Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of work function on dust charging and dynamics near lunar surface

Liu Zhi-Gui Song Zhi-Ying Quan Rong-Hui

Citation:

Effect of work function on dust charging and dynamics near lunar surface

Liu Zhi-Gui, Song Zhi-Ying, Quan Rong-Hui
cstr: 32037.14.aps.73.20241281
PDF
HTML
Get Citation
  • Charged dust on the lunar surface poses a threat to space missions. Research into charged dust is essential for the safety of future space missions. When calculating the charging currents related to photoelectrons, a single constant work function is assumed in the conventional lunar dust charging theory. However, the components of lunar regolith exhibit considerable diversity, including plagioclase, pyroxene, and ilmenite. Because the ability of the lunar surface or lunar dust to emit photoelectrons strongly depends on its work function, it is necessary to analyze the effect of the work function on dust charging and dynamics near the lunar surface. In this work, we use a novel method that can predict the photoelectric yield of materials with different work functions to recalculate the surface charging currents of four types of dust particles and derive their subsequent charging and dynamic results at different solar zenith angles (SZAs). As SZA varies from 0° to 90°, the work function value of dust decreases into 6 eV (Apollo lunar soil), 5.58 eV (plagioclase), 5.14 eV (pyroxene), and 4.29 eV (ilmenite), correspondingly. With each decrement in work function, the equilibrium charging current of dust particles increases about 0.25 times, the equilibrium charge number increases about 120–170 elemental charges, and the equilibrium height increases about 0.3–2 m. It is found that dust particles cannot levitate stably at a critical SZA, and the critical SZAs for the four types of dust particles are 28°, 76°, 85.8°, and 89.6°, respectively (arranged in decreasing order of work functions). These results indicate that the equilibrium heights, equilibrium currents, and critical SZAs all have an inverse relationship with the work function of dust particles as the SZA varies from 0° to 90°. Furthermore, a higher photoelectron density in areas with lower work functions leads energy losses to decrease, thus causing dust particles to take longer time to reach equilibrium. This means that the equilibrium time follows the pattern similar to that of the work function.
      Corresponding author: Quan Rong-Hui, quanrh@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42241148, 51877111).
    [1]

    Zakharov A V, Popel S I, Kuznetsov I A, Borisov N D, Rosenfeld E V, Skorov Y, Zelenyi L M 2022 Phys. Plasmas 29 110501Google Scholar

    [2]

    Xia Q, Cai M H, Xu L L, Han R L, Yang T, Han J W 2022 Chin. Phys. B 31 045201Google Scholar

    [3]

    Grard R, Tunaley J 1971 J. Geophys. Res. 76 2498Google Scholar

    [4]

    Nitter T, Havnes O 1992 Earth Moon and Planets 56 7Google Scholar

    [5]

    Nitter T, Havnes O, Melands F 1998 J. Geophys. Res.: Space Phys. 103 6605Google Scholar

    [6]

    Colwell J, Batiste S, Horányi M, Robertson S, Sture S 2007 Rev. Geophys. 45 RG2006Google Scholar

    [7]

    Lee P 1996 Icarus 124 181Google Scholar

    [8]

    Walbridge E 1973 J. Geophys. Res. 78 3668Google Scholar

    [9]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197Google Scholar

    [10]

    Wang X, Horányi M, Robertson S 2009 J. Geophys. Res.:Space Phys. 114 A05103Google Scholar

    [11]

    Wang X, HoráNyi M, Robertson S 2010 J. Geophys. Res.: Space Phys. 115 A11102Google Scholar

    [12]

    Wang X, Horányi M, Robertson S 2011 Planet. Space Sci. 59 1791Google Scholar

    [13]

    Wang X, Schwan J, Hsu H W, Grün E, Horányi M 2016 Geophys. Res. Lett. 43 6103Google Scholar

    [14]

    Wang X, Pilewskie J, Hsu H W, Horányi M 2016 Geophys. Res. Lett. 43 525Google Scholar

    [15]

    Schwan J, Wang X, Hsu H W, Grün E, Horányi M 2017 Geophys. Res. Lett. 44 3059Google Scholar

    [16]

    Zimmerman M I, Farrell W M, Hartzell C M, Wang X, Horanyi M, Hurley D M, Hibbitts K 2016 J. Geophys. Res.: Planets 121 2150Google Scholar

    [17]

    Hartzell C, Zimmerman M, Hergenrother C 2022 Planet. Sci. J. 3 85Google Scholar

    [18]

    Golub’ A P, Dol’nikov G G, Zakharov A V, Zelenyi L M, Izvekova Y N, Kopnin S I, Popel S I 2012 Jetp. Lett. 95 182Google Scholar

    [19]

    Popel S I, Kopnin S I, Golub’ A P, Dol’nikov G G, Zakharov A V, Zelenyi L M, Izvekova Y N 2013 Sol. Syst. Res. 47 419Google Scholar

    [20]

    Popel S I, Golub’ A P, Zakharov A V, Zelenyi L M 2019 J. Phys. : Conf. Ser. 1147 012110Google Scholar

    [21]

    Zelenyi L M, Popel S I, Zakharov A V 2020 Plasma Phys. Rep. 46 527Google Scholar

    [22]

    Hess S L G, Sarrailh P, Mateo-Velez J C, Jeanty-Ruard B, Cipriani F, Forest J, Hilgers A, Honary F, Thiebault B, Marple S R, Rodgers D 2015 IEEE Trans. Plasma Sci. 43 2799Google Scholar

    [23]

    Kuznetsov I A, Hess S L G, Zakharov A V, Cipriani F, Seran E, Popel S I, Lisin E A, Petrov O F, Dolnikov G G, Lyash A N, Kopnin S I 2018 Planet. Space Sci. 156 62Google Scholar

    [24]

    Davari H, Farokhi B, Ali Asgarian M 2023 Sci. Rep. 13 1111Google Scholar

    [25]

    Piquette M, Horányi M 2017 Icarus 291 65Google Scholar

    [26]

    李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟 2024 物理学报 73 155201Google Scholar

    Li M Y, Xia Q, Cai M H, Yang T, Xu L L, Jia X Y, Han J W 2024 Acta Phys. Sin. 73 155201Google Scholar

    [27]

    Zhao C, Gan H, Xie L, Wang Y, Wang Y, Hong J 2023 Sci. China: Earth Sci. 66 2278Google Scholar

    [28]

    Gan H, Wei G F, Zhang W W, Li X Y, Jiang S Y, Wang C, Ma J N, Zhang X P 2023 Sci. China: Phys. Mech. Astron. 53 127Google Scholar

    [29]

    Li L, Zhang Y T, Zhou B, Feng Y Y 2016 Sci. China: Earth Sci. 59 2053Google Scholar

    [30]

    Popel S I, Golub’ A P, Izvekova Y N, Afonin V V, Dol’nikov G G, Zakharov A V, Zelenyi L M, Lisin E A, Petrov O F 2014 Jetp. Lett. 99 115Google Scholar

    [31]

    Mishra S K 2020 Phys. Plasmas 27 082906Google Scholar

    [32]

    Feuerbacher B, Anderegg M, Fitton B, Laude L D, Willis R F, Grard R J L 1972 Lunar and Planetary Science Conference Proceedings 3 2655

    [33]

    Sternovsky Z, Robertson S, Sickafoose A, Colwell J, Horányi M 2002 J. Geophys. Res.: Planets 107 5105Google Scholar

    [34]

    Sternovsky Z, Chamberlin P, Horanyi M, Robertson S, Wang X 2008 J. Geophys. Res.: Space Phys. 113 A10104Google Scholar

    [35]

    Kimura H 2016 Mon. Not. R. Astron. Soc. 459 2751Google Scholar

    [36]

    Seah M P, Dench W 1979 Surf. Interface Anal. 1 2Google Scholar

    [37]

    Senshu H, Kimura H, Yamamoto T, Wada K, Kobayashi M, Namiki N, Matsui T 2015 Planet. Space Sci. 116 18Google Scholar

    [38]

    Chamberlin P C, Woods T N, Eparvier F G 2007 Space Weather 5 S07005Google Scholar

    [39]

    Rakesh Chandran S B, Veenas C L, Asitha L R, Parvathy B, Rakhimol K R, Abraham A, Rajesh S R, Sunitha A P, Renuka G 2022 Adv. Space Res. 70 546Google Scholar

    [40]

    Stubbs T J, Farrell W M, Halekas J S, Burchill J K, Collier M R, Zimmerman M I, Vondrak R R, Delory G T, Pfaff R F 2014 Planet. Space Sci. 90 10Google Scholar

    [41]

    Colwell J E, Gulbis A A, Horányi M, Robertson S 2005 Icarus 175 159Google Scholar

    [42]

    Gan H, Li X, Wei G, Wang S 2015 Adv. Space Res. 56 2432Google Scholar

    [43]

    Willis R F, Anderegg M, Feuerbacher B, Fitton B (Grard R J L Ed.) 1973 Astrophys. Space Sci. Libr. 37 389

    [44]

    Zhao J, Wei X, Du X, He X, Han D 2021 IEEE Trans. Plasma Sci. 49 3036Google Scholar

    [45]

    Nitter T, Aslaksen T K, Melandso F, Havnes O 1994 IEEE Trans. Plasma Sci. 22 159Google Scholar

    [46]

    Qian X Y, Zhang Y Y, Fang Z, Yang J F, Fang Y W, Li S Q 2024 J. Astronaut. 45 613Google Scholar

    [47]

    Poppe A, Horányi M 2010 J. Geophys. Res.: Space Phys. 115 A08106Google Scholar

    [48]

    Hartzell C M 2019 Icarus 333 234Google Scholar

    [49]

    Popel S I, Golub’ A P, Kassem A I, Zelenyi L M 2022 Phys. Plasmas 29 013701Google Scholar

  • 图 1  阿波罗任务带回的样品的光电子产率

    Figure 1.  Photoelectric yield measured on samples returned by Apollo missions.

    图 2  最小太阳活动周期下的太阳辐射光谱

    Figure 2.  Wavelength dependence of solar radiation spectrum under minimum solar activity conditions.

    图 3  4种不同功函数尘埃的光电子产率. 实线表示使用Kimura方法计算的产率, 红色实线代表阿波罗月球土壤, 蓝色实线代表斜长石, 黄色实线代表辉石, 绿色实线代表钛铁矿. 红色虚线表示阿波罗月球土壤的实验产率

    Figure 3.  Photoelectric yield for four different types of dust particles. Solid lines represent yield calculated by using Kimura’s method. Red line represents Apollo lunar soil, blue line represents plagioclase, yellow line represents pyroxene, and green line represents ilmenite. Red dash line represents experimental yield of Apollo lunar soil.

    图 4  4个区域内正午时分的电势、电场与高度的函数关系, 为方便比较, 绘制了半对数横坐标形式的内插图 (a) 电势与高度的函数关系; (b) 电场与高度的函数关系

    Figure 4.  Height dependence of surface potential and electric field at noon. For clarity, the semilogx form has been plotted: (a) Potential; (b) electric field.

    图 5  正午时分悬浮尘埃颗粒的充电电流 (a) 光电子发射电流; (b) 光电子收集电流; (c) 太阳风电子电流

    Figure 5.  Charging currents of suspended dust particles at noon: (a) Photoemission current; (b) photoelectron collection current; (c) solar wind electron current.

    图 6  正午时分4种尘埃颗粒的电流能, 0—60 s内的结果已被绘制为内插图

    Figure 6.  Energy created by charging currents at noon. Current energy from 0–60 s has been magnified.

    图 7  正午时分悬浮尘埃颗粒的表面电荷数

    Figure 7.  Charge numbers of suspended dust particles at noon.

    图 8  正午时分悬浮尘埃颗粒的高度, 内插图为900—1000 s的结果

    Figure 8.  Vertical height of suspended dust particles at noon, results at 900–1000 s have been magnified.

    图 9  悬浮尘埃颗粒的平衡态 (a) 平衡高度; (b) 平衡电荷数

    Figure 9.  Equilibria of suspended dust particles: (a) equilibrium height; (b) equilibrium charge numbers.

    表 1  4个区域中的材料参数及正午时分的光电子浓度

    Table 1.  Material parameters and photoelectron density of four areas at noon.

    尘埃类型 密度/(g·cm–3) 功函数/eV 浓度/(107 m–3)
    阿波罗月壤 1.5 6.00 6.6943
    斜长石 2.7 5.58 6.9190
    辉石 3.2 5.14 7.1508
    钛铁矿 4.4 4.29 7.5901
    DownLoad: CSV

    表 2  初始参数

    Table 2.  Initial parameters.

    参数 参数值
    日心距$ {d} $/AU 1
    重力加速度$ g_{\mathrm{a}}/({\mathrm{m}} \cdot {\mathrm{s}}^{-2}) $ 1.63
    尘埃质量$ m_{\mathrm{d}}/{\mathrm{kg}} $ 6.28318$ \times 10^{-18} $
    初始电荷$ Q_0 /{\mathrm{C}}$ 3.20424$ \times 10^{-17} $
    初始速度$ v_{\mathrm{d0}}/({\mathrm{m}} \cdot {\mathrm{s}}^{-1}) $ 2
    DownLoad: CSV
  • [1]

    Zakharov A V, Popel S I, Kuznetsov I A, Borisov N D, Rosenfeld E V, Skorov Y, Zelenyi L M 2022 Phys. Plasmas 29 110501Google Scholar

    [2]

    Xia Q, Cai M H, Xu L L, Han R L, Yang T, Han J W 2022 Chin. Phys. B 31 045201Google Scholar

    [3]

    Grard R, Tunaley J 1971 J. Geophys. Res. 76 2498Google Scholar

    [4]

    Nitter T, Havnes O 1992 Earth Moon and Planets 56 7Google Scholar

    [5]

    Nitter T, Havnes O, Melands F 1998 J. Geophys. Res.: Space Phys. 103 6605Google Scholar

    [6]

    Colwell J, Batiste S, Horányi M, Robertson S, Sture S 2007 Rev. Geophys. 45 RG2006Google Scholar

    [7]

    Lee P 1996 Icarus 124 181Google Scholar

    [8]

    Walbridge E 1973 J. Geophys. Res. 78 3668Google Scholar

    [9]

    Whipple E C 1981 Rep. Prog. Phys. 44 1197Google Scholar

    [10]

    Wang X, Horányi M, Robertson S 2009 J. Geophys. Res.:Space Phys. 114 A05103Google Scholar

    [11]

    Wang X, HoráNyi M, Robertson S 2010 J. Geophys. Res.: Space Phys. 115 A11102Google Scholar

    [12]

    Wang X, Horányi M, Robertson S 2011 Planet. Space Sci. 59 1791Google Scholar

    [13]

    Wang X, Schwan J, Hsu H W, Grün E, Horányi M 2016 Geophys. Res. Lett. 43 6103Google Scholar

    [14]

    Wang X, Pilewskie J, Hsu H W, Horányi M 2016 Geophys. Res. Lett. 43 525Google Scholar

    [15]

    Schwan J, Wang X, Hsu H W, Grün E, Horányi M 2017 Geophys. Res. Lett. 44 3059Google Scholar

    [16]

    Zimmerman M I, Farrell W M, Hartzell C M, Wang X, Horanyi M, Hurley D M, Hibbitts K 2016 J. Geophys. Res.: Planets 121 2150Google Scholar

    [17]

    Hartzell C, Zimmerman M, Hergenrother C 2022 Planet. Sci. J. 3 85Google Scholar

    [18]

    Golub’ A P, Dol’nikov G G, Zakharov A V, Zelenyi L M, Izvekova Y N, Kopnin S I, Popel S I 2012 Jetp. Lett. 95 182Google Scholar

    [19]

    Popel S I, Kopnin S I, Golub’ A P, Dol’nikov G G, Zakharov A V, Zelenyi L M, Izvekova Y N 2013 Sol. Syst. Res. 47 419Google Scholar

    [20]

    Popel S I, Golub’ A P, Zakharov A V, Zelenyi L M 2019 J. Phys. : Conf. Ser. 1147 012110Google Scholar

    [21]

    Zelenyi L M, Popel S I, Zakharov A V 2020 Plasma Phys. Rep. 46 527Google Scholar

    [22]

    Hess S L G, Sarrailh P, Mateo-Velez J C, Jeanty-Ruard B, Cipriani F, Forest J, Hilgers A, Honary F, Thiebault B, Marple S R, Rodgers D 2015 IEEE Trans. Plasma Sci. 43 2799Google Scholar

    [23]

    Kuznetsov I A, Hess S L G, Zakharov A V, Cipriani F, Seran E, Popel S I, Lisin E A, Petrov O F, Dolnikov G G, Lyash A N, Kopnin S I 2018 Planet. Space Sci. 156 62Google Scholar

    [24]

    Davari H, Farokhi B, Ali Asgarian M 2023 Sci. Rep. 13 1111Google Scholar

    [25]

    Piquette M, Horányi M 2017 Icarus 291 65Google Scholar

    [26]

    李梦谣, 夏清, 蔡明辉, 杨涛, 许亮亮, 贾鑫禹, 韩建伟 2024 物理学报 73 155201Google Scholar

    Li M Y, Xia Q, Cai M H, Yang T, Xu L L, Jia X Y, Han J W 2024 Acta Phys. Sin. 73 155201Google Scholar

    [27]

    Zhao C, Gan H, Xie L, Wang Y, Wang Y, Hong J 2023 Sci. China: Earth Sci. 66 2278Google Scholar

    [28]

    Gan H, Wei G F, Zhang W W, Li X Y, Jiang S Y, Wang C, Ma J N, Zhang X P 2023 Sci. China: Phys. Mech. Astron. 53 127Google Scholar

    [29]

    Li L, Zhang Y T, Zhou B, Feng Y Y 2016 Sci. China: Earth Sci. 59 2053Google Scholar

    [30]

    Popel S I, Golub’ A P, Izvekova Y N, Afonin V V, Dol’nikov G G, Zakharov A V, Zelenyi L M, Lisin E A, Petrov O F 2014 Jetp. Lett. 99 115Google Scholar

    [31]

    Mishra S K 2020 Phys. Plasmas 27 082906Google Scholar

    [32]

    Feuerbacher B, Anderegg M, Fitton B, Laude L D, Willis R F, Grard R J L 1972 Lunar and Planetary Science Conference Proceedings 3 2655

    [33]

    Sternovsky Z, Robertson S, Sickafoose A, Colwell J, Horányi M 2002 J. Geophys. Res.: Planets 107 5105Google Scholar

    [34]

    Sternovsky Z, Chamberlin P, Horanyi M, Robertson S, Wang X 2008 J. Geophys. Res.: Space Phys. 113 A10104Google Scholar

    [35]

    Kimura H 2016 Mon. Not. R. Astron. Soc. 459 2751Google Scholar

    [36]

    Seah M P, Dench W 1979 Surf. Interface Anal. 1 2Google Scholar

    [37]

    Senshu H, Kimura H, Yamamoto T, Wada K, Kobayashi M, Namiki N, Matsui T 2015 Planet. Space Sci. 116 18Google Scholar

    [38]

    Chamberlin P C, Woods T N, Eparvier F G 2007 Space Weather 5 S07005Google Scholar

    [39]

    Rakesh Chandran S B, Veenas C L, Asitha L R, Parvathy B, Rakhimol K R, Abraham A, Rajesh S R, Sunitha A P, Renuka G 2022 Adv. Space Res. 70 546Google Scholar

    [40]

    Stubbs T J, Farrell W M, Halekas J S, Burchill J K, Collier M R, Zimmerman M I, Vondrak R R, Delory G T, Pfaff R F 2014 Planet. Space Sci. 90 10Google Scholar

    [41]

    Colwell J E, Gulbis A A, Horányi M, Robertson S 2005 Icarus 175 159Google Scholar

    [42]

    Gan H, Li X, Wei G, Wang S 2015 Adv. Space Res. 56 2432Google Scholar

    [43]

    Willis R F, Anderegg M, Feuerbacher B, Fitton B (Grard R J L Ed.) 1973 Astrophys. Space Sci. Libr. 37 389

    [44]

    Zhao J, Wei X, Du X, He X, Han D 2021 IEEE Trans. Plasma Sci. 49 3036Google Scholar

    [45]

    Nitter T, Aslaksen T K, Melandso F, Havnes O 1994 IEEE Trans. Plasma Sci. 22 159Google Scholar

    [46]

    Qian X Y, Zhang Y Y, Fang Z, Yang J F, Fang Y W, Li S Q 2024 J. Astronaut. 45 613Google Scholar

    [47]

    Poppe A, Horányi M 2010 J. Geophys. Res.: Space Phys. 115 A08106Google Scholar

    [48]

    Hartzell C M 2019 Icarus 333 234Google Scholar

    [49]

    Popel S I, Golub’ A P, Kassem A I, Zelenyi L M 2022 Phys. Plasmas 29 013701Google Scholar

  • [1] Li Meng-Yao, Xia Qing, Cai Ming-Hui, Yang Tao, Xu Liang-Liang, Jia Xin-Yu, Han Jian-Wei. Characteristics of dust plasma environment at lunar south pole. Acta Physica Sinica, 2024, 73(15): 155201. doi: 10.7498/aps.73.20240599
    [2] Wang Qi-Ming, Zhang Yi-Jun, Wang Xing-Chao, Wang Liang, Jin Mu-Chun, Ren Ling, Liu Xiao-Rong, Qian Yun-Sheng. First-principles study of Cs/O deposited Na2KSb photocathode surface. Acta Physica Sinica, 2024, 73(8): 088501. doi: 10.7498/aps.73.20231561
    [3] Zhao Rui, Shen Lai-Quan, Chang Chao, Bai Hai-Yang, Wang Wei-Hua. Lunar glass. Acta Physica Sinica, 2023, 72(23): 236101. doi: 10.7498/aps.72.20231238
    [4] Xu Yong-Hu, Deng Xiao-Qing, Sun Lin, Fan Zhi-Qiang, Zhang Zhen-Hua. Strain engineering of electronic structure and mechanical switch device for edge modified Net-Y nanoribbons. Acta Physica Sinica, 2022, 71(4): 046102. doi: 10.7498/aps.71.20211748
    [5] Liu Chen-Xi, Pang Guo-Wang, Pan Duo-Qiao, Shi Lei-Qian, Zhang Li-Li, Lei Bo-Cheng, Zhao Xu-Cai, Huang Yi-Neng. First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction. Acta Physica Sinica, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [6] Liu Hong-Liang, Guo Zhi-Ying, Yuan Xiao-Feng, Gao Qian-Qian, Duan Xin-Yu, Zhang Xin, Zhang Jiu-Xing. Electronic structures and emission properties of typical binary single crystal REB6. Acta Physica Sinica, 2022, 71(9): 098101. doi: 10.7498/aps.71.20211870
    [7] Strain?Engineering of Electronic Structure and Mechanical Switch Device for Edge Modified Net-Y Nanoribbons. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211748
    [8] Liao Tian-Jun, Yang Zhi-Min, Lin Bi-Hong. Performance optimization of graphene thermionicdevices based on charge and heat transport. Acta Physica Sinica, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [9] Liao Tian-Jun, Lin Bi-Hong, Wang Yu-Hui. Performance characteristics of a novel high-efficientgraphene thermionic power device. Acta Physica Sinica, 2019, 68(18): 187901. doi: 10.7498/aps.68.20190882
    [10] Chen Xin, Yan Xiao-Hong, Xiao Yang. Charge distribution of Li-doped few-layer MoS2 and comparison to graphene and BN. Acta Physica Sinica, 2015, 64(8): 087102. doi: 10.7498/aps.64.087102
    [11] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [12] Du Yu-Jie, Chang Ben-Kang, Zhang Jun-Ju, Li Biao, Wang Xiao-Hui. First-principles study of the electronic structure and optical properties of GaN(0001) surface. Acta Physica Sinica, 2012, 61(6): 067101. doi: 10.7498/aps.61.067101
    [13] Zhou Hua-Jie, Xu Qiu-Xia. Ni-FUSI metal gate work function modulation technology. Acta Physica Sinica, 2011, 60(10): 108102. doi: 10.7498/aps.60.108102
    [14] Xu Gui-Gui, Wu Qing-Yun, Zhang Jian-Min, Chen Zhi-Gao, Huang Zhi-Gao. First-principles study of the adsorption energy and work function of oxygen adsorption on Ni(111) surface. Acta Physica Sinica, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
    [15] Song Hong-Zhou, Zhang Ping, Zhao Xian-Geng. First-principles calculation of Be(0001) thin films: quantum size effect and adsorption of atomic hydrogen. Acta Physica Sinica, 2007, 56(1): 465-473. doi: 10.7498/aps.56.465
    [16] Wang Guo-Dong, Zhang Wang, Zhang Wen-Hua, Li Zong-Mu, Xu Fa-Qiang. Synchrotron radiation photoemission studies on Fe/ZnO(0001) interface. Acta Physica Sinica, 2007, 56(6): 3468-3472. doi: 10.7498/aps.56.3468
    [17] Song Hong-Zhou, Zhang Ping, Zhao Xian-Geng. First-principles calculation of atomic hydrogen adsorption on Be(1010) thin films. Acta Physica Sinica, 2006, 55(11): 6025-6031. doi: 10.7498/aps.55.6025
    [18] Li Ping-Jian, Zhang Wen-Jing, Zhang Qi-Feng, Wu Jin-Lei. The influence of contact metal in carbon nanotube transistor. Acta Physica Sinica, 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [19] Lu Yun-Hao, Duan Xiao-Bang, Lü Ping, Zhang Han-Jie, Li Hai-Yang, Bao Shi-Ning, He Pi-Mo. UPS study of tri(β-naphthyl) phosphine overlayer on Ag(110). Acta Physica Sinica, 2005, 54(9): 4319-4323. doi: 10.7498/aps.54.4319
    [20] WANG GENG, LI HAI-YANG, XU YA-BO. THE WORK-FUNCTION CHANGE OF K/Cu(111). Acta Physica Sinica, 1990, 39(12): 1989-1993. doi: 10.7498/aps.39.1989
Metrics
  • Abstract views:  501
  • PDF Downloads:  18
  • Cited By: 0
Publishing process
  • Received Date:  11 September 2024
  • Accepted Date:  16 October 2024
  • Available Online:  29 October 2024
  • Published Online:  05 December 2024

/

返回文章
返回