Li Feng, Li Xiao-Min. Preparation of Mg1+yAl2-xO4:xMn4+, yMg2+ deep red phosphor and their optical properties. Acta Physica Sinica, doi: 10.7498/aps.67.20180778
    [5] Liu Wen-Quan, Chao Ke-Fu, Wu Wen-Jie, Bao Fu-Quan, Zhou Bing-Qing. CaAlSiN3:Eu2+ red phosphors synthesized by atmospheric nitrogen and their luminescence properties. Acta Physica Sinica, doi: 10.7498/aps.65.207801
    [6] Mao Qing-Hua, Liu Jun-Lin, Quan Zhi-Jue, Wu Xiao-Ming, Zhang Meng, Jiang Feng-Yi. Influences of p-type layer structure and doping profile on the temperature dependence of the foward voltage characteristic of GaInN light-emitting diode. Acta Physica Sinica, doi: 10.7498/aps.64.107801
    [7] Chen Wei-Chao, Tang Hui-Li, Luo Ping, Ma Wei-Wei, Xu Xiao-Dong, Qian Xiao-Bo, Jiang Da-Peng, Wu Feng, Wang Jing-Ya, Xu Jun. Research progress of substrate materials used for GaN-Based light emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.63.068103
    [8] Zhou Ren-Di, Huang Xue-Fei, Qi Zhi-Jian, Huang Wei-Gang. Preparation and luminescent properties of Ca2Si(O4-xNx):Eu2+ green-emitting phosphors. Acta Physica Sinica, doi: 10.7498/aps.63.197801
    [9] Gao Hui, Kong Fan-Min, Li Kang, Chen Xin-Lian, Ding Qing-An, Sun Jing. Structural optimization of GaN blue light LED with double layers of photonic crystals. Acta Physica Sinica, doi: 10.7498/aps.61.127807
    [10] Chen Huan-Ting, Lü Yi-Jun, Gao Yu-Lin, Chen Zhong, Zhuang Rong-Rong, Zhou Xiao-Fang, Zhou Hai-Guang. The physical characteristic study on luminance uniformity and temperature for power GaN LEDs chip. Acta Physica Sinica, doi: 10.7498/aps.61.167104
    [11] Qian Ke-Yuan, Ma Jun, Fu Wei, Luo Yi. Research on scattering properties of phosphor for high power white light emitting diode based on Mie scattering theory. Acta Physica Sinica, doi: 10.7498/aps.61.204201
    [12] Tang Hong-Xia, Lü Shu-Chen. Preparation and luminescent properties of SrMoO4:Eu3+phosphor for light emitting diode. Acta Physica Sinica, doi: 10.7498/aps.60.037805
    [13] Liu Yuan-Hong, Zhuang Wei-Dong, Gao Wen-Gui, Hu Yun-Sheng, He Tao, He Hua-Qiang. Effect of H3BO3 on preparation and luminescence properties of submicron green-emitting Ca3Sc2Si3O12 ∶Ce phosphor. Acta Physica Sinica, doi: 10.7498/aps.59.8200
    [14] Yang Zhi-Ping, Ma Xin, Zhao Pan-Pan, Song Zhao-Feng. Preparation and luminescence characteristics of SrAl2B2O7:Dy3+ phosphor. Acta Physica Sinica, doi: 10.7498/aps.59.5387
    [15] Wu Chun-Fang, Meng Xie, Li Jie, Wang Yu-Hua. Synthesis and luminescenct properties of LaPO4:Dy phosphors with different morphology. Acta Physica Sinica, doi: 10.7498/aps.58.6518
    [16] Li Bing-Qian, Zheng Tong-Chang, Xia Zheng-Hao. Temperature characteristics of the forward voltage of GaN based blue light emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.58.7189
    [17] Liu Nai-Xin, Wang Huai-Bing, Liu Jian-Ping, Niu Nan-Hui, Han Jun, Shen Guang-Di. Growth of p-GaN at low temperature and its properties as light emitting diodes. Acta Physica Sinica, doi: 10.7498/aps.55.1424
    [18] Hu Jin, Du Lei, Zhuang Yi-Qi, Bao Jun-Lin, Zhou Jiang. Noise as a representation for reliability of light emitting diode. Acta Physica Sinica, doi: 10.7498/aps.55.1384
    [19] Yang Zhi-Ping, Liu Yu-Feng. Preparation and luminescence characteristics of Eu2+ activated Ca3SiO5 green-emitting phosphor. Acta Physica Sinica, doi: 10.7498/aps.55.4946
    [20] Xu Geng-Zhao, Liang Hu, Bai Yong-Qiang, Lau Kei-May, Zhu Xing. Study of temperature dependent electroluminescence of InGaN/GaN multiple quantum wells using low temperature scanning near-field optical microscopy. Acta Physica Sinica, doi: 10.7498/aps.54.5344
Metrics
  • Abstract views:  801
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  07 July 2025
  • Accepted Date:  02 August 2025
  • Available Online:  28 August 2025
  • /

    返回文章
    返回