Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wall attached strucures of velocity and tempreture fluctuations in high-speed turbulent channel flows

LI Junyang ZHOU Qingqing SUN Dong YU Ming YUAN Xianxu LIU Pengxin

Citation:

Wall attached strucures of velocity and tempreture fluctuations in high-speed turbulent channel flows

LI Junyang, ZHOU Qingqing, SUN Dong, YU Ming, YUAN Xianxu, LIU Pengxin
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In this study, a clustering method is used to extract the coherent structures associated with intense streamwise velocity fluctuations and temperature fluctuations in high-speed turbulent channel flow. Based on their spatial locations, these structures are categorized into wall-attached type and wall-detached type. A subset of the wall-attached structures exhibits self-similarity in scale, consistent with Townsend’s attached eddy hypothesis, and these structures are further classified as squat structure, self-similar structure, and tall structure. Conditional averaging results indicate that the streamwise Reynolds normal stress and the intensity of temperature fluctuations follow a logarithmic law in the logarithmic layer, a phenomenon that aligns with the attached eddy hypothesis; meanwhile, the strong Reynolds analogy relationship between velocity and temperature fluctuations remains valid within these attached structures. Analysis based on the RD identity decomposition reveals that tall structures related to low streamwise momentum mainly control the generation of wall friction and heat flux, while tall structures related to high-temperature events play a main role in the of wall-normal heat flux transfer.
  • 图 1  高速槽道湍流物理模型

    Figure 1.  Physical model of high-speed turbulent channel flows

    图 2  不同α值下高速槽道湍流中提取得到的(a)结构数量和(b)结构体积, 分别用各自的最大值进行无量纲化

    Figure 2.  (a) Number of structures and (b) the volume of structures extracted from high-speed turbulent channel flows under different α values, normalized by their respective maximum values.

    图 3  高速槽道湍流M8 AW算例中的(a)速度壁面附着结构, (b)速度壁面分离结构, (c)温度壁面附着结构, (d)温度壁面分离结构

    Figure 3.  (a) Velocity wall-attached structures, (b) velocity wall-detached structures, (c) temperature wall-attached structures, and (d) temperature wall-detached structures in the M8 AW case of high-speed turbulent channel flow.

    图 4  高速槽道湍流M8 CW05算例中的(a)速度壁面附着结构, (b)速度壁面分离结构, (c)温度壁面附着结构, (d)温度壁面分离结构

    Figure 4.  (a) Velocity wall-attached structures, (b) velocity wall-detached structures, (c) temperature wall-attached structures, and (d) temperature wall-detached structures in the M8 CW05 case of high-speed turbulent channel flow.

    图 5  高速槽道湍流M8 CW02算例中的(a)速度壁面附着结构, (b)速度壁面分离结构, (c)温度壁面附着结构, (d)温度壁面分离结构

    Figure 5.  (a) Velocity wall-attached structures, (b) velocity wall-detached structures, (c) temperature wall-attached structures, and (d) temperature wall-detached structures in the M8 CW02 case of high-speed turbulent channel flow.

    图 6  高速槽道湍流中的结构数量概率分布 M8 AW算例中的(a)速度结构和(b)温度结构; M8 CW02算例中的(c)速度结构和(d)温度结构; M8 CW05算例中的(e)速度结构和(f)温度结构

    Figure 6.  The number of clusters per unit with respect to ${y_{\min }}$and ${y_{\max }}$: (a) Velocity and (b) temperature structures in the M8 AW case; (c) velocity and (d) temperature structures in the M8 CW02 case; (e) velocity and (f) temperature structures in the M8 CW05 case.

    图 7  高速槽道湍流中的速度/温度壁面附着结构中的结构尺度关系 (a) $l_x^ + $-$l_y^ + $; (b) $l_z^ + $-$l_y^ + $

    Figure 7.  Scale relations in wall attached structures for u and T: (a) $l_x^ + - l_y^ + $; (b) $l_z^ + - l_y^ + $.

    图 8  高速槽道湍流中速度壁面附着结构的条件平均结果 M8 AW算例中的(a)流向雷诺正应力和(b)剪切雷诺应力; M8 CW05算例中的(c)流向雷诺正应力和(d)剪切雷诺应力; M8 CW02算例中的(e)流向雷诺正应力和(f)剪切雷诺应力. 其中, p和n分别代表高速和低速结构; ss, s和t分别代表自相似结构、矮结构以及高结构

    Figure 8.  Conditional averaging results of velocity wall-attached structures in high-speed turbulent channel flow: (a) Streamwise Reynolds normal stress and (b) shear Reynolds stress in the M8 AW case; (c) streamwise Reynolds normal stress and (d) shear Reynolds stress in the M8 CW05 case; (e) streamwise Reynolds normal stress and (f) shear Reynolds stress in the M8 CW02 case. Here, p and n denote high-speed and low-speed structures, respectively; ss, s, and t represent self-similar, squat, and tall structures, respectively.

    图 9  高速槽道湍流中温度壁面附着结构的条件平均结果 M8 AW算例中的(a)温度脉动均方和(b)湍流热通量; M8 CW05算例中的(c)温度脉动均方和(d)湍流热通量; M8 CW02算例中的(e)温度脉动均方和(f)湍流热通量. 其中, p和n分别代表高温和低温结构; ss, s 和 t 分别代表自相似结构、矮结构以及高结构

    Figure 9.  Conditional averaging results of temperature wall-attached structures in high-speed turbulent channel flow: (a) Mean square of temperature fluctuations and (b) turbulent heat flux in the M8 AW case; (c) mean square of temperature fluctuations and (d) turbulent heat flux in the M8 CW05 case; (e) mean square of temperature fluctuations and (f) turbulent heat flux in the M8 CW02 case. Here, p and n denote high-temperature and low-temperature structures, respectively; ss, s, and t represent self-similar, squat, and tall structures, respectively.

    图 10  高速槽道湍流中的结构条件统计下的强雷诺比拟关系 (a) M8 AW算例; (b) M8 CW05算例; (c) M8 CW02算例

    Figure 10.  Strong Reynolds analogy under conditional averaging in high-speed turbulent channel flows: (a) Case M8 AW; (b) Case M8 CW05; (c) Case M8 CW02.

    表 1  不同算例的网格与流动参数

    Table 1.  Grid and flow parameters for different cases.

    算例${{{T_{\text{w}}}} \mathord{\left/ {\vphantom {{{T_{\text{w}}}} {{T_{\text{r}}}}}} \right. } {{T_{\text{r}}}}}$$R{e_\tau }$${M_{\text{b}}}$${M_{\text{c}}}$$\Delta {x^ + }$$\Delta y_{\text{w}}^ + $$\Delta {z^ + }$
    M8 AW1.05044.446.935.50.502.7
    M8 CW050.54504.616.154.80.462.4
    M8 CW020.25404.796.039.90.592.9
    DownLoad: CSV

    表 2  不同速度结构下湍动能生成项对壁面摩阻的贡献占比$ {{{C_{{\text{f, T}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{f, T}}}}} {{C_{\text{f}}}}}} \right. } {{C_{\text{f}}}}} $

    Table 2.  Contribution percentage, $ {{{C_{{\text{f, T}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{f, T}}}}} {{C_{\text{f}}}}}} \right. } {{C_{\text{f}}}}} $ of the turbulent kinetic energy production term to wall friction under different velocity structures.

    Case${\text{N, SS}}$${\text{N, S}}$${\text{N, T}}$${\text{P, SS}}$${\text{P, S}}$${\text{P, T}}$Total
    M8 AW3.220.326.261.881.355.4042.11
    M8 CW053.710.137.101.661.273.7038.84
    M8 CW022.210.159.612.010.732.7037.20
    DownLoad: CSV

    表 3  不同速度结构下生成项对壁面热流的贡献占比$ {{{C_{{\text{h, RS}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{h, RS}}}}} {{C_{\text{h}}}}}} \right. } {{C_{\text{h}}}}} $

    Table 3.  Contribution percentage, $ {{{C_{{\text{h, RS}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{h, RS}}}}} {{C_h}}}} \right. } {{C_h}}} $ of the production term to wall heat flux under different velocity structures.

    Case${\text{N, SS}}$${\text{N, S}}$${\text{N, T}}$${\text{P, SS}}$${\text{P, S}}$${\text{P, T}}$Total
    M8 CW056.660.1614.242.331.386.3269.21
    M8 CW023.000.1014.192.090.583.4050.56
    DownLoad: CSV

    表 4  不同速度结构下湍流热输运项对壁面热流的贡献占比$ {{{C_{{\text{h, T}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{h, T}}}}} {{C_{\text{h}}}}}} \right. } {{C_{\text{h}}}}} $

    Table 4.  Contribution percentage, $ {{{C_{{\text{h, T}}}}} \mathord{\left/ {\vphantom {{{C_{{\text{h, T}}}}} {{C_{\text{h}}}}}} \right. } {{C_{\text{h}}}}} $ of the turbulent heat transport term to wall heat flux under different velocity structures.

    Case ${\text{N, SS}}$ ${\text{N, S}}$ ${\text{N, T}}$ ${\text{P, SS}}$ ${\text{P, S}}$ ${\text{P, T}}$ Total
    M8 CW05 –0.21 0.33 –0.62 –0.36 0.11 –3.00 –24.95
    M8 CW02 0.00 0.93 –0.24 –0.01 0.08 –1.22 –8.08
    DownLoad: CSV
  • [1]

    Smits A, McKeon B, Marusic I 2011 Annu. Rev. Fluid Mech. 43 353Google Scholar

    [2]

    Jiménez J 2012 Annu. Rev. Fluid Mech. 44 27Google Scholar

    [3]

    Kline S, Reynolds W, Schraub F, Runstadler P 1967 J. Fluid Mech. 30 741Google Scholar

    [4]

    Cheng C, Fu L 2022 Phys. Rev. Fluids 7 114604Google Scholar

    [5]

    Yu M, Xu C, Chen J, Liu P, Fu Y, Yuan X 2022 Phys. Rev. Fluids 7 054607Google Scholar

    [6]

    Townsend A 1976 The Structure of Turbulent Shear Flows (Cambridge: Cambridge University Press

    [7]

    Perry A, Chong M 1982 J. Fluid Mech. 119 173Google Scholar

    [8]

    Marusic I, Monty J. 2019 Annu. Rev. Fluid Mech. 51 49Google Scholar

    [9]

    Hutchins N, Nickels T, Marusic I, Chong M 2009 J. Fluid Mech. 635 103Google Scholar

    [10]

    Hultmark M, Vallikivi M, Bailey S, Smits A 2012 Phys. Rev. Lett. 108 094501Google Scholar

    [11]

    Hutchins N, Chauhan K, Marusic I, Monty J 2012 Boundary-Layer Meteorol. 145 273Google Scholar

    [12]

    Lee M, Moser R 2015 J. Fluid Mech. 774 395Google Scholar

    [13]

    Nickels T, Marusic I, Hafez S, Chong M 2005 Phys. Rev. Lett. 95 074501Google Scholar

    [14]

    Ahn J, Lee J, Kang J, Sung H 2015 Phys. Fluids 27 065110Google Scholar

    [15]

    Lozano D, Flores O, Jiménez J 2012 J. Fluid Mech. 694 100Google Scholar

    [16]

    Lozano D, Jiménez J 2014 J. Fluid Mech. 759 432Google Scholar

    [17]

    Dong S, Lozano D, Sekimoto A, Jiménez J 2017 J. Fluid Mech. 816 167Google Scholar

    [18]

    Lozano D A, Bae H J 2019 J. Fluid Mech. 868 698Google Scholar

    [19]

    Jiménez J 2013 Phys. Fluids 25 101302Google Scholar

    [20]

    董思卫, 程诚, 陈坚强, 袁先旭, 李伟鹏 2021 力学进展 51 792

    Dong S W, Cheng C, Chen J Q, Yuan X X, Li W P 2021 Adv. Mech. 51 792

    [21]

    Hwang J, Sung H 2018 J. Fluid Mech. 856 58

    [22]

    Yang J, Hwang J, Sung H 2019 Phys. Rev. Fluids 4 114606Google Scholar

    [23]

    Yoon M, Hwang J, Yang J, Sung H 2020 J. Fluid Mech. 885 A12Google Scholar

    [24]

    Hwang J, Lee J, Sung H 2020 J. Fluid Mech. 905 A6Google Scholar

    [25]

    Yoon M, Sung H 2022 J. Fluid Mech. 943 A14Google Scholar

    [26]

    Fukagata K, Iwamoto K, Kasagi N 2002 Phys. Fluids 14 73Google Scholar

    [27]

    Renard N, Deck S 2016 J. Fluid Mech. 790 339Google Scholar

    [28]

    Gomez T, Flutet V, Sagaut P 2009 Phys. Rev. E 79 035301

    [29]

    Zhang P, Xia Z 2020 Phys. Rev. E 102 043107

    [30]

    Wenzel C, Gibis T, Kloker M 2021 J. Fluid Mech. 930 A1

    [31]

    Li W, Fan Y, Modesti D, Cheng C 2019 J. Fluid Mech. 875 101Google Scholar

    [32]

    Sun D, Guo Q, Yuan X, Zhang H, Liu P 2021 Adv. Aerodyn. 3 1Google Scholar

    [33]

    Yu M, Xu C 2021 Phys. Fluids 33 075106Google Scholar

    [34]

    Yu M, Liu P, Fu Y, Tang Z, Yuan X 2022 Phys. Fluids 34 065139Google Scholar

    [35]

    Yu M, Liu P, Fu Y, Tang Z, Yuan X 2022 Phys. Fluids 34 065140Google Scholar

    [36]

    Huang P G, Coleman G N, Bradshaw P 1995 J. Fluid Mech. 305 185Google Scholar

  • [1] Chen Hao-Yu, Xu Tao, Liu Chuang, Zhang Zi-Ke, Zhan Xiu-Xiu. Network similarity comparison method based on higher-order information. Acta Physica Sinica, doi: 10.7498/aps.73.20231096
    [2] Wang Wei, Deguchi Yoshihiro, He Yong-Sen, Zhang Jia-Zhong. Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding. Acta Physica Sinica, doi: 10.7498/aps.68.20190663
    [3] Yang Jian-Nan, Liu Jian-Guo, Guo Qiang. Node importance idenfication for temporal network based on inter-layer similarity. Acta Physica Sinica, doi: 10.7498/aps.67.20172255
    [4] Ma Ping, Shi An-Hua, Yang Yi-Jian, Yu Zhe-Feng, Liang Shi-Chang, Huang Jie. Experiment on similarity between wake flow field and electromagnetic scattering characteristic of the hypersonic model. Acta Physica Sinica, doi: 10.7498/aps.66.102401
    [5] Li Hong-Yun, Yin Yan-Yan, Wang Qing, Wang Li-Fei. self-similarity of Rydberg hydrogen atom in parallel electric and magnetic fields. Acta Physica Sinica, doi: 10.7498/aps.64.180502
    [6] Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Wang Qiang, Wang Xin-Xin. Simulation on similarity law of glow discharge in scale-down gaps of rod-plane electrode configuration. Acta Physica Sinica, doi: 10.7498/aps.63.095206
    [7] Lei Peng-Fei, Zhang Jia-Zhong, Wang Zhuo-Pu, Chen Jia-Hui. Lagrangian coherent structure and transport in unsteady transient flow. Acta Physica Sinica, doi: 10.7498/aps.63.084702
    [8] Wu Wen-Tang, Hong Yan-Ji, Fan Bao-Chun. Vortex structures in turbulent channel flow modulated by a steadily distributed spanwise Lorentz force. Acta Physica Sinica, doi: 10.7498/aps.63.054702
    [9] Fu Yang-Yang, Luo Hai-Yun, Zou Xiao-Bing, Liu Kai, Wang Xin-Xin. Preliminary study on similarity of glow discharges in scale-down gaps. Acta Physica Sinica, doi: 10.7498/aps.62.205209
    [10] Yue Ping, Zhang Qiang, Niu Sheng-Jie, Wang Run-Yuan, Sun Xu-Ying, Wang Sheng. The characteristics of turbulent momentum and heat similarity function and bulk transfer coefficient over grassland surface. Acta Physica Sinica, doi: 10.7498/aps.61.219201
    [11] Shen Yi, Xu Huan-Liang. The evaluation function of weight similarity and its application in community detection in weighted networks. Acta Physica Sinica, doi: 10.7498/aps.59.6022
    [12] Mei Dong-Jie, Fan Bao-Chun, Chen Yao-Hui, Ye Jing-Fang. Experimental investigation on turbulent channel flow utilizing spanwise oscillating Lorentz force. Acta Physica Sinica, doi: 10.7498/aps.59.8335
    [13] Mei Dong-Jie, Fan Bao-Chun, Huang Le-Ping, Dong Gang. Drag reduction in turbulent channel flow by spanwise oscillating Lorentz force. Acta Physica Sinica, doi: 10.7498/aps.59.6786
    [14] Zheng Yu-Jun, Zhang Zhao-Yu, Zhang Xi-Zhong. Similarity of high-order cumulants for single molecule kinetics. Acta Physica Sinica, doi: 10.7498/aps.58.8194
    [15] Liao Long-Guang, Fu Hong, Fu Xiu-Jun. Self-similar transformation and quasi-unit cell construction of quasi-periodic structure with twelve-fold rotational symmetry. Acta Physica Sinica, doi: 10.7498/aps.58.7088
    [16] Gong Zhi-Qiang, Feng Guo-Lin. Analysis of similarity of several proxy series based on nonlinear analysis method. Acta Physica Sinica, doi: 10.7498/aps.56.3619
    [17] Tong Yong-Zai, Wang Xi-An, Yu Ben-Hai, Hu Xue-Hui. Self-similarity of the electro-optical effects. Acta Physica Sinica, doi: 10.7498/aps.55.6667
    [18] ZHONG XI-HUA. THE SPECTRAL FUNCTIONS OF SELF-SIMILAR STRUCTURES. Acta Physica Sinica, doi: 10.7498/aps.39.59
    [19] ZHANG MIN, TAO RUI-BAO, ZHOU SHI-XUN. THE SCALING EXPONENTS OF MASS DISTRIBUTION IN INHOMOGENEOUS COMPOSITES WITH SELF- SIMILAR STRUCTURES. Acta Physica Sinica, doi: 10.7498/aps.37.1987
    [20] LIU SHU-I. THE FRICTION-FIELD OF LEAST RESISTANCE. Acta Physica Sinica, doi: 10.7498/aps.14.1
Metrics
  • Abstract views:  384
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  18 June 2025
  • Accepted Date:  26 August 2025
  • Available Online:  04 September 2025
  • /

    返回文章
    返回