Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Application of low flow rate micro gas cell nozzle in laser wakefield acceleration

Zhang Xiao-Hui Wu Yu-Chi Zhu Bin Wang Shao-Yi Yan Yong-Hong Tan Fang Yu Ming-Hai Yang Yue Li Gang Zhang Jie Wen Jia-Xing Zhou Wei-Min Su Jing-Qin Gu Yu-Qiu

Citation:

Application of low flow rate micro gas cell nozzle in laser wakefield acceleration

Zhang Xiao-Hui, Wu Yu-Chi, Zhu Bin, Wang Shao-Yi, Yan Yong-Hong, Tan Fang, Yu Ming-Hai, Yang Yue, Li Gang, Zhang Jie, Wen Jia-Xing, Zhou Wei-Min, Su Jing-Qin, Gu Yu-Qiu
PDF
HTML
Get Citation
  • After forty-year tremendous advances, laser wakefield acceleration (LWFA), in which an ultra-intense femtosecond laser interacts with a gas target to produce energetic electrons, is becoming more and more mature. Acceleration with a high repetition rate will be an important topic in the near future. When operating at a high repetition rate, the influence of the gas load on the vacuum system cannot be neglected. Among the widely used gas targets, gas cells have a lower flow rate than supersonic gas nozzles. However, most of gas cells are several centimeters long, unsuitable for a moderate-size laser facility. In this work, we design a kind of micro gas cell with a sub-centimeter length. The flow rate of the micro gas cell and the supersonic nozzle are compared by hydromechanics simulations. Comparing with the supersonic nozzle, the flow rate of the micro gas cell is reduced by 97%. Moreover, the gas cell sustains a longer flattop region. The reduced flow rate is attributed to two reasons. The first reason is that the area of the nozzle exit decreases significantly. In the case of the supersonic nozzle, the laser interacts with the gas jet outside the nozzle exit. Therefore, the exit size is determined by the interaction length. In the case of the micro gas cell, the laser interacts with the gas inside the gas cell. The exit only needs to be larger than the laser focal, which is much smaller than the interaction length. The second reason is that the velocity of the gas jet decreases. When using a supersonic nozzle, the velocity at the nozzle exit must be high enough to generate a flattop density distribution, which is required by LWFA. As a comparison, in the micro gas cell, the gas is confined by the cell wall. As a consequence, the gas velocity has little influence on the density distribution inside the cell. By changing the inner radius of the cell, 1–4 mm-long flattop regions can be generated while keeping a low flow rate. Experiments using the micro gas cell are conducted on a 45 TW femtosecond laser facility at the Laser Fusion Research Center. The stable electron beams with maximum energy of 250 MeV are generated. This study will contribute to the investigation of stable and high-frequency laser wakefield acceleration.
      Corresponding author: Gu Yu-Qiu, yqgu@caep.cn
    • Funds: Project supported by the Foundation of Science and Technology on Plasma Physics Laboratory, China (Grant Nos. 6142A04210101, 6142A04200103) and the National Natural Science Foundation of China (Grant Nos. 12004353, 11975214, 11991071, 11905202, 12175212).
    [1]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [3]

    Geddes C, Toth C, Van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538Google Scholar

    [4]

    Mangles S, Murphy C, Najmudin Z, Thomas A, Collier J, Dangor A, Divall E, Foster P, Gallacher J, Hooker C 2004 Nature 431 535Google Scholar

    [5]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [6]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar

    [7]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [8]

    Kim H T, Pathak V B, Hong Pae K, Lifschitz A, Sylla F, Shin J H, Hojbota C, Lee S K, Sung J H, Lee H W, Guillaume E, Thaury C, Nakajima K, Vieira J, Silva L O, Malka V, Nam C H 2017 Sci. Rep. 7 10203Google Scholar

    [9]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [10]

    Wang W, Feng K, Ke L, Yu C, Xu Y, Qi R, Chen Y, Qin Z, Zhang Z, Fang M, Liu J, Jiang K, Wang H, Wang C, Yang X, Wu F, Leng Y, Liu J, Li R, Xu Z 2021 Nature 595 516Google Scholar

    [11]

    Wiggins S M, Issac R C, Welsh G H, Brunetti E, Shanks R P, Anania M P, Cipiccia S, Manahan G G, Aniculaesei C, Ersfeld B, Islam M R, Burgess R T L, Vieux G, Gillespie W A, MacLeod A M, van der Geer S B, de Loos M J, Jaroszynski D A 2010 Plasma Phys. Contr. F 52 124032Google Scholar

    [12]

    Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C, Froula D H 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [13]

    Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [14]

    Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039Google Scholar

    [15]

    Schmid K, Veisz L, Tavella F, Benavides S, Tautz R, Herrmann D, Buck A, Hidding B, Marcinkevicius A, Schramm U 2009 Phys. Rev. Lett. 102 124801Google Scholar

    [16]

    Cole J M, Symes D R, Lopes N C, Wood J C, Poder K, Alatabi S, Botchway S W, Foster P S, Gratton S, Johnson S, Kamperidis C, Kononenko O, De Lazzari M, Palmer C A J, Rusby D, Sanderson J, Sandholzer M, Sarri G, Szoke-Kovacs Z, Teboul L, Thompson J M, Warwick J R, Westerberg H, Hill M A, Norris D P, Mangles S P D, Najmudin Z 2018 Proc. Natl. Acad. Sci. USA 115 6335Google Scholar

    [17]

    Wenz J, Schleede S, Khrennikov K, Bech M, Thibault P, Heigoldt M, Pfeiffer F, Karsch S 2015 Nat. commun. 6 7568Google Scholar

    [18]

    Wu Y, Zhu B, Li G, Zhang X, Yu M, Dong K, Zhang T, Yang Y, Bi B, Yang J 2018 Sci. Rep. 8 15888Google Scholar

    [19]

    Schmid K, Veisz L 2012 Rev. Sci. Instrum. 83 053304Google Scholar

    [20]

    Döpp A, Guillaume E, Thaury C, Gautier J, Ta Phuoc K, Malka V 2016 Rev. Sci. Instrum. 87 073505Google Scholar

    [21]

    Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S 2008 Phys. Rev. Lett. 101 085002Google Scholar

    [22]

    Clayton C E, Ralph J, Albert F, Fonseca R, Glenzer S, Joshi C, Lu W, Marsh K, Martins S F, Mori W B 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [23]

    Liu J, Xia C, Wang W, Lu H, Wang C, Deng A, Li W, Zhang H, Liang X, Leng Y 2011 Phys. Rev. Lett. 107 035001Google Scholar

  • 图 1  超音速喷嘴(a)与微气室喷嘴(b)截面示意图

    Figure 1.  Cross sections of the supersonic nozzle (a) and the micro gas cell (b).

    图 2  超音速喷嘴(a)与微气室(b)气流密度分布的模拟结果; (c)比较了两个喷嘴在激光传播方向上((a)和(b)中黑色虚线位置)的分子密度分布

    Figure 2.  Density distribution of the supersonic nozzle (a) and the micro gas cell (b); (c) the molecular number density along the laser propagation direction (dash lines) are compared in (c).

    图 3  超音速喷嘴出口(a), (b)和微气室喷嘴内壁锥孔(c), (d)的气体密度(a), (c)和流速(b), (d)分布

    Figure 3.  Density (a), (c) and velocity (b), (d) distribution at the exit of the supersonic nozzle (a), (b) and the internal interface of the micro gas cell exit (c), (d).

    图 4  不同内径的微气室喷嘴中N2的分子密度分布

    Figure 4.  Molecular number density in micro gas cells of different inside diameters.

    图 5  采用内径1 mm的微气室喷嘴在分别在5 kPa (a)和8 kPa (b)下连续10发获得的电子能谱

    Figure 5.  Electron sepctra in 10 consecutive shots using a 1 mm micro gas cell backing at 5 kPa (a) and 8 kPa (b).

    表 1  使用4 mm微气室不同工作频率下的真空度

    Table 1.  Vaccum at different repetition rates using 4 mm micro gas cell.

    重复频率/Hz
    12510
    真空度最大值/(10–3 Pa)4.74.66.710
    DownLoad: CSV
  • [1]

    Tajima T, Dawson J 1979 Phys. Rev. Lett. 43 267Google Scholar

    [2]

    Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F, Malka V 2004 Nature 431 541Google Scholar

    [3]

    Geddes C, Toth C, Van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W 2004 Nature 431 538Google Scholar

    [4]

    Mangles S, Murphy C, Najmudin Z, Thomas A, Collier J, Dangor A, Divall E, Foster P, Gallacher J, Hooker C 2004 Nature 431 535Google Scholar

    [5]

    Kim H T, Pae K H, Cha H J, Kim I J, Yu T J, Sung J H, Lee S K, Jeong T M, Lee J 2013 Phys. Rev. Lett. 111 165002Google Scholar

    [6]

    Wang X, Zgadzaj R, Fazel N, Li Z, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T, Downer M C 2013 Nat. Commun. 4 1988Google Scholar

    [7]

    Leemans W P, Gonsalves A J, Mao H S, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E, Bulanov S S 2014 Phys. Rev. Lett. 113 245002Google Scholar

    [8]

    Kim H T, Pathak V B, Hong Pae K, Lifschitz A, Sylla F, Shin J H, Hojbota C, Lee S K, Sung J H, Lee H W, Guillaume E, Thaury C, Nakajima K, Vieira J, Silva L O, Malka V, Nam C H 2017 Sci. Rep. 7 10203Google Scholar

    [9]

    Gonsalves A J, Nakamura K, Daniels J, Benedetti C, Pieronek C, de Raadt T C H, Steinke S, Bin J H, Bulanov S S, van Tilborg J, Geddes C G R, Schroeder C B, Tóth C, Esarey E, Swanson K, Fan-Chiang L, Bagdasarov G, Bobrova N, Gasilov V, Korn G, Sasorov P, Leemans W P 2019 Phys. Rev. Lett. 122 084801Google Scholar

    [10]

    Wang W, Feng K, Ke L, Yu C, Xu Y, Qi R, Chen Y, Qin Z, Zhang Z, Fang M, Liu J, Jiang K, Wang H, Wang C, Yang X, Wu F, Leng Y, Liu J, Li R, Xu Z 2021 Nature 595 516Google Scholar

    [11]

    Wiggins S M, Issac R C, Welsh G H, Brunetti E, Shanks R P, Anania M P, Cipiccia S, Manahan G G, Aniculaesei C, Ersfeld B, Islam M R, Burgess R T L, Vieux G, Gillespie W A, MacLeod A M, van der Geer S B, de Loos M J, Jaroszynski D A 2010 Plasma Phys. Contr. F 52 124032Google Scholar

    [12]

    Pollock B B, Clayton C E, Ralph J E, Albert F, Davidson A, Divol L, Filip C, Glenzer S H, Herpoldt K, Lu W, Marsh K A, Meinecke J, Mori W B, Pak A, Rensink T C, Ross J S, Shaw J, Tynan G R, Joshi C, Froula D H 2011 Phys. Rev. Lett. 107 045001Google Scholar

    [13]

    Buck A, Wenz J, Xu J, Khrennikov K, Schmid K, Heigoldt M, Mikhailova J M, Geissler M, Shen B, Krausz F, Karsch S, Veisz L 2013 Phys. Rev. Lett. 110 185006Google Scholar

    [14]

    Maier A R, Delbos N M, Eichner T, Hübner L, Jalas S, Jeppe L, Jolly S W, Kirchen M, Leroux V, Messner P, Schnepp M, Trunk M, Walker P A, Werle C, Winkler P 2020 Phys. Rev. X 10 031039Google Scholar

    [15]

    Schmid K, Veisz L, Tavella F, Benavides S, Tautz R, Herrmann D, Buck A, Hidding B, Marcinkevicius A, Schramm U 2009 Phys. Rev. Lett. 102 124801Google Scholar

    [16]

    Cole J M, Symes D R, Lopes N C, Wood J C, Poder K, Alatabi S, Botchway S W, Foster P S, Gratton S, Johnson S, Kamperidis C, Kononenko O, De Lazzari M, Palmer C A J, Rusby D, Sanderson J, Sandholzer M, Sarri G, Szoke-Kovacs Z, Teboul L, Thompson J M, Warwick J R, Westerberg H, Hill M A, Norris D P, Mangles S P D, Najmudin Z 2018 Proc. Natl. Acad. Sci. USA 115 6335Google Scholar

    [17]

    Wenz J, Schleede S, Khrennikov K, Bech M, Thibault P, Heigoldt M, Pfeiffer F, Karsch S 2015 Nat. commun. 6 7568Google Scholar

    [18]

    Wu Y, Zhu B, Li G, Zhang X, Yu M, Dong K, Zhang T, Yang Y, Bi B, Yang J 2018 Sci. Rep. 8 15888Google Scholar

    [19]

    Schmid K, Veisz L 2012 Rev. Sci. Instrum. 83 053304Google Scholar

    [20]

    Döpp A, Guillaume E, Thaury C, Gautier J, Ta Phuoc K, Malka V 2016 Rev. Sci. Instrum. 87 073505Google Scholar

    [21]

    Osterhoff J, Popp A, Major Z, Marx B, Rowlands-Rees T, Fuchs M, Geissler M, Hörlein R, Hidding B, Becker S 2008 Phys. Rev. Lett. 101 085002Google Scholar

    [22]

    Clayton C E, Ralph J, Albert F, Fonseca R, Glenzer S, Joshi C, Lu W, Marsh K, Martins S F, Mori W B 2010 Phys. Rev. Lett. 105 105003Google Scholar

    [23]

    Liu J, Xia C, Wang W, Lu H, Wang C, Deng A, Li W, Zhang H, Liang X, Leng Y 2011 Phys. Rev. Lett. 107 035001Google Scholar

  • [1] He Liang, Peng Xue-Fang, Shen Xiao-Yu, Zhu Ren-Jiang, Wang Tao, Jiang Li-Dan, Tong Cun-Zhu, Song Yan-Rong, Zhang Peng. Low repetition rate passive mode-locked semiconductor disk laser. Acta Physica Sinica, 2024, 73(12): 124205. doi: 10.7498/aps.73.20240441
    [2] Zheng Li, Tian Wen-Long, Ma Jun-Yi, Yu Yang, Xu Xiao-Dong, Han Hai-Nian, Wei Zhi-Yi, Zhu Jiang-Feng. Sub-100 fs Kerr-lens mode-locked femtosecond Yb:CaYAlO4 laser with GHz repetition rate. Acta Physica Sinica, 2023, 72(6): 064202. doi: 10.7498/aps.72.20222297
    [3] Huang Mei-Ting, Jiang Yin-Hua, Chen Yu-Qi, Li Run-Hua. Quantitative analysis of trace elements in bismuth brass with high repetition rate laser-ablation spark-induced breakdown spectrum. Acta Physica Sinica, 2021, 70(10): 104206. doi: 10.7498/aps.70.20202018
    [4] Ye Han-Sheng, Gu Yu-Qiu, Huang Wen-Hui, Wu Yu-Chi, Tan Fang, Zhang Xiao-Hui, Wang Shao-Yi. Parameter optimization of self-reflecting all-laser-driven Thomson scattering based on laser wakefield acceleration. Acta Physica Sinica, 2021, 70(8): 085204. doi: 10.7498/aps.70.20210549
    [5] Yang Chao, Gu Cheng-Lin, Liu Yang, Wang Chao, Li Jiang, Li Wen-Xue. Dual repetition-rate mode-locked Yb: YAG ceramic laser. Acta Physica Sinica, 2018, 67(9): 094206. doi: 10.7498/aps.67.20172345
    [6] Zhang Tian-Kui, Yu Ming-Hai, Dong Ke-Gong, Wu Yu-Chi, Yang Jing, Chen Jia, Lu Feng, Li Gang, Zhu Bin, Tan Fang, Wang Shao-Yi, Yan Yong-Hong, Gu Yu-Qiu. Detector characterization and electron effect for laser-driven high energy X-ray imaging. Acta Physica Sinica, 2017, 66(24): 245201. doi: 10.7498/aps.66.245201
    [7] Fan Zhong-Wei, Qiu Ji-Si, Tang Xiong-Xin, Bai Zhen-Ao, Kang Zhi-Jun, Ge Wen-Qi, Wang Hao-Cheng, Liu Hao, Liu Yue-Liang. A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting. Acta Physica Sinica, 2017, 66(5): 054205. doi: 10.7498/aps.66.054205
    [8] Qiu Ji-Si, Tang Xiong-Xin, Fan Zhong-Wei, Chen Yan-Zhong, Ge Wen-Qi, Wang Hao-Cheng, Liu Hao. High repetition rate and high beam quality joule level Nd: YAG nanosecond laser for Thomson scattering diagnosis. Acta Physica Sinica, 2016, 65(15): 154204. doi: 10.7498/aps.65.154204
    [9] Peng Han, Liu Bin, Fu Song-Nian, Zhang Min-Ming, Liu De-Ming. Repetition rate optimization of passively mode-locked fiber laser for high-speed linear optical sampling. Acta Physica Sinica, 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [10] Liu Huan, Gong Ma-Li, Cao Shi-Ying, Lin Bai-Ke, Fang Zhan-Jun. A 303 MHz fundamental repetition rate femtosecond Er:fiber ring laser. Acta Physica Sinica, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [11] Dou Zhi-Yuan, Tian Jin-Rong, Li Ke-Xuan, Yu Zhen-Hua, Hu Meng-Ting, Huo Ming-Chao, Song Yan-Rong. High-repetition-rate passively mode-locked erbium-doped all fiber laser. Acta Physica Sinica, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [12] Wang Chao, Wei Hui, Wang Jiang-Feng, Jiang You-En, Fan Wei, Li Xue-Chun. Laser diode pumped Nd:YAG laser with high repetition and high average power. Acta Physica Sinica, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [13] Han Jing-Hua, Feng Guo-Ying, Yang Li-Ming, Zhang Qiu-Hui, Fu Yu-Qing, Niu Rui-Hua, Zhu Qi-Hua, Xie Xu-Dong, Zhou Shou-Huan. Influence of the high-repetition-pulsed laser beam size on the damage characteristics of absorbing glass. Acta Physica Sinica, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [14] Liu Hua-Gang, Hu Ming-Lie, Liu Bo-Wen, Song You-Jian, Chai Lu, Wang Qing-Yue. Study on the high-power, high-repetition-rate and multi-wavelength femtosecond laser system. Acta Physica Sinica, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [15] Zhao Yang-Ying, Han Hai-Nian, Teng Hao, Wei Zhi-Yi. Generation of femtoseond Ti:sapphire laser at 10MHz repetition rate by extending laser cavity with a telescope. Acta Physica Sinica, 2009, 58(3): 1709-1714. doi: 10.7498/aps.58.1709
    [16] Yan Xiong-Wei, Yu Hai-Wu, Cao Ding-Xiang, Li Ming-Zhong, Jiang Dong-Bin, Jiang Xin-Ying, Duan Wen-Tao, Xu Mei-Jian. ASE effect in pulsed energy-storage rep-rated Yb:YAG disk laser amplifier. Acta Physica Sinica, 2009, 58(6): 4230-4238. doi: 10.7498/aps.58.4230
    [17] Huang Lin, Dai Zhi-Yong, Liu Yong-Zhi. Influences of pumping manners on characteristics of all-fiber acousto-optic Q-switched lasers under different pulse repetition rates. Acta Physica Sinica, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [18] Liu Jun, Li Xiao-Fang, Chen Xiao-Wei, Jiang Yong-Liang, Li Ru-Xin, Xu Zhi-Zhan. 1 kHz-0.1 TW high efficiency Ti: sapphire laser amplifier. Acta Physica Sinica, 2007, 56(3): 1375-1378. doi: 10.7498/aps.56.1375
    [19] Liu Yan-Ge, Zhang Chun-Shu, Sun Ting-Ting, Lu Yun-Fei, Wang Zhi, Yuan Shu-Zhong, Kai Gui-Yun, Dong Xiao-Yi. Clad-pumped Er3+/Yb3+-codoped short pulse fiber laser with high average power output exceeding 2W. Acta Physica Sinica, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [20] Xu Han, Chang Wen-Wei, Yin Yan. Frequency shift of laser pulse propagating in wakefield. Acta Physica Sinica, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
Metrics
  • Abstract views:  3775
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  26 September 2022
  • Accepted Date:  28 October 2022
  • Available Online:  11 November 2022
  • Published Online:  05 February 2023

/

返回文章
返回