Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics of dust plasma environment at lunar south pole

Li Meng-Yao Xia Qing Cai Ming-Hui Yang Tao Xu Liang-Liang Jia Xin-Yu Han Jian-Wei

Citation:

Characteristics of dust plasma environment at lunar south pole

Li Meng-Yao, Xia Qing, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Jia Xin-Yu, Han Jian-Wei
PDF
HTML
Get Citation
  • Unlike the Earth, the Moon lacks is not protected from the atmosphere and global magnetic field, and will be directly exposed to complex radiation environments such as high-energy cosmic rays, solar wind, and the Earth’s magnetotail plasma. The surface of the Moon is covered with a thick layer of lunar soil, and the particles in the soil with a diameter between 30 nm–20 μm are called lunar dust. In the complex environments such as solar wind or magnetotail plasma, lunar dust carries an electric charge and becomes charged lunar dust. Charged lunar dust is prone to migration under the action of the electric field on the lunar surface. Charged migrated lunar dust is easy to adhere to the surface of instruments and equipment, resulting in visual impairment, astronauts’ movement disorders, equipment mechanical blockage, sealing failure, and material wear, which affects the lunar exploration mission. As an important lunar exploration landing site, the lunar south pole receives special solar radiation and produces a special dust plasma environment due to its special location. In order to provide an environmental reference for lunar south pole exploration, it is necessary to explore the characteristics of the dust plasma environment in the lunar south pole and its impact. In view of the lunar south pole environment, The Spacecraft Plasma Interactions Software (SPIS) software developed by the European Space Agency is used to carry out modelling and simulation in this work. Through the simulation, the logarithmic distribution of the lunar dust space density in a range of 0–200 m at the lunar south pole, the potential distribution near the lunar surface, and the spatial distribution characteristics of plasma electrons and ions are obtained. The obtained lunar dust space density and lunar surface potential are similar to the previous theoretical derivation and field detection data, so the simulation results have high reliability. The spatial potential distribution and the spatial density distribution of electrons and ions in the lunar environment with and without lunar dust are compared. Finally, the conclusions can be drawn as follows. The space potential increases with altitude increasing. The potential at 0–10 m near the lunar south pole is about –40 V, and the space potential at 100 m is about –20 V. The density of lunar dust in an altitude range below 10 m is 107.22 m–3–104.66 m–3. The electron density in the dust plasma near the lunar surface is 105.47 m–3, and the ion density is 106.07 m–3, and both increase with altitude increasing. Charged lunar dust affects the spatial distribution of lunar dust, mainly through affecting the distribution of the space electric field, which leads to difference in electron distribution, but has little effect on ions.
      Corresponding author: Cai Ming-Hui, caiminghui@nssc.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 42204175).
    [1]

    Zhang S S, Wang S J, Li X Y, Li S J, Tang H, Li Y, Yu W 2013 J. Earth. Sci. 38 339Google Scholar

    [2]

    Gaier J R 2007 The Effects of Lunar Dust on EVA Systems During the Apollo Missions NASA Technical Report TM-2005-213610

    [3]

    Park J, Liu Y, Kihm K D, Hill E, Taylor L A 2006 Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment (Houston: American Society of Civil Engineers) p1

    [4]

    Horányi M, Szalay J R, Wang X 2024 Phil. Trans. R. Soc. A. 382 20230075Google Scholar

    [5]

    Sickafoose A A, Colwell J E, Horányi M, Robertson S 2001 Geophys. Res. Space Phys. 106 8343Google Scholar

    [6]

    Sickafoose A A, Colwell J E, Horányi M, Robertson S 2002 Geophys. Res. Space Phys. 107 SMP 37-1Google Scholar

    [7]

    Sternovsky Z, Robertson S, Sickafoose A, Colwell J, Horányi M 2002 J. Geophys. Res. Planets. 107 15Google Scholar

    [8]

    Colwell J E, Robertson S R, Horányi M, Wang X, Poppe A, Wheeler P 2009 J. Aerosp. Eng. 22 2Google Scholar

    [9]

    Colwell J E, Batiste S, Horányi M, Robertson S, Sture S 2007 Rev. Geophys. 45 RG2006Google Scholar

    [10]

    Wang X, Schwan J, Hsu H W, Grün E, Horányi M 2016 Geophys. Res. Lett. 43 6103Google Scholar

    [11]

    Popel S I, Zelenyi L M 2013 J. Plasma Phys. 79 405Google Scholar

    [12]

    Popel S I, Golub’ A P, Izvekova Y N, Afonin V V, Dol’nikov G G, Zakharov A V, Petrov O F 2014 JETP Lett. 99 115Google Scholar

    [13]

    Popel S I, Golub’ A P, Zelenyi L M 2014 Eur. Phys. J. D. 68 245Google Scholar

    [14]

    Popel S I, Golub’ A P, Lisin E A, Izvekova Y N, Atamaniuk B, Dol’nikov G G, Zelenyi L M 2016 JETP Lett. 103 563Google Scholar

    [15]

    Popel S I, Golub’ A P, Zelenyi L M, Horányi M 2017 JETP Lett. 105 635Google Scholar

    [16]

    Popel S I, Zelenyi L M, Dubinskii A Y 2018 Planet. Space Sci. 156 71Google Scholar

    [17]

    Popel S I, Zelenyi L M 2014 J. Plasma. Phys. 80 885Google Scholar

    [18]

    Anuar A K 2013 Ph. D. Dissertation (United Kingdom: Lancaster University

    [19]

    Sternovsky Z, Chamberlin P, Horanyi M, Robertson S, Wang X 2008 J. Geophys. Res. Space Phys. 113 A10104Google Scholar

    [20]

    Robertson S H, Sternovsky Z, Horanyi M 2010 IEEE. Trans. Plasma. Sci. 38 766Google Scholar

    [21]

    Hartzell C M, Bellan P, Bodewits D, Delzanno G L, Hirabayashi M, Hyde T, Israelsson U 2023 Acta. Astronaut. 207 89Google Scholar

    [22]

    Xie L H, Zhang X, Li L, Zhou B, Zhang Y, Yan Q, Yu S, Feng Y, Guo D, Yu S 2020 Geophys. Res. Lett. 47 e2020GL089593Google Scholar

    [23]

    Zhao C X, Gan H, Xie L H, Wang Y, Wang Y J, Hong J Y 2023 Sci. China Earth Sci. 66 2278Google Scholar

    [24]

    Hess S L G, Sarrailh P, Matéo-Vélez J C, Jeanty-Ruard B, Cipriani F, Forest J, Rodgers D 2015 IEEE. Trans. Plasma. Sci. 43 2799-2807Google Scholar

    [25]

    Dyadechkin S, Kallio E, Wurz P 2015 J. Geophys. Res. Space Physics. 120 1589Google Scholar

    [26]

    SPIS-DUST Detailed Design Document and Software User Manual_v2, Sarrailh P, Hess S, Mateo Velez J C, Jeanty Ruard B, Forest J https://www.spis.org/software/spis/documentation/ [2024-4-30]

    [27]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2008 J. Geophys. Res. Space Phys. 113 A09102Google Scholar

    [28]

    Williams J P, Paige D A, Greenhagen B T, Sefton-Nash E 2017 Icarus. 283 300Google Scholar

    [29]

    De Rosa D, Bussey B, Cahill J T, Lutz T, Crawford I A, Hackwill T, Carpenter J D 2012 Planet. Space Sci. 74 224Google Scholar

    [30]

    Freeman J W, Ibrahim M 1975 Lunar Science Institute, Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon Lake Geneva, Wis, September 30–October 4, 1974 p103

  • 图 1  仿真区域网格划分图

    Figure 1.  Mesh division diagram of the simulation area.

    图 2  仿真过程中电流的变化

    Figure 2.  Changes in current during simulation.

    图 3  月尘颗粒带电量对数分布(月球南极环境, 单位: C)

    Figure 3.  Logarithmic distribution of charge amount of lunar dust particles (lunar south pole environment, unit: C).

    图 4  月尘空间密度对数分布(月球南极环境, 单位: m–3)

    Figure 4.  Logarithmic distribution of lunar dust spatial density (lunar south pole environment, unit: m–3).

    图 5  等离子体空间密度对数分布(月球南极环境, 单位: m–3) (a) 电子; (b) 离子

    Figure 5.  Logarithmic distribution of plasma spatial density (lunar south pole environment, unit: m–3): (a) Electrons; (b) ions.

    图 6  月面附近电位分布(月球南极环境, 单位: V)

    Figure 6.  Potential distribution near the lunar surface (lunar south pole environment, unit: V).

    图 7  月尘空间密度分布

    Figure 7.  Distribution of lunar dust spatial density.

    图 8  月尘空间电位分布

    Figure 8.  Distribution of lunar dust space potential.

    图 9  电子空间密度分布

    Figure 9.  Distribution of electron spatial density.

    图 10  离子空间密度分布

    Figure 10.  Distribution of ion spatial density.

  • [1]

    Zhang S S, Wang S J, Li X Y, Li S J, Tang H, Li Y, Yu W 2013 J. Earth. Sci. 38 339Google Scholar

    [2]

    Gaier J R 2007 The Effects of Lunar Dust on EVA Systems During the Apollo Missions NASA Technical Report TM-2005-213610

    [3]

    Park J, Liu Y, Kihm K D, Hill E, Taylor L A 2006 Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment (Houston: American Society of Civil Engineers) p1

    [4]

    Horányi M, Szalay J R, Wang X 2024 Phil. Trans. R. Soc. A. 382 20230075Google Scholar

    [5]

    Sickafoose A A, Colwell J E, Horányi M, Robertson S 2001 Geophys. Res. Space Phys. 106 8343Google Scholar

    [6]

    Sickafoose A A, Colwell J E, Horányi M, Robertson S 2002 Geophys. Res. Space Phys. 107 SMP 37-1Google Scholar

    [7]

    Sternovsky Z, Robertson S, Sickafoose A, Colwell J, Horányi M 2002 J. Geophys. Res. Planets. 107 15Google Scholar

    [8]

    Colwell J E, Robertson S R, Horányi M, Wang X, Poppe A, Wheeler P 2009 J. Aerosp. Eng. 22 2Google Scholar

    [9]

    Colwell J E, Batiste S, Horányi M, Robertson S, Sture S 2007 Rev. Geophys. 45 RG2006Google Scholar

    [10]

    Wang X, Schwan J, Hsu H W, Grün E, Horányi M 2016 Geophys. Res. Lett. 43 6103Google Scholar

    [11]

    Popel S I, Zelenyi L M 2013 J. Plasma Phys. 79 405Google Scholar

    [12]

    Popel S I, Golub’ A P, Izvekova Y N, Afonin V V, Dol’nikov G G, Zakharov A V, Petrov O F 2014 JETP Lett. 99 115Google Scholar

    [13]

    Popel S I, Golub’ A P, Zelenyi L M 2014 Eur. Phys. J. D. 68 245Google Scholar

    [14]

    Popel S I, Golub’ A P, Lisin E A, Izvekova Y N, Atamaniuk B, Dol’nikov G G, Zelenyi L M 2016 JETP Lett. 103 563Google Scholar

    [15]

    Popel S I, Golub’ A P, Zelenyi L M, Horányi M 2017 JETP Lett. 105 635Google Scholar

    [16]

    Popel S I, Zelenyi L M, Dubinskii A Y 2018 Planet. Space Sci. 156 71Google Scholar

    [17]

    Popel S I, Zelenyi L M 2014 J. Plasma. Phys. 80 885Google Scholar

    [18]

    Anuar A K 2013 Ph. D. Dissertation (United Kingdom: Lancaster University

    [19]

    Sternovsky Z, Chamberlin P, Horanyi M, Robertson S, Wang X 2008 J. Geophys. Res. Space Phys. 113 A10104Google Scholar

    [20]

    Robertson S H, Sternovsky Z, Horanyi M 2010 IEEE. Trans. Plasma. Sci. 38 766Google Scholar

    [21]

    Hartzell C M, Bellan P, Bodewits D, Delzanno G L, Hirabayashi M, Hyde T, Israelsson U 2023 Acta. Astronaut. 207 89Google Scholar

    [22]

    Xie L H, Zhang X, Li L, Zhou B, Zhang Y, Yan Q, Yu S, Feng Y, Guo D, Yu S 2020 Geophys. Res. Lett. 47 e2020GL089593Google Scholar

    [23]

    Zhao C X, Gan H, Xie L H, Wang Y, Wang Y J, Hong J Y 2023 Sci. China Earth Sci. 66 2278Google Scholar

    [24]

    Hess S L G, Sarrailh P, Matéo-Vélez J C, Jeanty-Ruard B, Cipriani F, Forest J, Rodgers D 2015 IEEE. Trans. Plasma. Sci. 43 2799-2807Google Scholar

    [25]

    Dyadechkin S, Kallio E, Wurz P 2015 J. Geophys. Res. Space Physics. 120 1589Google Scholar

    [26]

    SPIS-DUST Detailed Design Document and Software User Manual_v2, Sarrailh P, Hess S, Mateo Velez J C, Jeanty Ruard B, Forest J https://www.spis.org/software/spis/documentation/ [2024-4-30]

    [27]

    Halekas J S, Delory G T, Lin R P, Stubbs T J, Farrell W M 2008 J. Geophys. Res. Space Phys. 113 A09102Google Scholar

    [28]

    Williams J P, Paige D A, Greenhagen B T, Sefton-Nash E 2017 Icarus. 283 300Google Scholar

    [29]

    De Rosa D, Bussey B, Cahill J T, Lutz T, Crawford I A, Hackwill T, Carpenter J D 2012 Planet. Space Sci. 74 224Google Scholar

    [30]

    Freeman J W, Ibrahim M 1975 Lunar Science Institute, Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon Lake Geneva, Wis, September 30–October 4, 1974 p103

  • [1] Zhang Dong-He-Yu, Liu Jin-Bao, Fu Yang-Yang. Multiphysics modeling and simulations of laser-sustained plasmas. Acta Physica Sinica, 2024, 73(2): 025201. doi: 10.7498/aps.73.20231056
    [2] Lin Mai-Mai, Wang Ming-Yue, Jiang Lei. Propagating characteristics of nonlinear dust acoustic solitary waves in multicomponent dusty plasma. Acta Physica Sinica, 2023, 72(3): 035201. doi: 10.7498/aps.72.20221843
    [3] Zhao Rui, Shen Lai-Quan, Chang Chao, Bai Hai-Yang, Wang Wei-Hua. Lunar glass. Acta Physica Sinica, 2023, 72(23): 236101. doi: 10.7498/aps.72.20231238
    [4] Duan Meng-Yue, Jia Wen-Zhu, Zhang Ying-Ying, Zhang Yi-Fan, Song Yuan-Hong. Two-dimensional fluid simulation of spatial distribution of dust particles in a capacitively coupled silane plasma. Acta Physica Sinica, 2023, 72(16): 165202. doi: 10.7498/aps.72.20230686
    [5] Luo Yang, Chen Mao-Lin, Su Dong-Dong, Xu Nuo, Wang Zhong-Jing, Han Zhi-Cong, Zhao Hao. Simulation of magnetoplasmadynamic process with applied magnetic field. Acta Physica Sinica, 2022, 71(5): 055204. doi: 10.7498/aps.71.20211383
    [6] Lin Mai-Mai, Fu Ying-Jie, Song Qiu-Ying, Yu Teng-Xuan, Wen Hui-Shan, Jiang Lei. Propagation characteristics of (2 + 1) dimensional dust acoustic solitary waves in hot dusty plasma. Acta Physica Sinica, 2022, 71(9): 095203. doi: 10.7498/aps.71.20210902
    [7] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [8] Zhao Guang-Yin, Li Ying-Hong, Liang Hua, Hua Wei-Zhuo, Han Meng-Hu. Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101. doi: 10.7498/aps.64.015101
    [9] Li Xue-Liang, Shi Yan-Xiang. Theoretical study on charging equation of dust plasmas in double Maxwellian distribution. Acta Physica Sinica, 2014, 63(21): 215201. doi: 10.7498/aps.63.215201
    [10] Zhang Hua, Wu Jian-Jun, Zhang Dai-Xian, Zhang Rui, He Zhen. A modified electromechanical model with one-dimensional abalation model for numerical analysis of the pulsed plasma thruster. Acta Physica Sinica, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [11] An Zhi-Yong, Li Ying-Hong, Wu Yun, Su Chang-Bing, Song Hui-Min. Electric field simulation of a symmetrical plasma actuator system. Acta Physica Sinica, 2007, 56(8): 4778-4784. doi: 10.7498/aps.56.4778
    [12] The distribution of dust particles in the plasma sheath. Acta Physica Sinica, 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [13] Shi Yan-Xiang, Ge De-Biao, Wu Jian. Influence of charge and discharge processes of dust particles on the dust plasma conductivity. Acta Physica Sinica, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [14] Huang Qin-Chao, Luo Jia-Rong, Wang Hua-Zhong, Li Chong. Quick identification of EAST plasma discharge shape. Acta Physica Sinica, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [15] Yang Jing, Li Jing-Zhen, Sun Xiu-Quan, Gong Xiang-Dong. Simulation of step response of silane low-temperature pasma(1). Acta Physica Sinica, 2005, 54(7): 3251-3256. doi: 10.7498/aps.54.3251
    [16] Wang Zheng-Xiong, Liu Jin-Yuan, Zou Xiu, Liu Yue, Wang Xiao-Gang. The Bohm criterion for the dusty plasma sheath. Acta Physica Sinica, 2004, 53(3): 793-797. doi: 10.7498/aps.53.793
    [17] Hong Xue-Ren, Duan Wen-Shan, Sun Jian-An, Shi Yu-Ren, Lü Ke-Pu. The propagation of solitons in an inhomogeneous dusty plasma. Acta Physica Sinica, 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
    [18] LIU HONG-XIANG, WEI HE-LIN, LIU ZU-LI, LIU YAN-HONG, WANG JUN-ZHEN. EFFECT OF THE MAGNETIC MIRROR FIELD ON THE ION ENERGY DISTRIBUTIONS IN A RADIO F REQUENCY PLASMA. Acta Physica Sinica, 2000, 49(9): 1764-1768. doi: 10.7498/aps.49.1764
    [19] FENG XIAN-PING, XU ZHI-ZHAN, JIANG ZHI-MING, ZHANG ZHENG-QUAN, CHEN SHI-SHENG, FAN PIN-ZHONG, TIAN LI, ZHOU ZI-JIN. SPACE DISTRIBUTION OF HIGH IONIZING IONS IN PLASMA. Acta Physica Sinica, 1988, 37(7): 1183-1187. doi: 10.7498/aps.37.1183
    [20] CHEN YA-SHEN. THE PLASMA DRIVEN BY ELECTRONS WITH TWO-MAXWELL DISTRIBUTION. Acta Physica Sinica, 1986, 35(6): 762-770. doi: 10.7498/aps.35.762
Metrics
  • Abstract views:  941
  • PDF Downloads:  28
  • Cited By: 0
Publishing process
  • Received Date:  30 April 2024
  • Accepted Date:  04 June 2024
  • Available Online:  01 July 2024
  • Published Online:  05 August 2024

/

返回文章
返回