Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Propagating characteristics of nonlinear dust acoustic solitary waves in multicomponent dusty plasma

Lin Mai-Mai Wang Ming-Yue Jiang Lei

Citation:

Propagating characteristics of nonlinear dust acoustic solitary waves in multicomponent dusty plasma

Lin Mai-Mai, Wang Ming-Yue, Jiang Lei
cstr: 32037.14.aps.72.20221843
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Nowadays, the dusty plasma has become an interesting new branch of the plasma physics. As is well known, the dusty plasmas play a significant role in the space, astrophysical and laboratory environments. In these days, the studying of the nonlinear waves in dusty plasma has attracted researchers’ attention, in order to explain many basic phenomena in the plasma physics. The nonlinear waves play an important role in studying dusty plasma environments, such as the aster-oid zones, the earth’s mesosphere, and the planetary rings. In this work, the propagating characteristics of nonlinear dust acoustic solitary waves in a multicomponent dusty plasma which is composed of positively charged dust particles, streaming protons and electrons, Kappa distributed electrons and ions are studied in detail. The Sagdeev potential method is employed to investigate the large amplitude dust acoustic waves. It has an evidence for the existence of compressive and rarefractive solitary waves. With the help of the Sagdeev potential method, the Sagdeev potential function and the bifurcation analysis of phase-portrait are obtained. Firstly, the Sagdeev potential function is obtained by the Sagdeev potential method. Then, the variations of phase diagram with different parameters in a two-dimensional autonomous system in the multicomponent dusty plasma system are investigated. It is found that the system has the linear wave solutions, nonlinear wave solutions, and solitary wave solutions at the same time. Meanwhile, the existence of different wave behaviors is closely related to various system factors. Moreover, it is found that only the rarefractive solitary waves exist in the multicomponent dusty plasma system by using the numerical simulation technique. Finally, the important influence of system parameter on the phase diagram, the Sagdeev potential function and the propagating characteristics of nonlinear dust acoustic solitary waves are discussed clearly. The results show that the different system parameters such as Mach number M, the masses, the temperatures, the number densities, the charge numbers of multiple particles and the Kappa distribution parameters for ions and electrons have important effects on the amplitudes, the widths and the waveforms of nonlinear dust acoustic solitary waves.
      Corresponding author: Lin Mai-Mai, linmaimai1514@126.com
    [1]

    Al-Yousef H A, Alotaibi BM, Tolba R E, Moslem W M 2020 Res. Phys. 21 103792

    [2]

    Akhter T, Mannan A, Mamun A A 2013 Plasma Phys. Rep. 39 548Google Scholar

    [3]

    El-Labany S K, Moslem W M, Mahmoud M 2012 Astro. Space Sci. 339 185Google Scholar

    [4]

    Chowdhury S 2007 Plane. Space Sci. 55 1380Google Scholar

    [5]

    Zahed H, Emadi E 2016 Phys. Plasmas 23 083706Google Scholar

    [6]

    Paul S N, Chattopadhyaya S, Bhattacharya S K, Bera B 2003 Pramana 60 1217Google Scholar

    [7]

    Zahran M A, El-Shewy E K, Abdelwahed H G 2013 J. Plasma Phys. 79 859Google Scholar

    [8]

    Luo R X, Chen H, Liu S Q 2015 IEEE Trans. Plasma Sci. 43 1845Google Scholar

    [9]

    Treumann R A, Baumjohann W 2012 Annales Geophysicae 29 2219

    [10]

    Misra A P, Chowdhury A R 2004 Phys. Rev. E 70 058401Google Scholar

    [11]

    Shukla P K, Marklund M 2005 Phys. Scripta T113 36

    [12]

    Ren L W, Wang Z X, Wang X, Liu J Y, Liu Y 2006 Phys. Plasmas 13 082306Google Scholar

    [13]

    Saleem H, Moslem W M, Shukla P K 2012 J. Geophys. Res. Space Phys. 117 A08220

    [14]

    Prasad K P, Abdikian A, Saha A 2021 Adv. Space Res. 68 4155Google Scholar

    [15]

    Rao N N, Shukla P K, Yu M Y 1990 Planet. Space Sci. 38 543Google Scholar

    [16]

    Barkan A, Merlino R L, D’Angelo N 1995 Phys. Plasmas 2 3563Google Scholar

    [17]

    Tiwari R S, Jain S L, Mishra M K 2011 Phys. Plasmas 18 083702Google Scholar

    [18]

    Adhikary N C, Misra A P, Deka M K, Dev A N 2017 Phys. Plasmas 24 073703Google Scholar

    [19]

    Mamun A A 2008 Phys. Lett. A 372 884Google Scholar

    [20]

    Sinha A, Sahu B 2021 Adv. Space Res. 67 1244Google Scholar

    [21]

    Mamun A A, Shukla P K 2009 Europhys. Lett. 87 55001Google Scholar

    [22]

    Hatami M M, Niknam A R 2021 Physica A 564 125533Google Scholar

    [23]

    El-Hanbaly A M, El-Shewy E K, Sallah M, Darweesh H F 2016 Commun. Theor. Phys. 65 606Google Scholar

    [24]

    Sebastian S, Sreekala G, Michael M, Abraham N P, Renuka G, Venugopal C 2015 Phys. Scripta. 90 035601Google Scholar

    [25]

    Mahmoud A A, Tolba R E 2019 Chaos Solitons & Fractals. 118 320

    [26]

    Bedeir A M, Abulwafa E M, Elhanbaly A M, Mahmoud A A 2021 Phys. Scr. 96 095603Google Scholar

  • 图 1  系统相图随马赫数的变化 (a) M = 1.2; (b) M = 1.3; (c) M = 1.4

    Figure 1.  Variations of system phase diagram with Mach number: (a) M = 1.2; (b) M = 1.3; (c) M = 1.4.

    图 2  系统相图随Hb的变化 (a) Hb = 0.4; (b) Hb = 0.6; (c) Hb = 0.8

    Figure 2.  Variations of system phase diagram with Hb: (a) Hb = 0.4; (b) Hb = 0.6; (c) Hb = 0.8.

    图 3  系统相图随Hc的变化 (a) Hc = 0.4; (b) Hc = 0.6; (c) Hc = 0.8

    Figure 3.  Variations of system phase diagram with Hc: (a) Hc = 0.4; (b) Hc = 0.6; (c) Hc = 0.8.

    图 4  系统相图随$ {\mu _b} $的变化 (a) μb = 0.3; (b) μb = 0.6; (c) μb = 0.9

    Figure 4.  Variations of system phase diagram with ${\mu _{\rm b}}$: (a) μb = 0.3; (b) μb = 0.6; (c) μb = 0.9.

    图 5  系统相图随μc的变化 (a) μc = 0.3; (b) μc = 0.6; (c) μc = 0.9

    Figure 5.  Variations of system phase diagram with μc: (a) μc = 0.3; (b) μc = 0.6; (c) μc = 0.9.

    图 6  系统相图随σd的变化 (a) σd = 0.0004; (b) σd = 0.0006; (c) σd = 0.0008

    Figure 6.  Variations of system phase diagram with σd: (a) σd = 0.0004; (b) σd = 0.0006; (c) σd = 0.0008.

    图 7  系统相图随κi的变化 (a) κi = 2.0; (b) κi = 2.5; (c) κi = 3.0

    Figure 7.  Variations of system phase diagram with κi: (a) κi = 2.0; (b) κi = 2.5; (c) κi = 3.0.

    图 8  系统相图随κe的变化 (a) κe = 2.0; (b) κe = 2.5; (c) κe = 3.0

    Figure 8.  Variations of system phase diagram with κe: (a) κe = 2.0; (b) κe = 2.5; (c) κe = 3.0.

    图 9  Sagdeev势$V(\phi)$随不同参数的变化规律

    Figure 9.  Variations of Sagdeev potential $V (\phi)$ with different parameters.

    图 10  Sagdeev势$V(\phi)$$ {\kappa _{\text{e}}} $$ {\kappa _{\text{i}}} $的变化规律

    Figure 10.  Variations of Sagdeev potential $V (\phi )$ with $ {\kappa _{\text{e}}} $ and $ {\kappa _{\text{i}}} $.

    图 11  孤立波$ \phi $的波形随不同参数的变化规律

    Figure 11.  Waveform variation law of the solitary waves $ \phi $ with different parameters.

    图 12  孤立波$ \phi $的波形变化规律

    Figure 12.  Waveform variation law of the solitary waves $ \phi $.

  • [1]

    Al-Yousef H A, Alotaibi BM, Tolba R E, Moslem W M 2020 Res. Phys. 21 103792

    [2]

    Akhter T, Mannan A, Mamun A A 2013 Plasma Phys. Rep. 39 548Google Scholar

    [3]

    El-Labany S K, Moslem W M, Mahmoud M 2012 Astro. Space Sci. 339 185Google Scholar

    [4]

    Chowdhury S 2007 Plane. Space Sci. 55 1380Google Scholar

    [5]

    Zahed H, Emadi E 2016 Phys. Plasmas 23 083706Google Scholar

    [6]

    Paul S N, Chattopadhyaya S, Bhattacharya S K, Bera B 2003 Pramana 60 1217Google Scholar

    [7]

    Zahran M A, El-Shewy E K, Abdelwahed H G 2013 J. Plasma Phys. 79 859Google Scholar

    [8]

    Luo R X, Chen H, Liu S Q 2015 IEEE Trans. Plasma Sci. 43 1845Google Scholar

    [9]

    Treumann R A, Baumjohann W 2012 Annales Geophysicae 29 2219

    [10]

    Misra A P, Chowdhury A R 2004 Phys. Rev. E 70 058401Google Scholar

    [11]

    Shukla P K, Marklund M 2005 Phys. Scripta T113 36

    [12]

    Ren L W, Wang Z X, Wang X, Liu J Y, Liu Y 2006 Phys. Plasmas 13 082306Google Scholar

    [13]

    Saleem H, Moslem W M, Shukla P K 2012 J. Geophys. Res. Space Phys. 117 A08220

    [14]

    Prasad K P, Abdikian A, Saha A 2021 Adv. Space Res. 68 4155Google Scholar

    [15]

    Rao N N, Shukla P K, Yu M Y 1990 Planet. Space Sci. 38 543Google Scholar

    [16]

    Barkan A, Merlino R L, D’Angelo N 1995 Phys. Plasmas 2 3563Google Scholar

    [17]

    Tiwari R S, Jain S L, Mishra M K 2011 Phys. Plasmas 18 083702Google Scholar

    [18]

    Adhikary N C, Misra A P, Deka M K, Dev A N 2017 Phys. Plasmas 24 073703Google Scholar

    [19]

    Mamun A A 2008 Phys. Lett. A 372 884Google Scholar

    [20]

    Sinha A, Sahu B 2021 Adv. Space Res. 67 1244Google Scholar

    [21]

    Mamun A A, Shukla P K 2009 Europhys. Lett. 87 55001Google Scholar

    [22]

    Hatami M M, Niknam A R 2021 Physica A 564 125533Google Scholar

    [23]

    El-Hanbaly A M, El-Shewy E K, Sallah M, Darweesh H F 2016 Commun. Theor. Phys. 65 606Google Scholar

    [24]

    Sebastian S, Sreekala G, Michael M, Abraham N P, Renuka G, Venugopal C 2015 Phys. Scripta. 90 035601Google Scholar

    [25]

    Mahmoud A A, Tolba R E 2019 Chaos Solitons & Fractals. 118 320

    [26]

    Bedeir A M, Abulwafa E M, Elhanbaly A M, Mahmoud A A 2021 Phys. Scr. 96 095603Google Scholar

Metrics
  • Abstract views:  5766
  • PDF Downloads:  67
  • Cited By: 0
Publishing process
  • Received Date:  21 September 2022
  • Accepted Date:  19 October 2022
  • Available Online:  28 November 2022
  • Published Online:  05 February 2023
  • /

    返回文章
    返回