-
Bubble drag reduction technology is of great significance in improving the propulsion efficiency of underwater vehicle and reducing the comprehensive energy consumption during navigation. Bubble drag reduction is a highly effective method of reducing the frictional resistance encountered by large ships and underwater vehicles during navigation. It exhibits excellent stability in drag reduction, and has advantages such as environmental friendliness, adaptability to various flow environments, and suitability for all underwater components of ships. Therefore, it is greatly significant to conduct in-depth research on bubble drag reduction and its underlying mechanism. In this work, the flow characteristics and the boundary bubble drag reduction mechanism of gas-liquid Couette flow in parallel wall nanochannels are studied by molecular dynamics method, and the influences of surface wettability, wall roughness, and gas concentration on boundary slip velocity and bubble drag reduction effect are analyzed. The results indicate that the bubble drag reduction effect is enhanced with the increase of boundary slip velocity. In the gas-liquid two-phase flow region, with the increase of shear velocity, the lateral deformation of boundary adsorbed bubble and boundary slip velocity increase, thus enhancing the bubble drag reduction effect. The increase of solid-gas interaction strength and gas concentration can lead to the enrichment of gas atoms near the wall, improve the bubble spreading characteristics on the wall, and thus increase the slip velocity of the solid-liquid interface. The wall roughness can change the spreading characteristics of bubble, affect the boundary slip velocity, and then change the drag reduction effect of the fluid-solid interface. As the rib height increases, gas atoms accumulate in the grooves between ribs and the adsorption quantity of gas atoms on the upper surface of the rib decreases, which leads to the decrease of the boundary slip velocity of the solid-liquid interface and ultimately reduces the drag reduction effect. The research results will provide important theoretical guidance for implementing the boundary drag reduction technology in large ships and underwater vehicles.
-
Keywords:
- bubble drag reduction /
- boundary slip /
- Couette flow /
- molecular dynamics
[1] Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968Google Scholar
[2] Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11Google Scholar
[3] Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50Google Scholar
[4] 李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703Google Scholar
Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703Google Scholar
[5] 康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087Google Scholar
Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Acta Mech. Sinica. 55 1087Google Scholar
[6] 史同雨 2020 硕士学位论文(大连: 大连海事大学)
Shi T Y 2020 M. S. Thesis (Dalian: Dalian Maritime University
[7] Wang H W, Wang K Y, Liu G H 2022 Ocean Eng. 258 111833Google Scholar
[8] 赵超, 吕明利, 贾文广 2022 船舶工程 44 69Google Scholar
Zhao C, Lyu M L, Jia W G 2022 Ship Eng. 44 69Google Scholar
[9] 詹杰民, 陆尚平, 李熠华, 李雨田, 胡文清 2023 海洋工程 41 1Google Scholar
Zhan J M, Lu S P, Li Y H, Li Y T, Hu W Q 2023 Ocean Eng. 41 1Google Scholar
[10] 张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863Google Scholar
Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863Google Scholar
[11] Moaven K, Rad M, Taeibi-Rahni M 2013 Exp. Therm. Fluid. Sci. 51 239Google Scholar
[12] Gao J, Zhang K, Li H, Lang C, Zhang L X 2023 Prog. Org. Coat. 183 107769Google Scholar
[13] Chen H W, Zhang X, Che D, Zhang D Y, Li X, Li Y Y 2014 Adv. Mech. Eng. 2014 425701Google Scholar
[14] Luo Y, Zhang D, Liu Y, Li Y, Ng E Y K 2015 J. Mech. Med. Biol. 15 1550084Google Scholar
[15] Shen X, Ceccio S L, Perlin M 2006 Exp. Fluids 41 415Google Scholar
[16] Zhao X J, Zong Z 2022 Ocean Eng. 251 111032Google Scholar
[17] Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807Google Scholar
[18] Maryami R, Javadpoor M, Farahat S 2016 Heat Mass Transfer 52 2593Google Scholar
[19] Bidkar R A, Leblanc L, Kulkarni A J, Bahadur V, Ceccio S L, Perlin M 2014 Phys. Fluids 26 085108Google Scholar
[20] Mail M, Moosmann M, Häger P, Barthlott W 2019 Phil. Trans. R. Soc. A 377 20190126Google Scholar
[21] Wang F C, Qian J H, Fan J C, Li J C, Xu H Y, Wu H A 2022 Sci. China Phys. Mech. 65 264601Google Scholar
[22] 石小燕, 曾丹苓, 蔡治勇 2005 热科学与技术 4 195Google Scholar
Shi X Y, Zeng D L, Cai Z Y 2005 J. Therm. Sci. Technol. 4 195Google Scholar
[23] Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501Google Scholar
[24] Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar
[25] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[26] Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar
[27] 刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32Google Scholar
Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32Google Scholar
[28] Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183Google Scholar
[29] Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141Google Scholar
[30] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓 2024 物理学报 73 094701Google Scholar
Xing H W, Chen Z X, Yang L, Su Y, Li Y H, Huhe C 2024 Acta Phys. Sin. 73 094701Google Scholar
[31] Hu H B, Wang D Z, Ren F, Bao L Y, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166Google Scholar
[32] 吕鹏宇, 薛亚辉, 段慧玲 2016 力学进展 46 179Google Scholar
Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179Google Scholar
[33] García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315Google Scholar
[34] Tretyakov N, Müller M 2013 Soft Matter 9 3613Google Scholar
[35] He Y Y, Fu Y H, Wang H, Yang J 2021 Tribol. Int. 162 107144Google Scholar
[36] Tang S N, Zhu Y, Yuan S Q 2023 J. Bionic Eng. 20 2797Google Scholar
[37] He Y Y, Fu Y H, Wang H, Yang J 2022 J. Manuf. Process. 75 1089Google Scholar
-
表 1 三相相互作用势能参数
Table 1. Potential energy parameter of three-phase interaction.
两相类型 ε/(kcal·mol–1) σ/Å 固-液 0.41712825 3.4 固-气 0.5958975 4.2 气-液 0.238359 4.488 表 2 不同肋间距对应的粗糙面积分数
Table 2. Rough area fraction corresponding to different rib spacing.
肋间距b/nm 1.2 1.4 1.6 1.8 2.0 2.2 粗糙面积
分数 f0.5 0.4545 0.4167 0.3846 0.3571 0.3333 -
[1] Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968Google Scholar
[2] Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11Google Scholar
[3] Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50Google Scholar
[4] 李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703Google Scholar
Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703Google Scholar
[5] 康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087Google Scholar
Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Acta Mech. Sinica. 55 1087Google Scholar
[6] 史同雨 2020 硕士学位论文(大连: 大连海事大学)
Shi T Y 2020 M. S. Thesis (Dalian: Dalian Maritime University
[7] Wang H W, Wang K Y, Liu G H 2022 Ocean Eng. 258 111833Google Scholar
[8] 赵超, 吕明利, 贾文广 2022 船舶工程 44 69Google Scholar
Zhao C, Lyu M L, Jia W G 2022 Ship Eng. 44 69Google Scholar
[9] 詹杰民, 陆尚平, 李熠华, 李雨田, 胡文清 2023 海洋工程 41 1Google Scholar
Zhan J M, Lu S P, Li Y H, Li Y T, Hu W Q 2023 Ocean Eng. 41 1Google Scholar
[10] 张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863Google Scholar
Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863Google Scholar
[11] Moaven K, Rad M, Taeibi-Rahni M 2013 Exp. Therm. Fluid. Sci. 51 239Google Scholar
[12] Gao J, Zhang K, Li H, Lang C, Zhang L X 2023 Prog. Org. Coat. 183 107769Google Scholar
[13] Chen H W, Zhang X, Che D, Zhang D Y, Li X, Li Y Y 2014 Adv. Mech. Eng. 2014 425701Google Scholar
[14] Luo Y, Zhang D, Liu Y, Li Y, Ng E Y K 2015 J. Mech. Med. Biol. 15 1550084Google Scholar
[15] Shen X, Ceccio S L, Perlin M 2006 Exp. Fluids 41 415Google Scholar
[16] Zhao X J, Zong Z 2022 Ocean Eng. 251 111032Google Scholar
[17] Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807Google Scholar
[18] Maryami R, Javadpoor M, Farahat S 2016 Heat Mass Transfer 52 2593Google Scholar
[19] Bidkar R A, Leblanc L, Kulkarni A J, Bahadur V, Ceccio S L, Perlin M 2014 Phys. Fluids 26 085108Google Scholar
[20] Mail M, Moosmann M, Häger P, Barthlott W 2019 Phil. Trans. R. Soc. A 377 20190126Google Scholar
[21] Wang F C, Qian J H, Fan J C, Li J C, Xu H Y, Wu H A 2022 Sci. China Phys. Mech. 65 264601Google Scholar
[22] 石小燕, 曾丹苓, 蔡治勇 2005 热科学与技术 4 195Google Scholar
Shi X Y, Zeng D L, Cai Z Y 2005 J. Therm. Sci. Technol. 4 195Google Scholar
[23] Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501Google Scholar
[24] Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar
[25] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar
[26] Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar
[27] 刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32Google Scholar
Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32Google Scholar
[28] Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183Google Scholar
[29] Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141Google Scholar
[30] 邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓 2024 物理学报 73 094701Google Scholar
Xing H W, Chen Z X, Yang L, Su Y, Li Y H, Huhe C 2024 Acta Phys. Sin. 73 094701Google Scholar
[31] Hu H B, Wang D Z, Ren F, Bao L Y, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166Google Scholar
[32] 吕鹏宇, 薛亚辉, 段慧玲 2016 力学进展 46 179Google Scholar
Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179Google Scholar
[33] García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315Google Scholar
[34] Tretyakov N, Müller M 2013 Soft Matter 9 3613Google Scholar
[35] He Y Y, Fu Y H, Wang H, Yang J 2021 Tribol. Int. 162 107144Google Scholar
[36] Tang S N, Zhu Y, Yuan S Q 2023 J. Bionic Eng. 20 2797Google Scholar
[37] He Y Y, Fu Y H, Wang H, Yang J 2022 J. Manuf. Process. 75 1089Google Scholar
Catalog
Metrics
- Abstract views: 1588
- PDF Downloads: 51
- Cited By: 0