Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of boundary bubble drag reduction of Couette flow in nano-confined domain

Zhang Peng Zhang Yan-Ru Zhang Fu-Jian Liu Zhen Zhang Zhong-Qiang

Citation:

Mechanism of boundary bubble drag reduction of Couette flow in nano-confined domain

Zhang Peng, Zhang Yan-Ru, Zhang Fu-Jian, Liu Zhen, Zhang Zhong-Qiang
PDF
HTML
Get Citation
  • Bubble drag reduction technology is of great significance in improving the propulsion efficiency of underwater vehicle and reducing the comprehensive energy consumption during navigation. Bubble drag reduction is a highly effective method of reducing the frictional resistance encountered by large ships and underwater vehicles during navigation. It exhibits excellent stability in drag reduction, and has advantages such as environmental friendliness, adaptability to various flow environments, and suitability for all underwater components of ships. Therefore, it is greatly significant to conduct in-depth research on bubble drag reduction and its underlying mechanism. In this work, the flow characteristics and the boundary bubble drag reduction mechanism of gas-liquid Couette flow in parallel wall nanochannels are studied by molecular dynamics method, and the influences of surface wettability, wall roughness, and gas concentration on boundary slip velocity and bubble drag reduction effect are analyzed. The results indicate that the bubble drag reduction effect is enhanced with the increase of boundary slip velocity. In the gas-liquid two-phase flow region, with the increase of shear velocity, the lateral deformation of boundary adsorbed bubble and boundary slip velocity increase, thus enhancing the bubble drag reduction effect. The increase of solid-gas interaction strength and gas concentration can lead to the enrichment of gas atoms near the wall, improve the bubble spreading characteristics on the wall, and thus increase the slip velocity of the solid-liquid interface. The wall roughness can change the spreading characteristics of bubble, affect the boundary slip velocity, and then change the drag reduction effect of the fluid-solid interface. As the rib height increases, gas atoms accumulate in the grooves between ribs and the adsorption quantity of gas atoms on the upper surface of the rib decreases, which leads to the decrease of the boundary slip velocity of the solid-liquid interface and ultimately reduces the drag reduction effect. The research results will provide important theoretical guidance for implementing the boundary drag reduction technology in large ships and underwater vehicles.
      Corresponding author: Liu Zhen, liuzhen@just.edu.cn ; Zhang Zhong-Qiang, zhangzq@ujs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12272151, 52005222, 92248301).
    [1]

    Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968Google Scholar

    [2]

    Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11Google Scholar

    [3]

    Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50Google Scholar

    [4]

    李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703Google Scholar

    Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703Google Scholar

    [5]

    康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087Google Scholar

    Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Acta Mech. Sinica. 55 1087Google Scholar

    [6]

    史同雨 2020 硕士学位论文(大连: 大连海事大学)

    Shi T Y 2020 M. S. Thesis (Dalian: Dalian Maritime University

    [7]

    Wang H W, Wang K Y, Liu G H 2022 Ocean Eng. 258 111833Google Scholar

    [8]

    赵超, 吕明利, 贾文广 2022 船舶工程 44 69Google Scholar

    Zhao C, Lyu M L, Jia W G 2022 Ship Eng. 44 69Google Scholar

    [9]

    詹杰民, 陆尚平, 李熠华, 李雨田, 胡文清 2023 海洋工程 41 1Google Scholar

    Zhan J M, Lu S P, Li Y H, Li Y T, Hu W Q 2023 Ocean Eng. 41 1Google Scholar

    [10]

    张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863Google Scholar

    Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863Google Scholar

    [11]

    Moaven K, Rad M, Taeibi-Rahni M 2013 Exp. Therm. Fluid. Sci. 51 239Google Scholar

    [12]

    Gao J, Zhang K, Li H, Lang C, Zhang L X 2023 Prog. Org. Coat. 183 107769Google Scholar

    [13]

    Chen H W, Zhang X, Che D, Zhang D Y, Li X, Li Y Y 2014 Adv. Mech. Eng. 2014 425701Google Scholar

    [14]

    Luo Y, Zhang D, Liu Y, Li Y, Ng E Y K 2015 J. Mech. Med. Biol. 15 1550084Google Scholar

    [15]

    Shen X, Ceccio S L, Perlin M 2006 Exp. Fluids 41 415Google Scholar

    [16]

    Zhao X J, Zong Z 2022 Ocean Eng. 251 111032Google Scholar

    [17]

    Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807Google Scholar

    [18]

    Maryami R, Javadpoor M, Farahat S 2016 Heat Mass Transfer 52 2593Google Scholar

    [19]

    Bidkar R A, Leblanc L, Kulkarni A J, Bahadur V, Ceccio S L, Perlin M 2014 Phys. Fluids 26 085108Google Scholar

    [20]

    Mail M, Moosmann M, Häger P, Barthlott W 2019 Phil. Trans. R. Soc. A 377 20190126Google Scholar

    [21]

    Wang F C, Qian J H, Fan J C, Li J C, Xu H Y, Wu H A 2022 Sci. China Phys. Mech. 65 264601Google Scholar

    [22]

    石小燕, 曾丹苓, 蔡治勇 2005 热科学与技术 4 195Google Scholar

    Shi X Y, Zeng D L, Cai Z Y 2005 J. Therm. Sci. Technol. 4 195Google Scholar

    [23]

    Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501Google Scholar

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar

    [25]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [26]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [27]

    刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32Google Scholar

    Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32Google Scholar

    [28]

    Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183Google Scholar

    [29]

    Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141Google Scholar

    [30]

    邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓 2024 物理学报 73 094701Google Scholar

    Xing H W, Chen Z X, Yang L, Su Y, Li Y H, Huhe C 2024 Acta Phys. Sin. 73 094701Google Scholar

    [31]

    Hu H B, Wang D Z, Ren F, Bao L Y, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166Google Scholar

    [32]

    吕鹏宇, 薛亚辉, 段慧玲 2016 力学进展 46 179Google Scholar

    Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179Google Scholar

    [33]

    García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315Google Scholar

    [34]

    Tretyakov N, Müller M 2013 Soft Matter 9 3613Google Scholar

    [35]

    He Y Y, Fu Y H, Wang H, Yang J 2021 Tribol. Int. 162 107144Google Scholar

    [36]

    Tang S N, Zhu Y, Yuan S Q 2023 J. Bionic Eng. 20 2797Google Scholar

    [37]

    He Y Y, Fu Y H, Wang H, Yang J 2022 J. Manuf. Process. 75 1089Google Scholar

  • 图 1  (a)两相Couette流流动系统模型示意图; (b)纳米通道和粗糙结构模型图

    Figure 1.  (a) Schematic diagram of a two-phase Couette flow system model; (b) diagram of the nanochannel and rough structure model

    图 2  不同剪切速度下的液体原子(a)速度轮廓图和(b)密度分布图; (c)稳态气泡形貌图

    Figure 2.  Influence of shear velocity on (a) velocity profile and (b) density profile of liquid atoms; (c) steady-state bubble morphology.

    图 3  (a)边界滑移速度随剪切速度的变化; (b)剪切应力随剪切速度的变化

    Figure 3.  (a) Plot of boundary slip velocity as a function of shear velocity; (b) plot of shear stress as a function of shear velocity.

    图 4  (a)不同固-气相互作用强度下的液体原子速度轮廓图; (b)边界滑移速度随固-气相互作用强度的变化

    Figure 4.  (a) Velocity profiles of liquid atoms at different solid-gas interaction strength; (b) plot of boundary slip velocity as a function of solid-gas interaction strength.

    图 5  不同固-气相互作用强度下的(a)稳态气泡形貌图和(b)液体原子密度分布图

    Figure 5.  (a) Steady-state bubble morphology and (b) density profiles of liquid atoms under different solid-gas interaction strength.

    图 6  剪切速度为40 m/s时, (a)不同粗糙面积分数下的液体原子速度轮廓图; (b)边界滑移速度随粗糙面积分数的变化

    Figure 6.  When the shear velocity is 40 m/s, (a) velocity profile of liquid atoms at different rough area fraction; (b) plot of boundary slip velocity as a function of rough area fraction.

    图 7  剪切速度为40 m/s时, 不同粗糙面积分数下的(a)稳态气泡形貌图和(b)液体原子密度分布图

    Figure 7.  When the shear velocity is 40 m/s, (a) steady-state bubble morphology and (b) density profiles of liquid atoms under different rough area fraction.

    图 8  剪切速度为40 m/s时, (a)不同肋高下的液体原子速度轮廓图; (b)边界滑移速度随肋高的变化

    Figure 8.  When the shear velocity is 40 m/s, (a) velocity profiles of liquid atoms at different rib heights; (b) plot of boundary slip velocity as a function of rib height.

    图 9  剪切速度为40 m/s时, 不同肋高下的(a)稳态气泡形貌图和(b)液体原子密度分布图

    Figure 9.  When the shear velocity is 40 m/s, (a) steady-state bubble morphology and (b) density profiles of liquid atoms under different rib heights.

    图 10  剪切速度为40 m/s时, (a)不同气体浓度下的液体原子速度轮廓图; (b)边界滑移速度随气体浓度的变化

    Figure 10.  When the shear velocity is 40 m/s, (a) velocity profiles of liquid atoms at different gas concentrations; (b) plot of boundary slip velocity as a function of gas concentration.

    图 11  剪切速度为40 m/s时, 不同气体浓度下的(a)稳态气泡形貌图和(b)液体原子密度分布图

    Figure 11.  When the shear velocity is 40 m/s, (a) steady-state bubble morphology and (b) density profiles of liquid atoms under different gas concentration.

    表 1  三相相互作用势能参数

    Table 1.  Potential energy parameter of three-phase interaction.

    两相类型ε/(kcal·mol–1)σ
    固-液0.417128253.4
    固-气0.59589754.2
    气-液0.2383594.488
    DownLoad: CSV

    表 2  不同肋间距对应的粗糙面积分数

    Table 2.  Rough area fraction corresponding to different rib spacing.

    肋间距b/nm
    1.2 1.4 1.6 1.8 2.0 2.2
    粗糙面积
    分数 f
    0.5 0.4545 0.4167 0.3846 0.3571 0.3333
    DownLoad: CSV
  • [1]

    Sindagi S, Vijayakumar R 2020 Ships Offshore Struct. 16 968Google Scholar

    [2]

    Fu Y F, Yuan C Q, Bai X Q 2017 Biosurf. Biotribol. 3 11Google Scholar

    [3]

    Gu Y Q, Zhao G, Zheng J X, Li Z Y, Liu W B, Muhammad F K 2014 Ocean Eng. 81 50Google Scholar

    [4]

    李芳, 赵刚, 刘维新, 张殊, 毕红时 2015 物理学报 64 034703Google Scholar

    Li F, Zhao G, Liu W X, Zhang S, Bi H S 2015 Acta Phys. Sin. 64 034703Google Scholar

    [5]

    康晓宣, 胡建新, 林昭武, 潘定一 2023 力学学报 55 1087Google Scholar

    Kang X X, Hu J X, Lin Z W, Pan D Y 2023 Acta Mech. Sinica. 55 1087Google Scholar

    [6]

    史同雨 2020 硕士学位论文(大连: 大连海事大学)

    Shi T Y 2020 M. S. Thesis (Dalian: Dalian Maritime University

    [7]

    Wang H W, Wang K Y, Liu G H 2022 Ocean Eng. 258 111833Google Scholar

    [8]

    赵超, 吕明利, 贾文广 2022 船舶工程 44 69Google Scholar

    Zhao C, Lyu M L, Jia W G 2022 Ship Eng. 44 69Google Scholar

    [9]

    詹杰民, 陆尚平, 李熠华, 李雨田, 胡文清 2023 海洋工程 41 1Google Scholar

    Zhan J M, Lu S P, Li Y H, Li Y T, Hu W Q 2023 Ocean Eng. 41 1Google Scholar

    [10]

    张晨远, 张智嘉, 丛巍巍, 魏浩, 张松松 2023 化学通报 86 863Google Scholar

    Zhang C Y, Zhang Z J, Cong W W, Wei H, Zhang S S 2023 Chem. Bull. 86 863Google Scholar

    [11]

    Moaven K, Rad M, Taeibi-Rahni M 2013 Exp. Therm. Fluid. Sci. 51 239Google Scholar

    [12]

    Gao J, Zhang K, Li H, Lang C, Zhang L X 2023 Prog. Org. Coat. 183 107769Google Scholar

    [13]

    Chen H W, Zhang X, Che D, Zhang D Y, Li X, Li Y Y 2014 Adv. Mech. Eng. 2014 425701Google Scholar

    [14]

    Luo Y, Zhang D, Liu Y, Li Y, Ng E Y K 2015 J. Mech. Med. Biol. 15 1550084Google Scholar

    [15]

    Shen X, Ceccio S L, Perlin M 2006 Exp. Fluids 41 415Google Scholar

    [16]

    Zhao X J, Zong Z 2022 Ocean Eng. 251 111032Google Scholar

    [17]

    Tanaka T, Oishi Y, Park H J, Tasaka Y, Murai Y, Kawakita C 2023 Ocean Eng. 272 113807Google Scholar

    [18]

    Maryami R, Javadpoor M, Farahat S 2016 Heat Mass Transfer 52 2593Google Scholar

    [19]

    Bidkar R A, Leblanc L, Kulkarni A J, Bahadur V, Ceccio S L, Perlin M 2014 Phys. Fluids 26 085108Google Scholar

    [20]

    Mail M, Moosmann M, Häger P, Barthlott W 2019 Phil. Trans. R. Soc. A 377 20190126Google Scholar

    [21]

    Wang F C, Qian J H, Fan J C, Li J C, Xu H Y, Wu H A 2022 Sci. China Phys. Mech. 65 264601Google Scholar

    [22]

    石小燕, 曾丹苓, 蔡治勇 2005 热科学与技术 4 195Google Scholar

    Shi X Y, Zeng D L, Cai Z Y 2005 J. Therm. Sci. Technol. 4 195Google Scholar

    [23]

    Weijs J H, Snoeijer J H, Lohse D 2012 Phys. Rev. Lett. 108 104501Google Scholar

    [24]

    Cao B Y, Chen M, Guo Z Y 2006 Phys. Rev. E 74 066311Google Scholar

    [25]

    Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 015012Google Scholar

    [26]

    Zhang Z Q, Liu H L, Liu Z, Zhang Z, Cheng G G, Wang X D, Ding J N 2019 Appl. Surf. Sci. 475 857Google Scholar

    [27]

    刘汉伦, 张忠强, 郝茂磊, 程广贵, 丁建宁 2018 气体物理 3 32Google Scholar

    Liu H L, Zhang Z Q, Hao M L, Cheng G G, Ding J N 2018 Phys. Gases 3 32Google Scholar

    [28]

    Ceccio S L 2010 Annu. Rev. Fluid Mech. 42 183Google Scholar

    [29]

    Kitagawa A, Denissenko P, Murai Y 2019 Exp. Therm. Fluid Sci. 104 141Google Scholar

    [30]

    邢赫威, 陈占秀, 杨历, 苏瑶, 李源华, 呼和仓 2024 物理学报 73 094701Google Scholar

    Xing H W, Chen Z X, Yang L, Su Y, Li Y H, Huhe C 2024 Acta Phys. Sin. 73 094701Google Scholar

    [31]

    Hu H B, Wang D Z, Ren F, Bao L Y, Priezjev N V, Wen J 2018 Int. J. Multiphase Flow 104 166Google Scholar

    [32]

    吕鹏宇, 薛亚辉, 段慧玲 2016 力学进展 46 179Google Scholar

    Lyu P Y, Xue Y H, Duan H L 2016 Adv. Mech. 46 179Google Scholar

    [33]

    García-Magariño A, Lopez-Gavilan P, Sor S, Terroba F 2023 J. Mar. Sci. Eng. 11 1315Google Scholar

    [34]

    Tretyakov N, Müller M 2013 Soft Matter 9 3613Google Scholar

    [35]

    He Y Y, Fu Y H, Wang H, Yang J 2021 Tribol. Int. 162 107144Google Scholar

    [36]

    Tang S N, Zhu Y, Yuan S Q 2023 J. Bionic Eng. 20 2797Google Scholar

    [37]

    He Y Y, Fu Y H, Wang H, Yang J 2022 J. Manuf. Process. 75 1089Google Scholar

  • [1] Chen Jing-Jing, Zhao Hong-Po, Wang Kui, Zhan Hui-Min, Luo Ze-Yu. Molecular dynamics simulation of mechanical strengthening properties of SiC substrate covered with multilayer graphene. Acta Physica Sinica, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] Zhang Yu-Hang, Li Xiao-Bao, Zhan Chun-Xiao, Wang Mei-Qin, Pu Yu-Xue. Molecular dynamics simulation study on mechanical properties of Janus MoSSe monolayer. Acta Physica Sinica, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] Wang Xiao-Feng, Tao Gang, Xu Ning, Wang Peng, Li Zhao, Wen Peng. Molecular dynamics analysis of shock wave-induced nanobubble collapse in water. Acta Physica Sinica, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [4] Diwu Min-Jie, Hu Xiao-Mian. Molecular dynamics simulation of shock-induced isostructural phase transition in single crystal Ce. Acta Physica Sinica, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [6] Li Jie-Jie, Lu Bin-Bin, Xian Yue-Hui, Hu Guo-Ming, Xia Re. Characterization of nanoporous silver mechanical properties by molecular dynamics simulation. Acta Physica Sinica, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [7] Dong Qi-Qi, Hu Hai-Bao, Chen Shao-Qiang, He Qiang, Bao Lu-Yao. Molecular dynamics simulation of freezing process of water droplets impinging on cold surface. Acta Physica Sinica, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [8] Zhang Bao-Ling, Song Xiao-Yong, Hou Qing, Wang Jun. Molecular dynamics study on the phase transition of high density helium. Acta Physica Sinica, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [9] Wang Cheng-Long, Wang Qing-Yu, Zhang Yue, Li Zhong-Yu, Hong Bing, Su Zhe, Dong Liang. Molecular dynamics study of cascade damage at SiC/C interface. Acta Physica Sinica, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [10] Chang Xu. Ripples of multilayer graphenes:a molecular dynamics study. Acta Physica Sinica, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [11] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [12] Wei Qi, E Wen-Ji. Thermodynamic analyses of dewetting instability in thin films. Acta Physica Sinica, 2012, 61(16): 160508. doi: 10.7498/aps.61.160508
    [13] Ma Ying. Variable charge molecular dynamics simulation of vitreous silica. Acta Physica Sinica, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [14] Zhang Liang, Fu Wei-Ji, Zhang Li-Feng, Wu Hai-Yan, Huang Hong. On the evolution of Couette flow energy. Acta Physica Sinica, 2010, 59(3): 1437-1448. doi: 10.7498/aps.59.1437
    [15] Shao Jian-Li, Wang Pei, Qin Cheng-Sen, Zhou Hong-Qiang. Shock-induced phase transformations of iron studied with molecular dynamics. Acta Physica Sinica, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [16] Yang Quan-Wen, Zhu Ru-Zeng. Freezing of Cu nanoclusters studied by molecular dynamics simulation. Acta Physica Sinica, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [17] Zhou Nai-Gen, Zhou Lang. Conditions for formation of misfit dislocation in epitaxial films — a molecular dynamics study. Acta Physica Sinica, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [18] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, 2005, 54(10): 4836-4841. doi: 10.7498/aps.54.4836
    [19] Liang Hai-Ge, Wang Xiu-Xi, Wu Heng-An, Wang Yu and. . Acta Physica Sinica, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] Wu Heng-An, Ni Xiang-Gui, Wang Yu, Wang Xiu-Xi. . Acta Physica Sinica, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
Metrics
  • Abstract views:  1588
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  06 April 2024
  • Accepted Date:  05 June 2024
  • Available Online:  19 June 2024
  • Published Online:  05 August 2024

/

返回文章
返回