Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A fully quantum description of the free-energy in high pressure hydrogen

Chen Ji Feng Ye-Xin Li Xin-Zheng Wang En-Ge

Citation:

A fully quantum description of the free-energy in high pressure hydrogen

Chen Ji, Feng Ye-Xin, Li Xin-Zheng, Wang En-Ge
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Hydrogen is the lightest and most abundant element in the universe. Ever since Wigner and Huntington's prediction that pressure induced metallization might happen in solid hydrogen, understanding the hydrogen phase diagram has become one of the greatest challenges in condensed matter and high pressure physics. The light mass of hydrogen means that the nuclear quantum effects could be important in describing this phase diagram under high pressures. Numerical evaluations of their contributions to the structural, vibrational, and energetic properties, however, are difficult and up to now most of the theoretical simulations still remain classical. This is particularly true for the energetic properties. When the free-energies of different phases are compared in determining the ground state structure of the system at a given pressure and temperature, most of the theoretical simulations remain classical. When nuclear quantum effects must be taken into account, one often resorts to the harmonic approximation. In the very rare case, the anharmonic contributions from the nuclear statistical effects are considered by using a combination of the thermodynamic integration and the at initio molecular dynamics methods, which helps to include the classical nuclear anharmonic effects. Quantum nuclear anharmonic effects, however, are completely untouched. Here, using a self-developed combination of the thermodynamic integration and the at initio path-integral molecular dynamics methods, we calculated the free-energies of the high pressure hydrogen at 100 K from 200 GPa to 300 GPa. The harmonic lattice was taken as the reference and the Cmca phase of the solid hydrogen was chosen. When the bead number of the path-integral (P) equals one, our approach reaches the so-called classical limit. Upon increasing P until the results are converged, our approach reaches the limit when both classical and quantum nuclear anharmonic effects are included. Therefore, by comparing the free-energy of the harmonic lattice and the thermodynamic integration results at P equals one, we isolate the classical nuclear anharmonic effects. By comparing the thermodynamic integration results at P equals one and with those when they are converged with respect to P, we isolate the quantum nuclear anharmonic effects in a very clean manner. Our calculations show that the classical nuclear anharmonic contributions to the free-energy are negligible at this low temperature. Those contributions from the quantum nuclear anharmonic effects, however, are as large as ~15 meV per atom. This value also increases with pressure. This study presents an algorithm to quantitatively calculate the quantum contribution of the nuclear motion to free-energy beyond the often used harmonic approximation. The large numbers we got obtained also indicate that such quantum nuclear anharmonic effects are important in describing the phase diagram of hydrogen, at/above the pressures studied.
      Corresponding author: Li Xin-Zheng, xzli@pku.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11422431, 11275008, 11274012, 91021007), and the National Postdoc Research Foundation of China (Grant No. 2014M550005).
    [1]

    Mermin N D 1985 Phys. Rev. A 137 1441

    [2]

    Gillan M J 1989 J. Phys.: Condens. Matter 1 689

    [3]

    Wentzcovitch R M, Martins J L, Allen P B 1992 Phys. Rev. B 45 11372

    [4]

    Xu G, Ming W, Yao Y, Dai X, Zhang S C, Fang Z 2008 EPL 82 67002

    [5]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [6]

    Pickard C J, Needs R J 2007 Nat. Phys. 3 473

    [7]

    Li X Z, Wang E G 2014 Computer Simulations of Molecules and Condensed Matters: From Electronic Structures to Molecular Dynamics (Beijing: Peking University Press) pp134-140

    [8]

    Frenkel D, Lekkerkerker H N W, Stroobants A 1988 Nature 332 822

    [9]

    Meijer E J, Frenkel D 1991 J. Chem. Phys. 94 2269

    [10]

    Alfé D, Gillan M J, Price G D 1999 Nature 401 462

    [11]

    Alfé D, Price G D, Gillan M J 2001 Phys. Rev. B 64 045123

    [12]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764

    [13]

    Babaev E, Sudbo A, Ashcroft N W 2004 Nature 431 666

    [14]

    Bonev S A, Schwegler E, Ogitsu T, Galli G 2004 Nature 431 669

    [15]

    Deemyad S, Silvera I F 2008 Phys. Rev. Lett. 100 155701

    [16]

    Li X Z, Walker B, Probert M I J, Pickard C J, Needs R J, Michaelides A 2013 J. Phys.: Condens. Matter 25 085402

    [17]

    Chen J, Li X Z, Zhang Q F, Probert M I J, Pickard C J, Needs R J, Michaelides A, Wang E G 2013 Nat. Commun. 4 2064

    [18]

    Mao H K, Hemley R J 1994 Rev. Mod. Phys. 66 671

    [19]

    McMahon J M, Morales M A, Pierleoni C, Ceperley D M 2012 Rev. Mod. Phys. 84 1607

    [20]

    Zha C S, Liu Z X, Hemley R J 2012 Phys. Rev. Lett. 108 146402

    [21]

    Liu H Y, Zhu L, Cui W W, Ma Y M 2012 J. Chem. Phys. 137 074501

    [22]

    Perez A, von Lilienfeld O A 2011 J. Chem. Theory Comput. 7 2358

    [23]

    Habershon S, Manolopoulos D E 2011 J. Chem. Phys. 135 224111

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Feng Y X, Chen J, Alfè D, Li X Z, Wang E G 2015 J. Chem. Phys. 142 064506

    [26]

    Alfé D 2009 Comput. Phys. Commun. 180 2622

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

  • [1]

    Mermin N D 1985 Phys. Rev. A 137 1441

    [2]

    Gillan M J 1989 J. Phys.: Condens. Matter 1 689

    [3]

    Wentzcovitch R M, Martins J L, Allen P B 1992 Phys. Rev. B 45 11372

    [4]

    Xu G, Ming W, Yao Y, Dai X, Zhang S C, Fang Z 2008 EPL 82 67002

    [5]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [6]

    Pickard C J, Needs R J 2007 Nat. Phys. 3 473

    [7]

    Li X Z, Wang E G 2014 Computer Simulations of Molecules and Condensed Matters: From Electronic Structures to Molecular Dynamics (Beijing: Peking University Press) pp134-140

    [8]

    Frenkel D, Lekkerkerker H N W, Stroobants A 1988 Nature 332 822

    [9]

    Meijer E J, Frenkel D 1991 J. Chem. Phys. 94 2269

    [10]

    Alfé D, Gillan M J, Price G D 1999 Nature 401 462

    [11]

    Alfé D, Price G D, Gillan M J 2001 Phys. Rev. B 64 045123

    [12]

    Wigner E, Huntington H B 1935 J. Chem. Phys. 3 764

    [13]

    Babaev E, Sudbo A, Ashcroft N W 2004 Nature 431 666

    [14]

    Bonev S A, Schwegler E, Ogitsu T, Galli G 2004 Nature 431 669

    [15]

    Deemyad S, Silvera I F 2008 Phys. Rev. Lett. 100 155701

    [16]

    Li X Z, Walker B, Probert M I J, Pickard C J, Needs R J, Michaelides A 2013 J. Phys.: Condens. Matter 25 085402

    [17]

    Chen J, Li X Z, Zhang Q F, Probert M I J, Pickard C J, Needs R J, Michaelides A, Wang E G 2013 Nat. Commun. 4 2064

    [18]

    Mao H K, Hemley R J 1994 Rev. Mod. Phys. 66 671

    [19]

    McMahon J M, Morales M A, Pierleoni C, Ceperley D M 2012 Rev. Mod. Phys. 84 1607

    [20]

    Zha C S, Liu Z X, Hemley R J 2012 Phys. Rev. Lett. 108 146402

    [21]

    Liu H Y, Zhu L, Cui W W, Ma Y M 2012 J. Chem. Phys. 137 074501

    [22]

    Perez A, von Lilienfeld O A 2011 J. Chem. Theory Comput. 7 2358

    [23]

    Habershon S, Manolopoulos D E 2011 J. Chem. Phys. 135 224111

    [24]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [25]

    Feng Y X, Chen J, Alfè D, Li X Z, Wang E G 2015 J. Chem. Phys. 142 064506

    [26]

    Alfé D 2009 Comput. Phys. Commun. 180 2622

    [27]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Hu Ting-He, Li Zhi-Hao, Zhang Qian-Fan. First principles and molecular dynamics simulations of effect of dopants on properties of high strength steel for hydrogen storage vessels. Acta Physica Sinica, 2024, 73(6): 067101. doi: 10.7498/aps.73.20231735
    [3] Zhang Yu-Hang, Li Xiao-Bao, Zhan Chun-Xiao, Wang Mei-Qin, Pu Yu-Xue. Molecular dynamics simulation study on mechanical properties of Janus MoSSe monolayer. Acta Physica Sinica, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [4] Tian Li-Man, Wen Yong-Li, Wang Yun-Fei, Zhang Shan-Chao, Li Jian-Feng, Du Jing-Song, Yan Hui, Zhu Shi-Liang. Research progress of measurement of propagators in path integrals. Acta Physica Sinica, 2023, 72(20): 200305. doi: 10.7498/aps.72.20230902
    [5] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [6] Fu Bao-Qin, Hou Qing, Wang Jun, Qiu Ming-Jie, Cui Jie-Chao. Molecular dynamics study of trapping and detrapping process of hydrogen in tungsten vacancy. Acta Physica Sinica, 2019, 68(24): 240201. doi: 10.7498/aps.68.20190701
    [7] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [8] Dong Qi-Qi, Hu Hai-Bao, Chen Shao-Qiang, He Qiang, Bao Lu-Yao. Molecular dynamics simulation of freezing process of water droplets impinging on cold surface. Acta Physica Sinica, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [9] Fan Hang, Nie Fu-De, Long Yao, Chen Jun. A molecular dynamics simulation of thermodynamic properties of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene under high pressure and high temperature. Acta Physica Sinica, 2016, 65(6): 066201. doi: 10.7498/aps.65.066201
    [10] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [11] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [12] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [13] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [14] Ma Ying. Variable charge molecular dynamics simulation of vitreous silica. Acta Physica Sinica, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [15] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [16] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [17] Xie Wen-Xian, Xu Wei, Lei You-Ming, Cai Li. Solutions of path integration for nonlinear dynamical system under stochastic parametric and external excitations. Acta Physica Sinica, 2005, 54(3): 1105-1112. doi: 10.7498/aps.54.1105
    [18] Wang Ping, Yang Xin-E, Song Xiao-Hui. Exact solution for a harmonic oscillator with a time-dependent inverse square po tential by path-integral. Acta Physica Sinica, 2003, 52(12): 2957-2960. doi: 10.7498/aps.52.2957
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  8099
  • PDF Downloads:  692
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2015
  • Accepted Date:  29 June 2015
  • Published Online:  05 September 2015

/

返回文章
返回