-
The study employs a clustering method to extract the coherent structures associated with intense streamwise velocity fluctuations and temperature fluctuations in high-speed turbulent channel flow. Based on their spatial locations, these structures are categorized into wall-attached and wall-detached types. A subset of the wall-attached structures exhibits self-similarity in scale, consistent with Townsend's attached eddy hypothesis, and are further classified into squat, self-similar, and tall structures. Conditional averaging results indicate that the streamwise Reynolds normal stress and the intensity of temperature fluctuations follow a logarithmic law in the logarithmic layer, a phenomenon that aligns with the attached eddy hypothesis; meanwhile, the strong Reynolds analogy relationship between velocity and temperature fluctuations remains valid within these attached structures. Analysis based on the RD identity decomposition reveals that tall structures associated with low streamwise momentum predominantly govern the generation of wall friction and heat flux, whereas tall structures linked to high-temperature events play a primary role in the transport of wall-normal heat flux.
-
Keywords:
- High-speed turbulent channel flows /
- Clustering method /
- Coherent Structures /
- Self-similarity /
- Wall shear stress and wall heat flux
-
[1] Smits A, McKeon B, Marusic I 2011 Annu. Rev. Fluid Mech. 43 353
[2] Jiménez J 2012 Annu. Rev. Fluid Mech. 44 27
[3] Kline S, Reynolds W, Schraub F, Runstadler P 1967 J. Fluid Mech. 30 741
[4] Cheng C, Fu L 2022 Phys. Rev. Fluids 7 114604
[5] Yu M, Xu C, Chen J, Liu P, Fu Y, Yuan X 2022 Phys. Rev. Fluids 7 054607
[6] Townsend A 1976 The Structure of Turbulent Shear Flows Cambridge University Press
[7] Perry A, Chong M 1982 J. Fluid Mech. 119 173-217
[8] Marusic I, Monty J. 2019 Annu. Rev. Fluid Mech. 51 49-74
[9] Hutchins N, Nickels T, Marusic I, Chong M 2009 J. Fluid Mech. 635 103-106
[10] Hultmark M, Vallikivi M, Bailey S, Smits A 2012 Phys. Rev. Lett. 108 094501
[11] Hutchins N, Chauhan K, Marusic I, Monty J 2012 Boundary-Layer Meteorol. 145 273-306
[12] Lee M, Moser R 2015 J. Fluid Mech. 774 395-415
[13] Nickels T, Marusic I, Hafez S, Chong M 2005 Phys. Rev. Lett. 95 074501
[14] Ahn J, Lee J, Kang J, Sung H 2015 Phys. Fluids 27 065110
[15] Lozano D, Flores O, Jiménez, J 2012 J. Fluid Mech. 694 100–130
[16] Lozano D, Jiménez, J 2014 J. Fluid Mech. 759 432–471
[17] Dong S, Lozano D, Sekimoto A, Jiménez J 2017 J. Fluid Mech. 816 167–208
[18] Lozano D A, Bae H J 2019 J. Fluid Mech. 868 698–725
[19] Jiménez J 2013 Phys. Fluids 25 101302
[20] Dong S, Cheng C, Chen J, Yuan X, Li W 2021 Adv. Mech. 51 792-830 (in Chinese) [董思卫,程诚,陈坚强,袁先旭,李伟鹏 2021 力学进展 51 792-830]
[21] Hwang J, Sung H 2018 J. Fluid Mech. 856 58-83
[22] Yang J, Hwang J, Sung H 2019 Phys. Rev. Fluids 4 114606
[23] Yoon M, Hwang J, Yang J, Sung H 2020 J. Fluid Mech. 885 A12
[24] Hwang J, Lee J, Sung H 2020 J. Fluid Mech. 905 A6
[25] Yoon M, Sung H 2022 J. Fluid Mech. 943 A14
[26] Fukagata K, Iwamoto K, Kasagi N 2002 Phys. Fluids 14 73-76
[27] Renard N, Deck S 2016 J. Fluid Mech. 790 339-367
[28] Gomez T, Flutet V, Sagaut P 2009 Phys. Rev. E 79 035301
[29] Zhang P, Xia Z 2020 Phys. Rev. E 102 043107
[30] Wenzel C, Gibis T, Kloker M 2021 J. Fluid Mech. 930 A1
[31] Li W, Fan Y, Modesti D, Cheng C 2019 J. Fluid Mech. 875 101-123
[32] Sun D, Guo Q, Yuan X, Zhang H, Liu P 2021 Adv. Aerodyn. 3 1–13
[33] Yu M, Xu C 2021 Phys. Fluids 33 075106
[34] Yu M, Liu P, Fu Y, Tang Z, Yuan X 2022 Phys. Fluids 34 065139
[35] Yu M, Liu P, Fu Y, Tang Z, Yuan X 2022 Phys. Fluids 34 065140
[36] Huang P G, Coleman G N, Bradshaw P 1995 J. Fluid Mech. 305 185–218
Metrics
- Abstract views: 202
- PDF Downloads: 0
- Cited By: 0